Digital Repository Universitas Jember

MAKALAH ILMIAH JURNAL INTERNASIONAL BEREPUTASI

International Journal of Electrical and Computer Engineering (IJECE)

Vol. 8, No. 1, February 2018

Indexing : Scopus

Quartile : Q2 on Computer Science

Q2 on Electrical & Electronics Eng

H-indeks : 8 SJR : 0,28

ISSN : 2088-8708

Judul:

Optimized Kernel Extreme Learning Machine for Myoelectric Pattern Recognition

disusun oleh: Khairul Anam dkk

JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS JEMBER 2018 номе ABOUT SEARCH CURRENT ARCHIVES LOGIN REGISTER

Home > About the Journal > Editorial Team

Editorial Team

Editor-in-Chief

Prof. nzw. dr hab. inz. Lech M. Grzesiak, Warsaw University of Technology, Poland

Managing Editor

Assoc. Prof. Dr. Tole Sutikno, Universitas Ahmad Dahlan, Indonesia Dr. Auzani Jidin, Universiti Teknikal Malaysia Melaka (UTeM), Malaysia

Associate Editors

Prof. Dr. Faycal Djeffal, University of Batna, Batna, Algeria

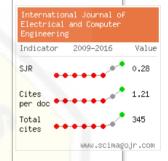
Prof. Dr. Geetam Singh Tomar, University of Kent, United Kingdom Prof. Dr. Govindaraj Thangavel, Muthayammal Engineering College, India Prof. Dr. Kewen Zhao, Qiongzhou University, China

Prof. Dr. Kewen Zhao, Qiongzhou University, China
Prof. Dr. Sayed M. El-Rabaie, Minufiya University, Egypt
Prof. Dr. Tarek Bouktir, Ferhat Abbes University, Setif, Algeria
Prof. Dr. Ahmad Saudi Samosir, Universitas Lampung (UNILA), Indonesia
Prof. Dr. Ahmad Saudi Samosir, University of Bechar, Algeria, Algeria
Assoc. Prof. Dr. Angela Amphawan, Universiti Utara Malaysia, Massachusetts Institute of Technology, Malaysia
Assoc. Prof. Dr. Angela Amphawan, University of Houston, United States
Assoc. Prof. Dr. Jaime Lloret Mauri, Polytechnic University of Valencia, Spain
Assoc. Prof. Dr. Mochammad Facta, Universitas Diponogoro (UNDIP), Indonesia
Assoc. Prof. Dr. M L Dennis Wong, Swinburne University of Technology Sarawak Campus, Malaysia
Assoc. Prof. Dr. Naci Genc, Yuzuncu Yil University, Turkey
Assoc. Prof. Dr. Nudhichai Assawinchaichote, King Mongkut's University of Technology Thonburi, Thailand
Asst. Prof. Dr. Luca Cassano, Politecnico di Milano, Italy
Dr. Deris Stiawan, C[EH, C]HFI, Universitas Sriwijaya, Indonesia
Dr. Junjie Lu, Broadcom Corp., United States
Dr. Mehrdad Ahmadi Kamarposhti, Jouybar Branch, Islamic Azad University, Iran, Islamic Republic of Dr. Mehrdad Ahmadi Kamarposhti, Jouybar Branch, Islamic Azad University, Iran, Islamic Republic of Dr. Mokhtar Beldjehem, University of Ottawa, Canada Dr. Munawar A Riyadi, Universiti Teknologi Malaysia, Malaysia Dr. Nidhal Bouaynaya, University of Arkansas at Little Rock, Arkansas, United States

Dr. Nizam Uddin Ahamed, University of Calgary, Canada Dr. Renjie Huang, Washington State University, United States Dr. Ranjit Kumar Barai, Jadavpur University, India

Dr. Shadi A. Alboon, Yarmouk University, Jordan Dr. Vicente Garcia Diaz, University of Oviedo, Spain Dr. Yin Liu, Symantec Core Research Lab, United States

Dr. Yudong Zhang, Columbia University, United States Dr. Zheng Xu, IBM Corporation, United States


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

PROFILE AT SCOPUS

2017 Scopus Journal Metrics

CiteScore 2016: 1.22 SJR 2016: 0.280 SNIP 2016: 1.090 Q2 on Computer Science Q2 on Electrical & Electronics Eng

NOTIFICATIONS

- View
- Subscribe

- By Issue
- By Author By Title
- Other Journals

FONT SIZE A

INFORMATION

- For Authors
- For Librarians

HOME ABOUT **USER HOME** SEARCH CURRENT **ARCHIVES** ANNOUNCEMENTS

Home > About the Journal > Editorial Policies

Editorial Policies

- Focus and Scope
- Section Policies
- Peer Review Process
- Open Access Policy
- Archiving
- Publication Ethics and Publication Malpractice Statement
- Abstracting and Indexing Witdrawal of Manuscripts
- Checklist for preparing your paper for publication

Focus and Scope

International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world

The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope:

Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems;

Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements;

Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network;

Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems, Artificial Intelligent and Expert System, Fuzzy Logic and Neural Network, Complex Adaptive Systems;

Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data), Network Traffic Modeling, Performance Modeling, Dependable Computing, High Performance Computing, Computer Security, Human-Machine Interface, Stochastic Systems, Information Theory, Intelligent Systems, IT Governance, Networking Technology, Optical Communication Technology, Next Generation Media, Robotic Instrumentation, Information Search Engine, Multimedia Security, Computer Vision, Information Retrieval, Intelligent System, Distributed Computing System, Mobile Processing, Next Network Security, Natural Language Processing, Business Process. Cognitive Systems. Generation, Computer Network Security, Natural Language Processing, Business Process, Cognitive Systems.

Section Policies

Peer Review Process

This journal operates a conventional single-blind reviewing policy in which the reviewer's name is always concealed from the submitting author. Authors should present their papers honestly without fabrication, falsification, plagiarism or inappropriate data manipulation. Submitted papers are evaluated by anonymous referees for contribution, originality, relevance, and presentation. Papers will be sent for anonymous review by at least two reviewers who will either be members of the Editorial Board or others of similar standing in the field. In order to shorten the review process and respond quickly to authors, the Editors may triage a submission and come to a decision without sending the paper for external review. The Editor shall inform you of the results of the review as soon as possible, hopefully in 8 weeks. The Editors' decision is final and no correspondence can be entered into concerning manuscripts considered unsuitable for publication in this ournal. All correspondence, including notification of the Editors' decision and requests for revisions, will be sent by email.

Open Access Policy

This journal adhere to the best practice and high publishing standards and comply with the following

- 1. Provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge;
- 2. Allows the author to hold the copyright and to retain publishing right without restrictions;

USER

You are logged in as... khairulanam

- My Journals
- My Profile
- Log Out

PROFILE AT SCOPUS

2017 Scopus Journal Metrics

CiteScore 2016: 1.22 SJR 2016: 0.280 SNIP 2016: 1.090 Q2 on Computer Science Q2 on Electrical & Electronics Eng

NOTIFICATIONS

- View. Manage
- JOURNAL CONTENT Search

Search Scope

Browse

- By Issue
- By Author
- By Title
- Other Journals

FONT SIZE

INFORMATION

- For Readers
- For Authors
- For Librarians

- 3. Deposits content with a long term digital preservation or archiving program;
- 4. Uses DOIs as permanent identifiers;
 - Embeds machine-readable CC licensing information in articles;
- 6. Allows generous reuse and mixing of content, in accordance with CC BY-NC license;
 7. Can Provide Provide article level metadata for any indexers and aggregators 15 tas Jember 8. Has a deposit policy registered with a deposit policy registry, e.g. Sherpa/Romeo.

Archiving

This journal utilizes the LOCKSS system to create a distributed archiving system among participating libraries and permits those libraries to create permanent archives of the journal for purposes of preservation and restoration, More.

Publication Ethics and Publication Malpractice Statement

Publication Ethics and Malpractice Statement

Institute of Advanced Engineering and Science (IAES) is a non-profit international scientific association of distinguished scholars engaged in engineering and science devoted to promoting researches and technologies in engineering and science field through digital technology. **IAES Journals** are peer-reviewed international journals. This statement clarifies ethical behaviour of all parties involved in the act of publishing an article in our journals, including the authors, the editors, the peer-reviewers and the publisher (Institute of Advanced Engineering and Science). This statement is based on COPE's Best Practice Guidelines for Journal Editors.

Ethical Guideline for Journal Publication

The publication of an article in a peer-reviewed International Journal of Electrical and Computer Engineering (IJECE) is an essential building block in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. Peerreviewed articles support and embody the scientific method. It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the authors, the journal editors, the peer reviewers, the publisher and the society.

Institute of Advanced Engineering and Science (IAES) as publisher of IAES Journals takes its duties of guardianship over all stages of publishing extremely seriously and we recognize our ethical and other responsibilities. We are committed to ensuring that advertising, reprint or other commercial revenue has no impact or influence on editorial decisions. In addition, the IAES and Editorial Board will assist in communications with other journals and/or publishers where this is useful and necessary.

The editors of the IAES journals are responsible for deciding which of the articles submitted to the journal should be published. The validation of the work in question and its importance to researchers and readers must always drive such decisions. The editors may be guided by the policies of the journal's editorial board and constrained by such legal requirements as shall then be in force regarding libel, copyright infringement and plagiarism. The editors may confer with other editors or reviewers in making this decision.

