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Abstract. Let G =(V(G),E(G)) be any connected graph of order n = |V(G)| and measure m = |E(G)|. For an order set 

of vertices S = { s1, s2, ..., sk} and a vertex v in G, the adjacency representation of v with respect to S is the ordered k-

tuple rA(v|S) = (dA(v, s1), dA(v, s2), ..., dA(v, sk)), where dA(u,v) represents the adjacency distance between the vertices u 

and v. The set S is called a local adjacency resolving set of G if for every  two distinct vertices u and v in G, u adjacent 

v then rA(u|S) ≠ rA(v|S) . A minimum local adjacency resolving set for G is a local adjacency metric basis of G. Local 

adjacency metric dimension for G, dimA,l(G), is the cardinality of vertices in a local adjacency metric basis for G. In 

this paper, we study and determine the local adjacency metric dimension of some wheel related graphs G (namely gear 

graph, helm, sunflower and friendship graph) with pendant points, that is edge corona product of G and a trivial graph 

K1, .1KG Moreover, we compare among the local adjacency metric dimension of 1KG graph,of 
1KWn graph 

and metric dimension of 
nW . 

  

INTRODUCTION 

      This section presents about some definitions and notions that are using in this research. These concepts are taken 

from [4]. We begin with, G = (V(G), E(G)) is a simple, finite and connected graph with a set of vertices V(G) and a 

set of edges E(G), of cardinality n and m, respectively. Two adjacent vertices u and v will be write u ~ v and two 

vertex u and v that is not adjacent with .~ vu  The distance between two vertices u and v in G,  d(u,v) is the lenght of 

shortest path joining u and v. The adjacency distance between u and v denoted by dA(u,v), and defines by [9],  

dA(u,vi) =
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Let  },...,,{ 21 ksssS  V(G)  be an  order  set of  vertices and v is a vertex in G. The adjacency representation of v with 

respect to S is the ordered k-tuple rA(v|S) = (dA(v, s1), dA(v, s2) , ..., dA(v, sk)). S is called a local adjacency resolving set of G, 

if a pair of adjacent distinct vertex in G have different adjacency representations. A minimum local adjacency resolving 

set for G is a local adjacency metric basis of G. Adjacency metric dimension for G, dimA.l (G), is the cardinality of vertices in a 

local adjacency metric basis for G.  

          A Concept about local metric dimension of a graph has introduced by Okamoto et al. [3]. Research about 

local metric dimension of corona graphs have done by Rodriguez et al. [8] and local metric dimension of edge-

corona graph by Rinurwati et al. [12]. Then, Rodriguez and Fernau [7], continuoued their reseach that is about local 

adjacency metric dimension of corona graphs. Their research is developing of the concept about adjacency metric 

dimension of graphs that has introduced by Jannesari and Omoomi [9]. Farthes before,  Harary and Melter [2] have 

been introduced about resolving set in 1976 and independently, Slater [10] introduce  this concept in 1975. This 
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concept is a basic concept that must be known when a research results metric dimension of graphs. To prove that set 

S is resolving set of a graph G, we only present that every vertex in V(G)-S has distinct representation, because  

In vertex v in S is unix vertex with d(v, v) = 0.        

 

      Motivated by results in [1], [5], [6], and [7], we study and determine the local adjacency metric dimension of 

some wheel related graphs G with pendant points (edge-corona of graphs HG when H K1 or H mK1 for m 2
). Edge-corona of graphs G and H, denoted by ,HG is defined as a graph formed by taking G and m =|E(G)| 

copies of H  then joining two end-vertices si, sh of edge ej = sish of G  to every vertex in the jth-copy of H [13].      

In this paper, as G, we use gear graph (G2n), helm (Hn), sunflower (SFn) and friendship (fn) graphs. All of these 

graphs are obtained from wheel graph, that is graph trivial K1 that joining with an edge to all vertices of cycle graph, 

Cn. Moreover, we compare the local adjacency metric dimension of these graphs, respectively with a wheel graph 

with pendant points.    

RESULTS 

      In the following, we present some useful results on the local adjacency metric dimension of some wheel related 

graphs with pendant points. 

Local Adjacency Metric  Dimension of Gear Graphs with Pendant Points. 