Fair play

An editor at any time evaluate manuscripts for their intellectual content without regard to race, gender, sexual orientation, religious belief, ethnic origin, citizenship, or political philosophy of the authors.

Confidentiality

The editor and any editorial staff must not disclose any information about a submitted manuscript to anyone other than the corresponding author, reviewers, potential reviewers, other editorial advisers, and the publisher,

Disclosure and conflicts of interest

Unpublished materials disclosed in a submitted manuscript must not be used in an editor's own research without the express written consent of the author.

Duties of Reviewers

Contribution to Editorial Decisions

Peer review assists the editor in making editorial decisions and through the editorial communications with the author may also assist the author in improving the paper.

Any selected referee who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the editor and excuse himself from the review process.

Any manuscripts received for review must be treated as confidential documents. They must not be shown to or discussed with others except as authorized by the editor.

Standards of Objectivity

Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Referees should express their views clearly with supporting arguments.

Acknowledgement of Sources

Reviewers should identify relevant published work that has not been cited by the authors. Any statement that an observation, derivation, or argument had been previously reported should be accompanied by the relevant citation. A reviewer should also call to the editor's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge.

Disclosure and Conflict of Interest

Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers

Duties of Authors

Reporting standards

Authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. A paper should contain sufficient detail and references to permit others to replicate the work. Fraudulent or knowingly inaccurate statements constitute unethical behaviour and are unacceptable

Data Access and Retention

Authors are asked to provide the raw data in connection with a paper for editorial review, and should be prepared to provide public access to such data (consistent with the ALPSP-STM Statement on Data and Databases), if practicable, and should in any event be prepared to retain such data for a reasonable time after gital Repository

The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others that this has been appropriately cited or quoted.

Multiple, Redundant or Concurrent Publication

An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behaviour and is unacceptable.

Acknowledgement of Sources

Originality and Plagiarism

Proper acknowledgment of the work of others must always be given. Authors should cite publications that have been influential in determining the nature of the reported work

Authorship of the Paper

Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study. All those who have made significant contributions should be listed as co-authors. Where there are others who have participated in certain substantive aspects of the research project, they should be acknowledged or listed as contributors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included on the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.

Hazards and Human or Animal Subjects

If the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript.

Disclosure and Conflicts of Interest

All authors should disclose in their manuscript any financial or other substantive conflict of interest that might be construed to influence the results or interpretation of their manuscript. All sources of financial support for the project should be disclosed.

Fundamental errors in published works

When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct

Abstracting and Indexing

- SCOPUS
- Google Scholar Profile
- Scholar Metrics
 - h5-index:3
 - h5-median:4
- DOAJ Directory of Open Access Journals
- ProQuest
- EBSCO
- BASE (Bielefeld Academic Search Engine)
- Bibliothekssystem Universität Hamburg
- University Library of Regensburg
- SHERPA/RoMEO, University of Nottingham
- NewJour
- Science Central
- JournalTOCs (or click in here)
- University of Zurich
- Indonesian Publication Index (IPI)
- CORE (COnnecting REpositories) Knowledge Media Institute (KMi)

Witdrawal of Manuscripts

Authora are not allowed to withdraw submitted manuscripts, because the withdrawals are waste of valuable resources that editors and referees spent a great deal of time processing submitted manuscript, money and

If authors still request withdrawal of their manuscripts when the manuscripts are still in the peer-reviewing process, authors will be punished with paying \$200 per manuscript, as withdrawal penalty to the publisher. However, it is unethical to withdraw a submitted manuscripts from one journal if accepted by another journal. The withdrawal of manuscripts after the manuscripts are accepted for publication, author will be punished by paying US\$500 per manuscript. Withdrawal of manuscripts are only allowed after withdrawal penalty has been fully paid to the Publisher.

If author don't agree to pay the penalty, the authors and their affiliations will be blacklisted for publication in this journal. Even, their previously published articles will be removed from our online system.

Checklist for preparing your paper for publication

1. Is your manuscript written in IAES format? At this stage, it is essential that you follow every detail of IAES format. Please try to follow the format as closely as possible.

- is your title adequate and is your abstract correctly written? The title of paper is max 10 words, without Acronym or abbreviation. The Abstract (MAX 200 WORDS) should be informative and completely self-explanatory (no citation in abstract), provide a clear statement of the problem, the proposed
- approach or solution, and point out major findings and conclusions.

 3. Authors are suggested to present their articles in the sections structure: Introduction The Proposed Method/Algorithm/Procedure specifically designed (optional) Research Method Results and Discussion - Conclusion. Authors may present complex proofs of theorems or non-obvious proofs of correctness of algorithms after introduction section (obvious theorems & straightforward proofs of existing theorems are NOT needed)
- 4. Introduction section: explain the context of the study and state the precise objective. An Introduction should contain the following three parts:
 - Background: Authors have to make clear what the context is. Ideally, authors should give an idea of the state-of-the art of the field the report is about.

 - The Problem: If there was no problem, there would be no reason for writing a manuscript, and
 - definitely no reason for reading it. So, please tell readers why they should proceed reading. Experience shows that for this part a few lines are often sufficient.

 - The Proposed Solution: Now and only now! - authors may outline the contribution of the manuscript.
 - Here authors have to make sure readers point out what are the novel aspects of authors work. Authors should place the paper in proper context by citing relevant papers. At least, 5 references recently journal articles) are used in this section.
- 5. Method section: the presentation of the experimental methods should be clear and complete in every detail facilitating reproducibility by other scientists.

 6. Results and discussion section: The presentation of results should be simple and straightforward in
- style. This section report the most important findings, including results of statistical analyses as apropriate and comparisons to other research results. Results given in figures should not be repeated in tables. This is where the author(s) should explain in words what he/she/they discovered in the research. It should be clearly laid out and in a logical sequence. This section should be supported suitable references.
- Conclusion section: Summarize sentences the primary outcomes of the study in a paragraph. Are the claims in this section supported by the results, do they seem reasonable? Have the authors indicated how the results relate to expectations and to earlier research? Does the article support or contradict previous theories? Does the conclusion explain how the research has moved the body of scientific knowledge forward?
- 8. Language. If an article is poorly written due to grammatical errors, while it may make it more difficult to understand the science
- 9. Please be sure that the manuscript is up to date. It is expected that 10 to 20% of references are to recent papers.
- 10. Is the manuscript clearly written? Is the article exciting? Does the content flow well from one section to another? Please try to keep your manuscript on the proper level. It should be easy to understand by well qualified professionals, but at the same time please avoid describing well known facts (use proper references instead). Often manuscripts receive negative reviews because reviewers are not able to understand the manuscript and this is authors' (not reviewers') fault. Notice, that if reviewers have difficulties, then other readers will face the same problem and there is no reason to publish the manuscript.
- 11. Do you have enough references? We will usually expect a minimum of 10 to 25 references primarily to journal papers, depending on the length of the paper. Citations of textbooks should be used very rarely and citations to web pages should be avoided. All cited papers should be referenced within the text of
- the manuscript.

 12. Figures and Tables. Relation of Tables or Figures and Text: Because tables and figures supplement the text, all tables and figures should be referenced in the text. Author also must explain what the reader text, all tables and figures should be referenced in the text. Author also must explain what the reader should dra should look for when using the table or figure. Focus only on the important point the reader should draw from them, and leave the details for the reader to examine on her own.

Figures:

- All figures appearing in article must be numbered in the order that they appear in the text.
- h. Each figure must have a caption fully explaining the content
- Figure captions are presented as a paragraph starting with the figure number i.e. Figure 1, Figure
- Figure captions appear below the figure
- Each figure must be fully cited if taken from another article
- all figures must be referred to in the body of the article

Tables:

- Material that is tabular in nature must appear in a numbered captioned table.

 All tables appearing in article must be numbered in the order that they appear in the text.
- Each table must have a caption fully explaining the content with the table number i.e. Table 1, Table 2, etc.
- Each column must have a clear and concise heading
 Tables are to be presented with single horizontal line under: the table caption, the column headings and at the end of the table.
- All tables must be referred to in the body of the article
- g. Each table must be fully cited if taken from another article

 13. Each citation should be written in the order of appearance in the text. Citations and references must
- The references should be integrated also with not less than two papers published on IAES's Journals. You can find the issued at: http://iaesjournal.com (please use "Search Paper" facility)
 Please be aware that for the final submission of regular paper you will be asked to tailor your paper so
- the last page is not half empty.

his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

номе **USER HOME** CURRENT ARCHIVES **ABOUT SEARCH ANNOUNCEMENTS**

Home > About the Journal > Journal Contact

Journal Contact

Mailing Address

International Journal of Electrical and Computer Engineering (IJECE)

- Room 208, Department of Electrical Engineering, The 3rd Campus of Universitas Ahmad Dahlan, Jln. Prof. Dr. Soepomo, Janturan, Yogyakarta, Indonesia 55164
- D2 Griya Ngoto Asri, Bangunharjo, Sewon, Bantul, Yogyakarta, Indonesia 55187

No.51, Jalan TU 17, Taman Tasik Utama, 75450 Melaka, Malaysia

email: ijece@iaesjournal.com

Principal Contact

Tole Sutikno

Managing Editor, IJECE Email: <u>ijece@iaesjournal.com</u>

Support Contact

IAES Support

Email: info@iaesjournal.com

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

You are logged in as... **khairulanam**

- My JournalsMy Profile
- Log Out

PROFILE AT SCOPUS

2017 Scopus Journal Metrics

CiteScore 2016: 1.22 SJR 2016: 0.280 SNIP 2016: 1.090 Q2 on Computer Science Q2 on Electrical & Electronics Eng

NOTIFICATIONS

- View
- Manage

JOURNAL CONTENT

Search Scope

Browse

Search

- By Issue

- By Author By Title Other Journals

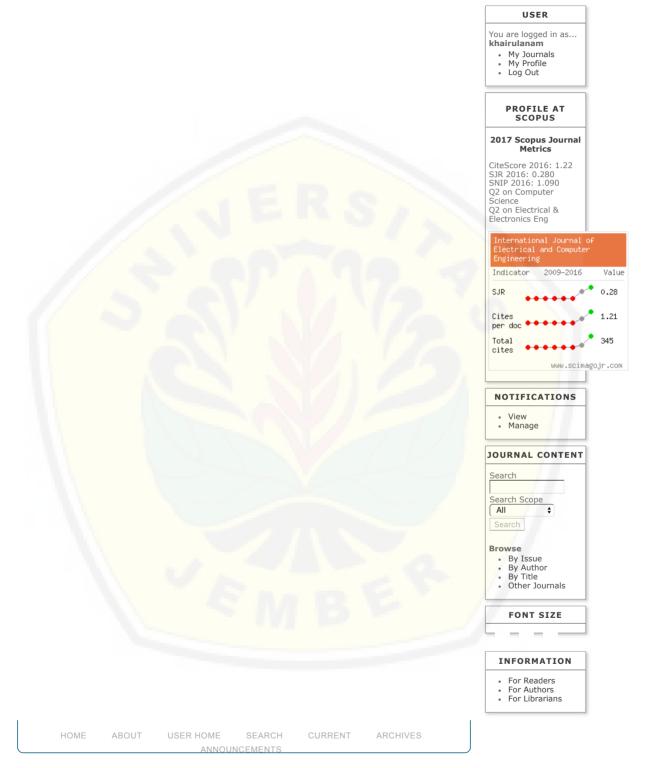
FONT SIZE

INFORMATION

- For Readers
- For Authors For Librarians

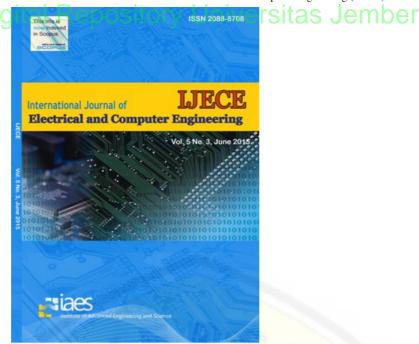
Home Journal Rankings Country Rankings Viz Tools 1 Help J About Us e

International Journal of Electrical and Computer Engineering



Powered by

Digital Repository Universitas Jember



Home > Vol 8, No 5

International Journal of Electrical and Computer Engineering (IJECE)

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a **SCOPUS** indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.

Kindly please download the template in DOC or Latex.

Submit your manuscripts today!

The IJECE is published bi-monthly (Feb, Apr, Jun, Aug, Oct, Dec)

e-mail: ijece@iaesjournal.com

Announcements

No announcements have been published

More Announcements

Vol 8, No 5: October 2018

List of accepted papers

Table of Contents

High Voltage Durability of Bambusa Vulgaris as a Bio-Composite Material Mohamad Yusof Mat Zain, Mohd Tarmizi Ali, Aminah Nur Huda Hussin

Total views : 87 times

A CORDIC based QR decomposition technique for MIMO detection Shirly Edward, Malarvizhi S

Total views : 25 times

Enhanced Transmission With Optimized SNR & Receiver Diversity In OFDM Systems
Using Blind Channel Estimation
VIVEK KUMAR GUPTA

Total views : 36 times

A Summative comparison Of Blind Channel Estimation Techniques For OFDM <u>Systems</u> VIVEK KUMAR GUPTA

Total views : 23 times

Wave file features extraction using reduced LBP

aws al-qaisi

Total views : 16 times

Evaluation and Analysis of Rate Control Methods for H.264/AVC and MPEG-4 Video

Imran Ullah Khan Total views : 18 times

A Fault Tolerant Control for Sensor and Actuator Failures of an Non Linear Hybrid System
Hanene Chalandi

Total views : 21 times

Real Time Implementation of Fuzzy Adaptive PI-Sliding Mode Controller for Induction Machine Control
Abdeldjebar HAZZAB, Mohamed HABBAB, Pierre Sicard

Repositorv Universitas Jember

Framework to Avoid Similarity Attack in Big Streaming Data

Ganesh Dagadu Puri

Total views : 22 times

A Statistical Approach to Adaptive Playout Scheduling in Voice over Internet Protocol

Priya Chandran, Chelpa Lingam

Total views : 17 times

Sensing and sharing schemes for Spectral Efficiency of Cognitive radios

MK Kaushik

Total views : 14 times

Design and optimization of a wideband microstrip patch antenna operating in

quadruple frequencies, for applications in the Extremely High Frequency, band Abir ZAIDI, Abdennaceur BAGHDAD, Abdelhakim BALLOUK, Abdelmajid BADRI

Total views : 18 times

Experimental Analysis of Web Browser Sessions Using Live Forensics Method Rusydi Umar, Anton Yudhana, Muhammad Nur Faiz

Total views : 34 times

Review on Security Aspects for Cloud Architecture Shaz Alam, Mohd Mugeem, Suhel Ahmad Khan

Total views : 48 times

<u>HII: Histogram Inverted Index For Fast Images Retrieval</u> Yuda Munarko, Agus Eko Minarno

Total views : 28 times

Motorcycle Movement Model based on Markov Chain Process in Mixed Traffic Rina Mardiati, Bambang Riyanto Trilaksono, Yudi Satria Gondokaryono, Sony

Sulaksono Wibowo

Total views : 17 times

Tolerance for Emotional Internet Infidelity and Its Correlate with Relationship

Flourishing

Bernadette Nathania Octaviana, Juneman Abraham

Total views : 54 times

Automation of Air Traffic Management Using Fuzzy Logic Algorithm to Integrate Unmanned Aerial Systems into the National Airspace

Joseph Pineau

Total views: 18 times

Invesitigation of Malware and Forensic Tools on Internet TARUN KUMAR, Sanjeev Sharma, Ravi Dhaundiyal, Parag Jain

An Enhancement Role and Attribute Based Access Control Mechanism in Big Data Meneka M

Total views : 43 times

Effect of feature selection on gene expression datasets classification

Hicham Omara

Total views : 41 times

Optimisation towards Latent Dirichlet Allocation: Its Topic Number and Collapsed

Gibbs Sampling Inference Process
Bambang Subeno, Retno Kusumaningrum, Farikhin Farikhin

Total views : 54 times

A Multi Criteria Recommendation Engine Model for Cloud Renderfarm Services

Ruby Annette

Total views : 26 times

This work is licensed under a <u>Creative Commons Attribution-NonCommercial 4.0 International License</u>.

Digital Repository Universitas Jember

International Journal of Electrical and Computer Engineering (IJECE)

Vol. 8, No. 1, February 2018, pp. 483~496

ISSN: 2088-8708, DOI: 10.11591/ijece.v8i1.pp483-496

Optimized Kernel Extreme Learning Machine for Myoelectric Pattern Recognition

Khairul Anam¹, Adel Al-Jumaily²

¹Department of Electrical Engineering, University of Jember, Indonesia ²Department of Electrical Engineering, University of Technology, Sydney, Australia

Article Info

Article history:

Received Oct 22, 2017 Revised Jan 5, 2018 Accepted Jan 20, 2018

Keyword:

Classification
Electromyography
Extreme learning machine
Pattern recognition
Wavelet

ABSTRACT

Myoelectric pattern recognition (MPR) is used to detect user's intention to achieve a smooth interaction between human and machine. The performance of MPR is influenced by the features extracted and the classifier employed. A kernel extreme learning machine especially radial basis function extreme learning machine (RBF-ELM) has emerged as one of the potential classifiers for MPR. However, RBF-ELM should be optimized to work efficiently. This paper proposed an optimization of RBF-ELM parameters using hybridization of particle swarm optimization (PSO) and a wavelet function. These proposed systems are employed to classify finger movements on the amputees and able-bodied subjects using electromyography signals. The experimental results show that the accuracy of the optimized RBF-ELM is 95.71% and 94.27% in the healthy subjects and the amputees, respectively. Meanwhile, the optimization using PSO only attained the average accuracy of 95.53 %, and 92.55 %, on the healthy subjects and the amputees, respectively. The experimental results also show that SW-RBF-ELM achieved the accuracy that is better than other well-known classifiers such as support vector machine (SVM), linear discriminant analysis (LDA) and knearest neighbor (kNN).

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Khairul Anam,
Department of Electrical Engineering,
University of Jember,
Jl. Kalimantan 37 Jember 68121 Indonesia.

1. INTRODUCTION

Email: khairul@unej.ac.id

Extreme learning machine (ELM) is a kind of single layer feed-forward networks (SLFNs) that has fast training time [1]. ELM is a great improvement of feed-forward neural networks (FFNNs), which very considerably reduces the training time of FFNNs by omitting the iterative learning process. In ELM, the weights and biases of the hidden node are determined randomly, while the output weights are calculated analytically. Therefore, the training time is very short compared to the traditional neural networks.