 

      A gear graph G2n is a graph obtained from a wheel graph nn CKW  1 by adding a vertex between every pair 

of adjacent vertices of the cycle Cn [6].  A gear graph with pendant points denoted by G2nK1, that is a graph 

obtained from edge-corona of a gear graph G2n and a trivial graph K1. Let G   G2nK1 with a set of vertices

},,,...,,,,{},...,,{},...,,{},...,,{}{)( 2122211211212121 nnnnn bbbbbbaaawwwvvvcGV  where  

      c  : the vertex of K1 of Wn 

      vj  : j-th vertex of a cycle Cn of Wn 

      wj : an adding vertex between every pair of j-th adjacent vertices of the cycle Cn of Wn 

      aj  : a pendant point (vertex) joining two end-vertices c, vj of rim edge ej = cvj of Wn 

      bj1 : a pendant point (vertex) joining two end-vertices vj,wj of edge ej = vjwj  

      bj2 : a pendant point (vertex) joining two end-vertices wj,vj+1 of edge ej = wjvj+1  

      }.,...,2,1{ nj   

As illustration, we can see FIGURE 1.  

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 1. G24K1 

 

The local adjacency metric dimension of gear graphs with pendant points is mentioned in the following theorem. 

 

Theorem 1. Let G   G2nK1 with |V(G)| = 5n+1, then dimA,l (G) = n for n 3.  

Proof. Choose ).(};,...,,{ 1121 GVvvvvvS nn    We will show that S is a local adjacency resolving set of G. 

The local adjacency representations of vertices from SGV )( are as follows: 
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)1,...,1,1()|( ScrA   

                      

 },,...,2,1{);|()2,...,2,1,2,...,2()|( 1 njSbrSar j

termj

jA 


 but 1~ jj ba   

                      
},,...,2{);|()|( 12)1( njSbrSbr jjA   but .~~ 2)1(1 jjj abb    

                      
),|()|( 112 SbrSbr nA   and .~ 112 bbn   

                      
)1,2,...,2,1()|( Swr nA    

                      

  )2,...,2,1,1,2,...,2()|(
)1( termjtermj

jA Swr


 ;    }.1,...,2,1{  nj  

As we see that all of the adjacency representation of adjacent vertices are distinct. So, };,...,,{ 1121 vvvvvS nn  

is a local adjacency resolving set for G. The cardinality of S, |S| = n is minimum, because if |S| < n certainly there are 

SGVyx  )(
 

such that ).|()|( SyrSxr   Let ,1||},,...,,{ 11211 nnSvvvS n    then 

)|()2,...,2,2()|( 121 SbrSvr nn  and ,~2 nn vb  also )|()1,2,...,2,2()|( 111 SbrSwr nn   and .~1 nn wb  

Thus, dimA,l (G) = n. 

 

Local Adjacency Metric  Dimension of Helm Graphs with Pendant Points. 

 

      A helm graph Hn is a graph obtained from a wheel graph nn CKW  1 with cycle Cn having a pendant edge 

attached to each vertex of the cycle [6].  A helm graph with pendant points, 1KHn is a graph obtained from edge-

corona of a helm graph Hn and a trivial graph K1. Let G   HnK1 with a  set of vertices  

},,...,,{},...,,{},...,,{},...,,{},...,,{}{)( 2121212121 nnnnn aaaxxxuuuwwwvvvcGV  where  

      c  : the vertex of K1 of Wn 

      vj  : j-th vertex of a cycle Cn of Wn 

      uj  : a pendant point (vertex) joining two end-vertices c, vj of rim edge ej = cvj of Wn 

      aj  : a pendant point (vertex) joining two end-vertices c, vj of pendant edge ej = vjxj of Cn of Wn 

      wj  : a pendant point (vertex) joining two end-vertices vj, vj+1 of edge ej = vjvj+1 of Cn of Wn 

     }.,...,2,1{ nj  

The following figure is an example of 1KHn graphs.  

 

 

 

 

 

 

 

 

 

 

 

  

 
FIGURE 2. H4K1 

 

The following theorem is the local adjacency metric dimension of helm graphs with pendant points. 