The development of ELM is very fast and encompassing many applications. To improve the stability of ELM, Wang, et al. [2] proposed a method to find a high quality of feature mapping in the feature stage. Therefore, the output weight calculation using ridge regression can be optimized. On the other hand, the idea to construct a compact ELM was proposed by adding a new appropriate hidden neuron [3]. Likewise, the method to reduce of the size ELM was also proposed in [4], [5]. Many other developments of ELM have been proposed, such as ELM on online sequential data [6], [7], ensemble ELM [8], semi-supervised and unsupervised ELM [9], [10], ELM for imbalanced data [11], and incremental ELM [12].

ELM method has been used for a wide range of application [13]. The ELM has been applied to electromyography (EMG)-based pattern recognition [14], face recognition [15], character recognition [16],

[17]. Moreover, it has been implemented in protein structure prediction [18], cancer detection [19], electrical power system problem [20] and physical parameter estimation [21].

Nevertheless, the hidden node parameters, the input weights, and biases, which are determined arbitrarily, result in a non-optimal system. Therefore, some efforts dealing with the optimization problem in ELM have been made. Self-adaptive evolutionary ELM (SAE-ELM) [22], and particle swarm optimization ELM(PSO-ELM) [23] are some methods developed to optimize the hidden node parameters.

ELM is not merely working on the node style. A kernel form can be incorporated in ELM by replacing the node processing structure with a kernel function. This kernel ELM can be considered as a variance of least square support vector machine (LS-SVM) without the output bias [24]. Similar to the node-based ELM, the kernel ELM faces the optimization problem too. The efficacy of the kernel ELM greatly depends on the optimum combination of the kernel parameters [25]. The popular grid search algorithm that is simple was used to search the optimal kernel [14]. However, the exhaustive grid search on a large number of the parameter spaces may result in a very time-consuming process.

A popular particle swarm optimization (PSO) algorithm can be a promising solution for optimizing the kernel parameters in the kernel ELM. The PSO has been implemented in many areas such as medical [26], power system [27], and circuit design [28]. To the best of the author's knowledge, no one employs PSO to optimize the kernel ELM. In the practical application, Ling, et al. [29] found that sometimes, PSO is being trapped in the local optima. Therefore, they proposed PSO mutated by wavelet. The existence of the wavelet mutation in PSO depends on the mutation probability. The higher the mutation probability is, the greater the chance of the wavelet is updating the particles of PSO.

This paper introduces a swarm radial basis function extreme learning machine (SRBF-ELM), the radial basis function kernel ELM optimized by PSO. In addition, the paper proposes a swarm wavelet radial basis function extreme learning machine (SW-RBF-ELM), the optimization of radial basis function kernel ELM using combination PSO and wavelet. The wavelet differs SRBF-LEM and SW-RBF-ELM. The wavelet is implemented using a mutation probability. SRBF-ELM can be considered as SW-RBF-ELM with zero mutation probability. In this paper, SRBF-ELM and SW-RBF-ELM are applied to myoelectric pattern recognition (M-PR) to classify the individual and combined finger movements using two EMG channels.

The main contribution of this paper is on the optimization of kernel extreme learning machine PSO and wavelet. The second contribution is the implementation of the proposed system on myoelectric pattern recognition to improve the performance of MPR.

The structure of this paper is as follows. The second section will discuss the basic theory of PSO and the hybridization of wavelet and PSO. Then, the experimental setup is presented in the third section. Next, in the fourth section, the experimental results on the able-bodied subjects are discussed. Additional experiment on the amputee subjects is also provided. Finally, the fifth section ends the paper with the conclusion.

2. RESEARCH METHOD

2.1. Kernel Extreme Learning Machine

ELM is a learning algorithm for single layer feedforward networks (SLFNs). In classical SLFNs, network parameters are tuned iteratively while in ELM; most of these parameters are determined analytically. Hidden parameters can be independently calculated from the training data, and output parameters can be determined by the pseudo-inverse method. As a result, the learning of ELM can be carried out fast compared to the other learning algorithms [25].

As described in [25], the output of ELM is defined by:

$$f(x) = g(x)G^{T} \left(\frac{I}{C} + GG^{T}\right)^{-1} T \tag{1}$$

where g(x) is the feature mapping in the hidden layer, **T** is the target and C is the regulation parameter of ELM. The feature mapping in the hidden layer of ELM can be replaced by a kernel function. Therefore, the formulation of the kernel based ELM is defined by:

$$f(\mathbf{x}) = \begin{bmatrix} K(\mathbf{x}, \mathbf{x}_1) \\ \vdots \\ K(\mathbf{x}, \mathbf{x}_N) \end{bmatrix}^T \left(\frac{1}{c} + \Omega_{ELM} \right)^{-1} \mathbf{T}$$
 (2)

where

Int J Elec & Comp Eng ISSN: 2088-8708 □ 485

$$\Omega_{ELM} = \mathbf{G}\mathbf{G}^T: \Omega_{ELM\ i,i} = g(\mathbf{x}_i). g(\mathbf{x}_i) = K(\mathbf{x}_i, \mathbf{x}_i)$$
(3)

and K is a kernel function as shown in Equation (4) to Equation (6).

Radial basis function:
$$K(x_i, x_j) = exp(-\gamma ||x_i - x_j||)$$
 (4)

Linear:
$$K(x_i, x_i) = x_i \cdot x_i$$
 (5)

Polynomial:
$$K(x_i, x_i) = (x_i, x_i + a)^d$$
 (6)

2.2. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm that has been applied widely in many optimization areas [29-31]. PSO is inspired by the social behaviors of animals like fish schooling and bird flocking [29]. The particle swarm does not use selection. It means that all population members survive from the beginning until the end [32]. In the PSO, a swarm of interacting particles moves in an n-dimensional search space of the problem's possible solution. Four elements that are a position \vec{x}_i , a velocity \vec{v}_i , the best previous (local) position \vec{p}_i and the best global position \vec{g}_i represent a particle in the swarm. Some generations are generated to update the particle's positions and velocities. The particles explore the promising domain to find the best solutions, which spread throughout the swarm. The parameter adaptations are given by:

$$\vec{x}_i^q(t+1) = \vec{x}_i^q(t) + \vec{v}_i^q(t+1) \tag{7}$$

$$\vec{v}_i^q(t+1) = \varphi \vec{v}_i^q(t) + c_1 \cdot r_1 \cdot \left(\vec{p}_i^q(t) - \vec{x}_i^q(t) \right) + c_2 \cdot r_2 \cdot \left(\vec{g}_i^q(t) - \vec{x}_i^q(t) \right)$$
(8)

Where

$$\vec{p}_i^q = \begin{bmatrix} \vec{p}_1^q & \cdots & \vec{p}_k^q \end{bmatrix}$$

$$\vec{g}_i^q = \begin{bmatrix} \vec{g}_1^q & \cdots & \vec{g}_k^q \end{bmatrix}$$

$$i = 1, \dots, k$$

$$q = 1, \dots, d$$

In the above equations, \vec{p}_i^q denotes the best previous (local) position and \vec{g}_i^q denotes the best global position. Moreover, t represents the generation, k denotes the number of the particles in the swarm, d denotes the number of dimensions, φ is inertial weight, and c_1 and c_2 are acceleration constants which are weighted by c_1 and c_2 .

2.3. PSO with Wavelet Mutation

PSO typically converges in the early stage of the searching process. This indicates that PSO tends to be trapped in the local optima. This shortcoming may influence the performance of the myoelectric finger classification. One of the solutions of the local optima is by injecting a wavelet function inside the PSO. The wavelet mutates the swarm particle in small probability to create a possibility for the swarm particle to get out from the local optima.

The wavelet mutation in PSO was proposed by Ling et al. [29]. A mutation chance is driven by a mutation probability $p_m \in [0 \ 1]$. If $x_i(t)$ is selected to be mutated then a new position is given by:

$$\vec{x}_i(t) = \begin{cases} \vec{x}_i(t) + \sigma \left(par_{max}^i - \vec{x}_i(t) \right) & \text{if } \sigma > 0 \\ \vec{x}_i(t) + \sigma \left(\vec{x}_i(t) - par_{min}^i \right) & \text{if } \sigma \le 0 \end{cases}$$

$$(9)$$

where par_{max} and par_{min} are the maximum and minimum position, respectively. As for σ , it is the Morlet wavelet function defined by:

$$\sigma = \frac{1}{\sqrt{a}} e^{-\left(\frac{\alpha}{a}\right)/2} \cos\left(5\left(\frac{\alpha}{a}\right)\right) \tag{10}$$

The variable "a" in the Morlet wavelet is determined by equation:

$$a = e^{-\ln(g)\left(1 - \frac{t}{T}\right)^{\xi} + \ln(g)} \tag{11}$$

The objective of the optimization using the wavelet-PSO is to find the optimum parameters of the kernel ELM that minimize the classification error of the finger motion recognition. A 3-fold cross validation was employed to measure the error. Moreover, the fitness function of particle \vec{x} is defined by

$$f(\vec{x}) = \frac{1}{N_v} \sum_{n=1}^{N_v} E_n(\vec{x})$$
 (12)

where N_v is the number of cross validations, E_n is the error in each validation process. The pseudo code of the wavelet mutation for optimizing the parameters of the kernel based ELM is presented in Figure 1.

```
Begin
              Load emg_features, classes
              t > 1
                                                        // iteration number
              Initialize x(t)
                                              // x(t) : position, a particle swarm
                                             // f(x): fitness function Eq.(12)
              Evaluate f(x)
                                             // v : velocity
              Initialize v
              \tilde{\mathbf{x}} = \mathbf{x}
                                                          //\ \tilde{\mathbf{x}} : personal best position
              \hat{x} = \tilde{x}
                                                          // \hat{x} : global best position
              While (condition satisfied) do
                      i → i+1
                      update position of particle x(i)
                                                                    // Eq. (7)
                      update velocity v(i)
                                                                                 // Eq. (8)
                      if v(i) > vmax, v(i) = vmax end
                      if v(i) < -vmax, v(i) = -vmax end
                      update \tilde{\mathbf{x}} if new \tilde{\mathbf{x}} better than previuos \tilde{\mathbf{x}}
                      update \boldsymbol{\hat{x}} if new \boldsymbol{\hat{x}} better than previuos \boldsymbol{\hat{x}}
                      perform wavelet mutation operation with p_{m}
                                                                                 // Eq. (9)
                      Updating x(i)
              end
```

Figure 1. The pseudo code for PSO with wavelet mutation for optimizing the parameters of ELM

2.4. The Experimental Setup

Figure 2 shows the diagram block of the experiment conducted in this section. The EMG data was collected from eight able-bodied subjects, two females and six males aged 24-60 years old. Two EMG MyoScanTM T9503M sensors or electrodes were placed on the forearm of the subject to collect myoelectric signal from flexor policis longus (FPL) and flexor digitorium superficialis (FDS) muscles, as shown in Figure 3. The FlexComp InfinitiTM System from Thought Technology acquired the EMG signals with a sampling frequency of 2000 Hz and then amplified the signals with a total gain of 1000.

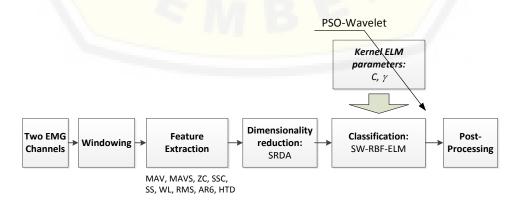


Figure 2. The experimental setup of the PSO-wavelet mutation for ELM parameters optimization

Figure 3. The placement of the electrodes

The data collection and the myoelectric pattern recognition process were conducted using the Matlab 2012b installed in the Intel Core is 3.1 GHz desktop computer with 4 GB RAM running on Windows 7 operating system. Digitally, the EMG data is filtered using a band-pass filter which filters the signals in the frequency range between 20 and 500 Hz and a notch filter was used as well to remove the 50 Hz line interference. The collected data was down-sampled to 1000 Hz.

In this paper, the experiment considered ten classes of the individual and combined finger movements. The individual fingers consist of the flexion of thumb (T), index (I), middle (M), ring (R), and little (L) fingers, while the combined finger consists of the pinching of thumb and index fingers (T–I), thumb and middle fingers (T–M), thumb and ring fingers (T–R), thumb and little fingers (T–L), and closing the hand (HC). During the data collection, the subjects were asked to perform one finger movement for 5 s and then take a rest for 5 s. The subject repeated each movement six times. The data collected were divided into training data and testing data using 3-fold cross validation.

In the experiments, the myoelectric pattern recognition (M-PR) extracts features of waveform length (WL), slope sign changes (SSC), number of zero crossings (ZCC), sample skewness (SS), mean absolute value (MAV), mean absolute value slope (MAVS), root mean square (RMS), some parameters from Hjorth time domain parameters (HTD) and 6-order autoregressive (AR6) model parameters are included. Moreover, SRDA will project and reduce the dimension of the feature extracted. The experiment involved the steady state signal only and removed the transient state of the myoelectric signal. The majority vote with four previous states may be used to refine the classification performance.

As depicted in Figure 2, PSO mutated by wavelet is used to optimize the parameters of radial basis function extreme learning machine (RBF-ELM). This hybridization is called swarm-wavelet based RBF-ELM or SW-RBF-ELM. Some parameters should be determined at the beginning of the experiment. Two parameters of RBF-ELM are C and γ (see Equation (4)). They are in the range of $[2^{-7}, 2^{10}]$, and $[2^{-7}, 2^{10}]$ for C and γ , respectively. Then, the parameters of PSO (see Equation (7) and Equation (8)) are set as follows. Parameter c_1 and c_2 are set at 2.05, and φ is 0.9. Parameters r_1 and r_2 are random functions in the range of [0-1]. In addition, the optimization was done until 150 generations were completed with 30 particles in each generation. As for the parameter of the wavelet, the work in this section will vary the value of the wavelet parameters, as seen in Equation (9) and Equation (10)) except for α ; it is determined randomly, according to [33]. To test the efficacy of the proposed system, some experiments will be conducted. They are:

- a. The experiment on the influence of the mutation probability p_m
- b. The experiment on the shape parameter ξ (Equation (11))
- c. The experiment on the parameter g (Equation (11))
- d. The experiment on the pattern recognition performance

3. RESULTS AND DISCUSSION

3.1. Experiment on the Able-bodied Subjects

3.1.1. Mutation Probability pm

This section tested the influence of the mutation probability p_m to the SW-RBF-ELM performance. The p_m value is varied from 0 to 0.6. The parameter $p_m = 0$ means no wavelet mutation in the PSO. Besides, ξ is equal to 0.2 and g is equal to 10000. The experimental results are presented in Figure 4.

Figure 4 indicates that on the parameter $p_m = 0$, the fitness value of the PSO is larger than that with p_m more than 0, even when it is the largest value. The lower the fitness value, the better the system, so the PSO with wavelet mutation is better than without wavelet mutation. Therefore, the wavelet mutation can

enhance the optimization process. Moreover, in general, the figure also shows that the more the mutation probability, the less the fitness value. However, the $p_m = 0.5$ is the optimum value among the tested values.

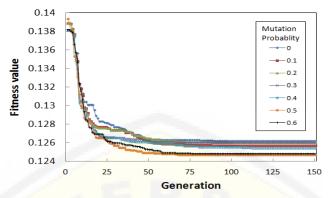


Figure 4. The fitness values for variable p_m when ξ =0.2 and g=10000 over eight subjects

Table 1 gives more information regarding the mutation probability p_m across different subjects. In Table 1, the underlined value indicates the minimum value for each subject. This table emphasizes the fact in Figure 4 that $p_m = 0.5$ is the most accurate PSO across seven subjects, out of eight. Although the accuracy of the parameter $p_m = 0.6$ is the highest, it occurred in five subjects only. Another interesting fact is also found in the Table. The mutation wavelet does not provide a benefit to the optimization process on two subjects, S5 and S8 because the accuracy of the system with wavelet mutation and without is very similar. This fact shows that the wavelet mutation in the PSO does not fully ensure the improvement in the classification performance. However, there is a high probability that the optimization process will be improved. Finally, the parameter $p_m = 0.5$ is selected for the rest of the experiment.

Table 1 The accuracy	of SW-RBF-ELM when ξ =0.2 and g=10000 using 3-fold cross valid	ation
rable 1. The accurac	of by RDI EDIVI when C 0.2 and E 10000 asing 5 lota closs varia	ation

Subject	Mutation parameter (Accuracy in %)											
	0	0.1	0.2	0.3	0.4	0.5	0.6					
S1	92.278	92.417	92.417	92.869	92.869	92.869	92.869					
S2	98.098	98.098	98.028	98.028	98.028	98.129	98.098					
S3	95.070	95.070	95.070	95.139	95.139	95.440	<u>95.546</u>					
S4	93.240	93.238	93.238	93.344	93.344	93.344	93.310					
S5	96.731	96.660	96.660	96.731	96.660	96.731	<u>96.731</u>					
S6	97.088	97.215	97.215	97.215	97.215	97.250	97.250					
S7	93.898	94.106	94.106	93.967	94.005	94.038	94.004					
S8	97.880	97.880	97.880	97.880	97.880	<u>97.880</u>	97.880					
Average	95.535	95.585	95.577	95.647	95.643	95.710	95.711					

^{*}The underlined value is the highest one

The higher value of the parameter p_m increases the searching space of the optimization in PSO. If the number of elements in a particle is small, it is preferable to increase the value of the parameter. Figure 4 implies that the higher value of p_m tends to give good optimization performance. This phenomena matches with the fact suggested by Ling et al. [29]. They recommended a higher value of p_m in between 0.5 - 0.8 for a small number of elements in a particle. In this research, the number of elements is two.

To examine the benefit of wavelet mutation statistically, an analysis of variance (ANOVA) test was conducted on the fitness value of the PSO without wavelet mutation and with wavelet mutation $p_m = 0.5$. The confidence level p is set at 0.05. ANOVA test produced $p = 3.69 \times 10^{-7}$. This result concludes that the enhancement produced by wavelet mutation is statistically significant.

3.1.2. Shape-parameter ξ

This section varied the value of shape parameter ξ in Equation (11). The shape parameter is varied among 0.1, 0.2, 0.3, 0.5, 2 and 5. The value of the parameter p_m is 0.5 following the result in section 0. Furthermore, g is equal to 10000. The experimental result is presented in Figure 5.

Figure 5 indicates that $\xi = 2$ converged earlier than the others did. The final fitness value of it is the second worst after $\xi = 5$. On the other hand, the small value of ξ gave a good optimization process. These facts imply that the high value of ξ is not a good option for optimization of SW-RBF-ELM. The best optimization process is shown when $\xi = 0.2$.

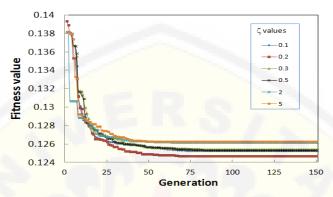


Figure 5. The fitness values for variable ξ when $p_m = 0.5$ and g = 10000 over eight subjects

Table 2 draws different finding from Figure 5. The table shows that SW-RBF-ELM with $\zeta=0.1$ achieved the highest average accuracy, not $\zeta=0.2$. Besides, it attains the highest accuracy across four subjects, which is similar to $\zeta=0.2$. By considering the fitness value and the average accuracy performed, $\zeta=0.2$ is selected as the optimal shape parameter.

Table 2. The accurac	COM DDE ELM	1	- 10000 -: 2 C-1-	1 1: 1 . 4:
Table / The accurac	VOLNW-RBE-FLW	when $n = 0.5$ and	$\sigma = 1$ UHHHH HISING 3 -TOIC	cross validation

Subject	ζ (Accuracy in %)									
Subject	0.1	0.2	0.3	0.5	2	5				
S1	92.869	92.869	92.869	92.869	92.869	92.869				
S2	98.028	98.129	98.028	98.098	98.028	98.028				
S3	95.893	95.440	95.893	95.139	95.070	95.139				
S4	93.310	93.344	93.310	93.344	93.240	93.309				
S5	96.731	96.731	96.660	96.731	96.660	96.731				
S6	<u>97.321</u>	97.250	97.250	97.250	97.215	97.123				
S7	<u>94.106</u>	94.038	94.002	94.004	93.898	93.898				
S8	97.845	97.880	97.880	97.845	97.845	97.845				
Average	95.763	95.710	95.737	95.660	95.603	95.618				

^{*}The underlined value is the highest one

3.1.3. Parameter g

The previous two experiments have selected two optimum parameters, $p_m = 0.5$ and $\zeta = 0.2$. This section tries to get the optimum g parameter. The parameter g (Equation (11)) is varied from 100, 1000, 10000 and 100000. The experimental results are presented in Figure 6.

Figure 6 depicts the fitness values of four different g values. This figure indicates that the big number of g value give better accuracy than the small one. The g = 10000 exhibits the best performance. This fact is supported by the accuracy of SW-RBF-ELM in Table 3.

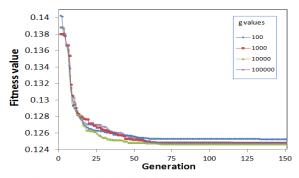


Figure 6. The fitness values for variation of the parameter g when p_m =0.5 and ξ =0.2 over eight subjects

Although the accuracy of the parameter g = 10000 is the lowest one on average across eight subjects, it is the highest in the over half of the subjects, which is five out of eight. These results confirm the recommendation of Ling et al. [29]. They found that by setting the parameter g in the high value, the other parameter could be chosen by trial and error.

Table 3. The accuracy of SW-RBF-ELM when p_m =0.5 and ζ = 0.2 using 3-fold cross validation

Subject	Parameter	Parameter g (Accuracy in %)								
	100	1000	10000	100000						
S1	92.869	92.869	92.834	92.800						
S2	98.028	98.098	<u>98.129</u>	98.129						
S3	95.732	95.893	95.440	95.546						
S4	93.347	93.310	93.344	93.238						
S5	96.731	96.660	96.731	96.731						
S6	97.250	97.215	97.250	97.215						
S7	94.038	94.004	94.038	<u>94.106</u>						
S8	97.845	97.845	97.880	97.880						
Average	95.730	95.737	95.706	95.706						

^{*}The underlined value is the highest one

3.1.4. Pattern Recognition Performance across Subjects

The previous sections conducted some experiments to determine the optimum parameters of the wavelet. They are p_m =0.5, ζ = 0.2 and g = 10000. This section applied those values to SW-RBF-ELM and did analysis on the results especially on the comparison between PSO with wavelet mutation and without mutation. The result is shown in Figure 7.

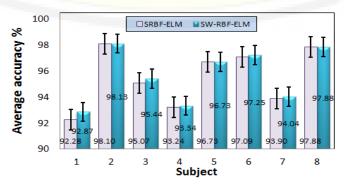


Figure 7. The accuracy of RBF-ELM with mutation and without mutation using 3-fold cross validation

Figure 7 depicts the average accuracy of radial basis function ELM (RBF-ELM) that is optimized by PSO with wavelet mutation (SW-RBF-ELM) and without mutation (SRBF-ELM). The figure indicates that SW-RBF-ELM achieves better accuracy than SRBF-ELM across seven subjects. SRBF-ELM is as accurate as SW-RBF-ELM in one subject only, which is subject S8. Therefore, the probability of the improvement of the performance using wavelet mutation is $7/8 \times 100 \% = 87.5 \%$. On average, SW-RBF-ELM attained an accuracy of 95.71 % while SRBF-ELM achieved the accuracy of 95.54 %.

3.1.5. Pattern Recognition Performance on the Movement

This section investigates the performance of both systems, SRBF-ELM and SW-RBF-ELM, in classifying finger movements. The myoelectric pattern recognition classifies ten finger movements. They include thumb (T), index (I), middle (M), ring (R), and little (L) finger movements. The other movements are thumb-index (TI), thumb-middle (TM), thumb-ring (TR), thumb-little (TL), and the hand close (HC) movements. Figure 8 presents the classification results of SRBF-ELM (without wavelet mutation) and SW-RBF-ELM (with wavelet mutation).

Figure 8 shows that SW-RBF-ELM is better than SRBF-ELM in classifying two individual finger movements (T, and M), and four combined movements (TI, TM, TR, and TL). On the other hand, SRBF-ELM is better than SW-RBF-ELM in two movements only: L and HC. As for finger movement I and R, both systems exhibited a similar performance. Overall, the SW-RBF-ELM is better than SRBF-ELM. In other words, the wavelet mutation in PSO enhances the classification performance of the pattern recognition system. However, the analysis of variance test (ANOVA) set p = 0.05 yields p is equal to 0.96. Therefore, the improvement is statistically not significant. This result confronts the ANOVA test result in Section 0 that proved the significance of the existence of the wavelet in PSO. These two results can be accommodated by saying that the enhancement of wavelet mutation in the optimization process is statistically significant, but it is not significant in the classification performance.

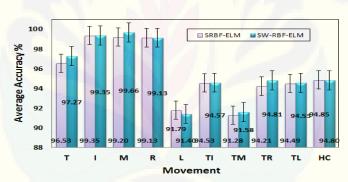


Figure 8. The accuracy of the finger movement classification across eight subjects using 3-fold cross validation

Т	Table 4. The confusion matrix of the classification result of SW-RBF-ELM										
	Classified										
		T	I	M	R	L	TI	TM	TR	TL	HC
	T	97.27	0.00	0.04	0.00	0.52	0.65	0.00	0.61	0.00	0.91
	I	0.04	99.35	0.00	0.00	0.00	0.48	0.13	0.00	0.00	0.00
	M	0.00	0.00	99.66	0.00	0.00	0.00	0.34	0.00	0.00	0.00
led	R	0.00	0.00	0.09	99.13	0.17	0.00	0.00	0.61	0.00	0.00
Intended	L	0.00	1.19	0.00	1.84	91.40	2.19	0.79	0.53	1.89	0.18
ΙŢ	ΤI	0.56	1.91	0.04	0.00	1.48	94.57	1.00	0.13	0.30	0.00
	TM	0.00	0.74	0.22	0.26	1.48	4.30	91.58	1.22	0.22	0.00
	TR	1.27	0.17	0.00	0.17	0.38	0.55	1.44	94.81	0.55	0.68
	TL	0.30	0.00	0.22	0.13	2.65	1.13	0.00	1.04	94.53	0.00
	HC	0.75	0.35	0.00	0.00	1.27	0.17	1.96	0.70	0.00	94.80
	-										

Another fact found in Figure 8 is that SRBF-ELM and SW-RBF-ELM exhibit relatively bad performance in classifying all combined movements and little finger movement. The phenomena can be investigated through the confusion matrix in Table 4 and Figure 9. Table 4 shows that the SW-RBF-ELM mostly misclassified the little finger movement (L) to thumb-index motion (TI) with the accuracy of 2.19 %. Besides, the system also misclassifies L to movement R and TL. As for the combined movement, SW-RBF-ELM generally misclassified them to the individual movement they belong to. For instance, the movement

TL is mostly misclassified to the movement L by accuracy 2.65 %. Nevertheless, it did not occur in all combined movements. In addition to Table 4, Figure 9 helps the reader the get a visual graph of the confusion matrix.

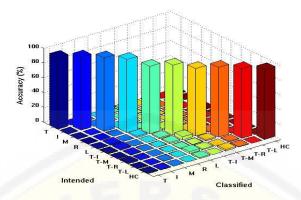


Figure 9. The confusion matrix plot of the classification result of SW-RBF-ELM

3.1.6. SW-RBF-ELM and other well-known Classifiers

In this experiment, the performance of SW-RBF-ELM is compared to other well-known classifiers such as original ELM using sigmoid activation function (Sig-ELM), SRBF-ELM, SVM, LDA, and kNN. The experimental results are depicted in Figure 10.

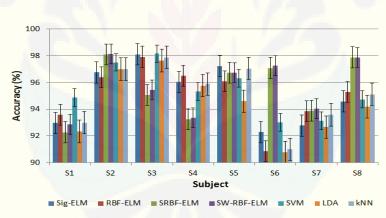


Figure 10. The accuracy of SW-RBF-ELM and other well-known classifiers for finger movement recognition using 3-fold cross validation

Figure 10 shows that SW-RBF-ELM is the most accurate classifier among seven different classifiers in recognizing ten finger movements using EMG channels across eight able-bodied subjects. This finding is supported by Table 5 that presents the average accuracy achieved by each classifier. SW-RBF-ELM achieved the accuracy of 95.71 %. Furthermore, SW-RBF-ELM achieved the highest accuracy on four subjects, while it attained the second lowest accuracy on the subject S3 and S4.

Table 5. The accuracy of various classifiers for the finger movement recognition using 3-fold cross validation

Classifier	Accuracy						
Classifier	Mean (%)	STD					
Sig-ELM	95.10	2.25					
RBF-ELM	95.06	2.21					
SRBF-ELM	95.54	2.23					
SW-RBF-ELM	95.71	2.09					
SVM	95.39	1.86					
LDA	94.37	2.38					
kNN	95.06	2.37					

The comparison of SW-RBF-ELM and the others can be made more obvious using the one-way ANOVA test, as described in Table 6. The table shows that the performance of SW-RBF-ELM and the other classifiers is not significantly different for the majority of subjects, except for subject S6. With this subject, most classifiers could not classify the ten finger movements as well as SW-RBF-ELM and SRBF-ELM. As for the subject S3, SW-RBF-ELM could not achieve a good accuracy, it is even worse than the other classifiers; more significantly it is worse than Sig-ELM, SVM, and LDA.

Table 6. P-values of the comparison of SW-RBF-ELM and the other classifiers

SW-RBF-ELM vs →	RBF-ELM	SRBF-ELM	Sig-ELM	SVM	LDA	kNN
S1	0.75	0.82	0.85	0.33	0.82	0.95
S2	0.37	0.98	0.29	0.75	0.61	0.51
S3	0.07	0.77	0.01	0.04	0.04	0.08
S4	0.34	0.98	0.38	0.55	0.47	0.45
S5	0.70	1.00	0.91	0.80	0.24	0.84
S6	0.00	0.86	0.00	0.01	0.00	0.00
S7	0.95	0.87	0.09	0.75	0.57	0.86
S8	0.31	1.00	0.03	0.14	0.15	0.17

3.2. Experiment on the Amputee Database

This section tested the performance of SW-RBF-ELM and SRBF-ELM to classify 12 finger movements on the EMG signals collected from the amputee subjects. The data collection is presented in [34]. The The finger motion classes consist of a thumb abduction (Ta), thumb flexion (Tf), index flexion (If), and middle flexion (Mf). Then ring flexion (Rf), and little flexion (Lf). Moreover, it involved thumb extension (Te), index extension (Ie), middle extension (Me), ring extension (Re), little extension (Le), little and ring flexion (LRf), index, middle and ring flexion (IMRf), and middle, ring and little flexion (IMRLf).

The myoelectric pattern recognition used in this experiments is the same as the system used in section 3 and Figure 2. For wavelet parameters, the values of the parameters are $p_m = 0.1$, $\zeta = 2$ and g = 10000, following the work of Anam and Al-Jumaily [35]. Figure 11 depicts the experimental results of SRBF-ELM and SW-RBF-ELM on five amputee subjects.

Figure 11 show that the SW-RBF-ELM achieved better performance than SRBF-ELM across five amputees except on amputee A5. On the amputee A5, SRBF-ELM is better than SW-RBF-ELM. Overall, SW-RBF-ELM outperformed SRBF-ELM. Probably, the optimization process in the PSO influences the superiority of SW-RBF-ELM over SRBF-ELM. Figure 12 gives clearer information about this assumption. It is shown in Figure 12 that after 30th generation, the PSO did not change the fitness value. Meanwhile, the wavelet mutation helped the PSO to avoid the local optima.

Furthermore, a statistical test on the accuracy using one-way ANOVA (p set at 0.05) was also done. The performance of the SW-RBF-ELM is significantly different from swarm ELM (p = 0.036). The SW-RBF-ELM achieved the average accuracy of 94.27 %, while SRBF-ELM produced the average accuracy of 92.55 %.

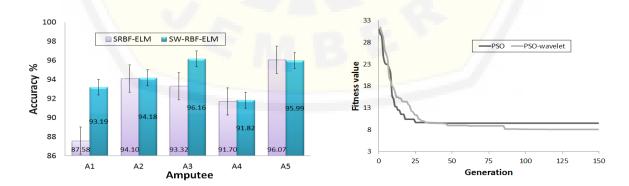


Figure 11. Average classification accuracy of three different ELM methods

Figure 12. The fitness value of PSO and wavelet-PSO across five amputees

In addition, the classification performance in regards to the finger motion was observed. As shown in Figure 13, the SRBF-ELM was able to classify the flexion motions with the average accuracy more than

90%. In contrast, the extension motions were classified with the average accuracy less than 90%. Similarly, the SW-RBF-ELM recognized the flexion motions better than the extension motions, but with the average accuracy that is better than the SRBF-ELM.

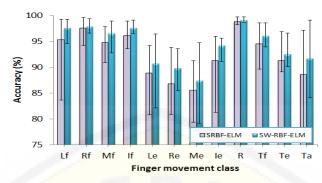


Figure 13. The accuracy of different finger motions across five amputees

The confusion matrix in Table 7 provides information about the misclassified finger motions. According to the Figure 13, SW-RBF- ELM poorly classified the Little extension (Le), Middle extension (Me), and Ring extension (Re). Me was mostly misclassified to Thumb abduction (Ta) and Middle flexion (Mf). Furthermore, the system mostly misclassified the little extension (Le) to Re and vice versa. Even though the misclassified motions were present, arguably the SW-RBF-ELM has succeeded in recognizing different finger motions on five amputee subjects with the accuracy of about 94%.

Table 7. The confusion matrix of the classification results of swarm-wavelet elm averaged for five amputees

						(Units:	(%)						
						Inten	ded Task						
		Lf	Rf	Mf	If	Le	Re	Me	Ie	R	Tf	Te	Ta
	Lf	98.2	0.5	0.1	0.0	0.0	0.0	0.1	0.3	0.0	0.4	0.0	0.3
	Rf	0.8	98.4	0.6	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
	Mf	0.2	0.7	95.8	0.3	0.3	0.8	0.9	0.6	0.0	0.0	0.3	0.2
X	If	0.2	0.1	0.1	97.7	0.3	0.3	0.2	0.1	0.0	0.7	0.1	0.3
Task	Le	0.0	0.0	0.4	0.3	90.1	4.6	1.8	0.2	0.0	0.6	1.0	0.9
ੂ ਨੂ	Re	0.1	0.0	0.7	0.2	3.8	89.8	2.1	0.2	0.0	0.6	0.7	1.7
<u>#</u>	Me	0.2	0.0	1.3	0.3	2.4	3.1	88.6	1.3	0.0	0.4	0.7	1.8
Classified	Ie	0.1	0.0	0.7	0.3	0.2	0.2	1.0	94.8	0.1	0.2	1.7	0.8
5	R	0.1	0.0	0.0	0.2	0.1	0.0	0.0	0.1	99.1	0.3	0.0	0.0
	Tf	0.1	0.0	0.0	1.3	0.9	0.5	0.2	0.2	0.1	96.0	0.4	0.2
	Te	0.0	0.1	0.3	0.1	1.2	0.9	0.7	2.0	0.0	0.7	92.8	1.1
	Ta	0.0	0.0	0.3	0.4	1.2	2.3	1.1	0.3	0.0	0.2	1.2	93.0

To conclude, the proposed pattern-recognition system, which employs PSO mutated using a wavelet function to optimize the kernel based ELM (SW-RBF-ELM), was able to recognize eleven imagined finger motions on five trans-radial amputees with the high accuracy of 94.27 % even though it employed only two EMG channels. The proposed system performed better than standard PSO-ELM (SRBF-ELM).

4. DISCUSSION

The previous research [36] has shown that RBF-ELM is an promising classifier for myoelectric pattern recognition. However, the parameters of RBF-ELM should be selected properly. In this article, two kinds of PSO are employed to optimize the parameters of RBF-ELM, PSO and wavelet-PSO, that produce SRBF-ELM and SW-RBF-ELM, respectively. Both classifiers have been tested on the healthy and amputee subjects. In general, SW-RBF-ELM is better than SRBF-ELM and RBF-ELM. To show more general performance of SW-RBF-ELM, the comparison of the proposed methods and other well-knowns have been conducted, as shown in Figure 10 and Table 5. The results imply that the parameter optimization on RBF-ELM using wavelet-PSO can improve the performance of RBF-ELM. In addition, the results support the result in [22] and [23] that the optimization is needed in ELM to look for the optimized parameters for ELM.

Int J Elec & Comp Eng ISSN: 2088-8708 □ 495

However, these two publications optimized the number of the units in the hidden layer. Meanwhile, in this article, the optimization is conducted for radial basis function parameters.

5. CONCLUSION

This paper proposed the optimization of radial basis function extreme learning machine (RBF-ELM) using particle swarm optimization (PSO) and the hybridization of wavelet and PSO. The former is called SRBF-ELM and the later is named SW-RBF-ELM. The role of the wavelet in SW-RBF-ELM is to increase the searching space of the PSO in order to avoid the local optima that possibly occur in the PSO process. The experimental results show that the wavelet mutation improves the optimization process of the PSO. Consequently, the wavelet mutation in PSO also enhances the classification performance of the system. Both classifiers have been tested on the able-bodied subjects and amputees. On the able-bodied subjects, the accuracy of SW-RBF-ELM is 95.71 % while SRBF-ELM is 95.53 %. The improvement of wavelet mutation on the amputees is more significant than that on the able-bodied subjects. On the amputees, the SW-RBF-ELM achieved the average accuracy of 94.27 %, while SRBF-ELM produced the average accuracy of 92.55 %. The experimental results also show that SW-RBF-ELM achieved an accuracy that is better than well-known classifiers such as SVM, LDA, and kNN.

REFERENCES

- [1] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," *Neurocomputing*, vol. 70, pp. 489-501, 12// 2006.
- [2] Y. Wang, F. Cao, and Y. Yuan, "A study on effectiveness of extreme learning machine," *Neurocomputing*, vol. 74, pp. 2483-2490, 9// 2011.
- [3] G.-B. Huang and L. Chen, "Convex incremental extreme learning machine," *Neurocomputing*, vol. 70, pp. 3056-3062, 10// 2007.
- [4] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, "OP-ELM: optimally pruned extreme learning machine," *IEEE Transactions on Neural Networks*, vol. 21, pp. 158-162, 2010.
- [5] Y. Yimin, W. Yaonan, and Y. Xiaofang, "Bidirectional Extreme Learning Machine for Regression Problem and Its Learning Effectiveness," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 23, pp. 1498-1505, 2012
- [6] J. Zhao, Z. Wang, and D. S. Park, "Online sequential extreme learning machine with forgetting mechanism," *Neurocomputing*, vol. 87, pp. 79-89, 2012.
- [7] K. Anam and A. Al-Jumaily, "A robust myoelectric pattern recognition using online sequential extreme learning machine for finger movement classification," in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, 2015, pp. 7266-7269.
- [8] N. Liu and H. Wang, "Ensemble based extreme learning machine," Signal Processing Letters, IEEE, vol. 17, pp. 754-757, 2010.
- [9] G. Huang, S. Song, J. N. Gupta, and C. Wu, "Semi-supervised and unsupervised extreme learning machines," *IEEE Transactions on Cybernetics*, vol. 44, pp. 2405-2417, 2014.
- [10] K. Anam and A. Al-Jumaily, "A novel extreme learning machine for dimensionality reduction on finger movement classification using sEMG," in The 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 2015, pp. 824-827.
- [11] W. Zong, G.-B. Huang, and Y. Chen, "Weighted extreme learning machine for imbalance learning," *Neurocomputing*, vol. 101, pp. 229-242, 2/4/2013.
- [12] G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, "Incremental extreme learning machine with fully complex hidden nodes," *Neurocomputing*, vol. 71, pp. 576-583, 1// 2008.
- [13] J. Cao, Z. Lin, and G.-b. Huang, "Composite function wavelet neural networks with extreme learning machine," *Neurocomputing*, vol. 73, pp. 1405-1416, 2010.
- [14] K. Anam, R. Khushaba, and A. Al-Jumaily, "Two-channel surface electromyography for individual and combined finger movements," in Proceeding of the 35th Annual International IEEE Engineering Medicine and Biology Society Conference (EMBC), 2013, pp. 4961-4964.
- [15] A. A. Mohammed, R. Minhas, Q. Jonathan Wu, and M. A. Sid-Ahmed, "Human face recognition based on multidimensional PCA and extreme learning machine," *Pattern Recognition*, vol. 44, pp. 2588-2597, 2011.
- [16] B. P. Chacko, V. V. Krishnan, G. Raju, and P. B. Anto, "Handwritten character recognition using wavelet energy and extreme learning machine," *International Journal of Machine Learning and Cybernetics*, vol. 3, pp. 149-161, 2012
- [17] W. Zheng, Y. Qian, and H. Lu, "Text categorization based on regularization extreme learning machine," *Neural Computing and Applications*, vol. 22, pp. 447-456, 2013/03/01 2013.
- [18] G. Wang, Y. Zhao, and D. Wang, "A protein secondary structure prediction framework based on the extreme learning machine," *Neurocomputing*, vol. 72, pp. 262-268, 2008.
- [19] S. Saraswathi, S. Sundaram, N. Sundararajan, M. Zimmermann, and M. Nilsen-Hamilton, "ICGA-PSO-ELM Approach for Accurate Multiclass Cancer Classification Resulting in Reduced Gene Sets in Which Genes Encoding

- Secreted Proteins Are Highly Represented," *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, vol. 8, pp. 452-463, 2011.
- [20] A. H. Nizar, Z. Y. Dong, and Y. Wang, "Power Utility Nontechnical Loss Analysis With Extreme Learning Machine Method," *IEEE Transactions on Power Systems*, vol. 23, pp. 946-955, 2008.
- [21] K. Javed, R. Gouriveau, and N. Zerhouni, "SW-ELM: A summation wavelet extreme learning machine algorithm with a priori parameter initialization," *Neurocomputing*, vol. 123, pp. 299-307, 1/10/2014.
- [22] J. Cao, Z. Lin, and G.-B. Huang, "Self-adaptive evolutionary extreme learning machine," *Neural processing letters*, vol. 36, pp. 285-305, 2012.
- [23] Y. Xu and Y. Shu, "Evolutionary extreme learning machine–based on particle swarm optimization," in *Advances in Neural Networks-ISNN 2006*, ed: Springer, 2006, pp. 644-652.
- [24] W. Zong, H. Zhou, G.-B. Huang, and Z. Lin, "Face recognition based on kernelized extreme learning machine," in *Autonomous and Intelligent Systems*, ed: Springer, 2011, pp. 263-272.
- [25] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, vol. 42, pp. 513-529., 2012.
- [26] S. Bhargava, K. N. M. U. Dr, A. Somkuwar, and Manit, "Evaluation of Noise Exclusion of Medical Images Using Hybridization of Particle Swarm Optimization and Bivariate Shrinkage Methods," *International Journal of Electrical and Computer Engineering (IJECE)*, vol. 5, pp. 421-428, 2015.
- [27] H. Shahinzadeh, T. Amirkabir University of, S. M. Nasr-Azadani, T. Amirkabir University of, N. Jannesari, and E. Sepahan Institue of Higher, "Applications of Particle Swarm Optimization Algorithm to Solving the Economic Load Dispatch of Units in Power Systems with ValvePoint Effects," *International Journal of Electrical and Computer Engineering (IJECE)*, vol. 4, pp. 858-867, 2014.
- [28] X. Yan, Q. Wu, and H. Liu, "Orthogonal particle swarm optimization algorithm and its application in circuit design," *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 11, pp. 2926-2932, 2013.
- [29] S. H. Ling, H. H. Iu, K. Y. Chan, H. K. Lam, B. C. Yeung, and F. H. Leung, "Hybrid particle swarm optimization with wavelet mutation and its industrial applications," *IEEE Transactions on Systems, Man, and Cybernetics-PART B: Cybernetics*, vol. 38, pp. 743-763, 2008.
- [30] M. Dazahra, F. Elmariami, A. Belfqih, and J. Boukherouaa, "Optimal Location of SVC using Particle Swarm Optimization and Voltage Stability Indexes," *International Journal of Electrical and Computer Engineering*, vol. 6, p. 2581, 2016.
- [31] M. Sihem, B. Amar, and B. Hocine, "Optimal design of switched reluctance motor using PSO based FEM-EMC modeling," *International Journal of Electrical and Computer Engineering*, vol. 5, 2015.
- [32] J. Kennedy, "Particle swarm optimization," in Encyclopedia of Machine Learning, ed: Springer, 2010, pp. 760-766.
- [33] S. H. Ling, H. Iu, F. H.-F. Leung, and K. Y. Chan, "Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging," *IEEE Transactions on Industrial Electronics*, vol. 55, pp. 3447-3460, 2008.
- [34] A. H. Al-Timemy, G. Bugmann, J. Escudero, and N. Outram, "Classification of Finger Movements for the Dexterous Hand Prosthesis Control With Surface Electromyography," *IEEE Journal of Biomedical and Health Informatics*, vol. 17, pp. 608-618, 2013.
- [35] K. Anam and A. Al-Jumaily, "Swarm-wavelet based extreme learning machine for finger movement classification on transradial amputees," in The 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2014, pp. 4192-4195.
- [36] K. Anam and A. Al-Jumaily, "Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees," *Neural Netw*, vol. 85, pp. 51-68, Jan 2017.

BIOGRAPHIES OF AUTHORS

Khairul Anam, PhD was born in Buleleng-Bali on 5th of April 1978. He received his B.Eng from Dept. of Electrical Engineering, Universitas Brawijaya in 2002, M.Eng from Institut Teknologi Sepuluh Nopember (ITS) Surabaya in 2008, and PhD from University of Technology, Sydney, Australia in 2016. He is currently a senior lecturer in Dept. Of Electrical Engineering, Universitas Jember, Indonesia. His main interest is artificial intelligence and its application in electrical engineering, biomedical engineering and other fields.

Dr Adel Al-Jumaily received his B.SC. (Eng.) in Electrical Engineering & Education, UT Bagdad and M.SC. in Engineering Management, UT-Bagdad and Ph.D. in Electrical Engineering, UTM Malaysia. Currently, he is an associate professor in the University of Technology Sydney. His research interest is in the fields of Computational Intelligence, Bio-Mechatronics Systems, Health Technology and Biomedical, Vision based cancer diagnosing, and Artificial Intelligent Systems.