 

Theorem 2. Let G   HnK1 with |V(G)| = 5n+1, then dimA,l (G) = n + 1 for n 3. 
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Proof. Choose ).(},,...,,{ 21 GVcaaaS n   Adjacency representation of vertices in SGV )( as follows: 

).0,2,...,2,2()|( ScrA  

 ).2,2,...,2,1,2,...,2,2()|(
termj

jA Sar


  

)1,2,...,2,2()|( Sur jA , for every },...,2,1{ nj , ,~ ji uu  and .ji   

),2,2,...,2,2()|( Swr jA  for every },...,2,1{ nj , ,~ ji ww  and .ji   

 ),2,2,...,2,1,2,...,2,2()|(
termj

jA Sxr


 },...,2,1{ nj . 

 )1,2,...,2,1,2,...,2,2()|(
termj

jA Svr


 , },...,2,1{ nj . 

So, },,...,,{ 21 caaaS n is a local adjacency resolving set for G.  

|S| = n+1 is minimum, because if |S| < n+1 certainly there are SGVyx  )( such that ).|()|( SyrSxr   

Let ,1||},,...,,{ 1211  nnSaaaS n  then )|()2,...,2,2()|( 11 ScrSur j  and juc ~  also for every 

},...,2,1{ ni . Thus, dimA,l (G) = n+1.                                                                                                                        

 

Local Adjacency Metric Dimension of Sunflower Graphs with Pendant Points. 

       A Sunflower graph SFn is a graph obtained from a wheel graph nn CKW  1 with K1 as a central vertex c and 

Cn as an n-cycle wo, w1, w2, ... , wn-1, and additional n vertices v0, v1, v2, ..., vn-1 where vj is joined by edges to wj, wj+1 

for }1,...,2,1{  nj with j+1 is taken modulo n.Order of a sunflower graph SFn is 2n + 1 and its measure is 4n [6].  

      A Sunflower graph with pendant points, 1KSFn is a graph obtained from edge-corona of a sunflower graph 

SFn and a trivial graph K1. Let G   SFnK1 with a  set of vertices  

}.,...,,{},...,,{},...,,{},...,,{},...,,{},...,,{}{)( 110110110110110110   nnnnnn xxxuuubbbaaavvvwwwcGV

The following figure is an example of 1KSFn graphs.  

    

 

 

 

 

 

 

 

 

 

 

  

 
 

FIGURE 3.  SF4K1 

 

The following theorem is the local adjacency metric dimension of sunflower graphs with pendant points. 

 

Theorem 3. Let G   SFnK1 with |V(G)| = 6n+1, then dimA,l (G) = n  for n 3. 

Proof. Choose ).(},...,,{ 110 GVwwwS n    We will show that S is a local adjacency resolving set of G. The 

local adjacency representations of vertices from SGV )( are as follows: 

w0 
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)1,...,1,1()|( ScrA

                        },1,...,2,1{);|()2,...,2,1,2,...,2()|(
)1(




njSxrSar j

termj

jA  but 11 ~   jj xa  

                      

 }.1,...,1{);2,...,2,1,2,...,2()|(
)2(




njSbr
termj

jA   

                      

  },1,...,2,1{);|()2,...,2,1,1,2,...,2()|(
)2()1(




njSvrSur j

termjtermj

jA but 1~  jj vu  

 As we see that all of the adjacency representation of adjacent vertices are distinct. So, },...,,{ 110  nwwwS is a 

local adjacency resolving set for G. The cardinality of S, |S| = n is minimum, because if |S| < n certainly there are 

SGVyx  )(
 

such that ).|()|( SyrSxr 
 

Let nnSwwwS n   1||},,...,,{ 12101  
then

).|()1,2,...,2,2()|( 1111 SvrSar nn    Therefore, dimA,l (G) = n.                                                                                                                                       

 

 Local Adjacency Metric  Dimension of Friendship Graphs with Pendant Points. 

 

     A friendship graph fn is a graph obtained from a wheel graph nn CKW  1 by deleting alternate edges of the 

cycle Cn. In the other word, friendship graph fn is collection of n triangles with a common point [6]. A friendship 

graph with pendant points denoted by fnK1, that is a graph obtained from edge-corona of a friendship graph fn and a 

trivial graph K1. Let G   fnK1 with a set of vertices  }2,1;,...,2,1|{}{)( jnivcGV ij

}.3,2,1;,...,2,1|{  kniaik  
As illustration, we can see  FIGURE 4. 

 

 

 

 

 

 

 

 

 

 
FIGURE 4. f4K1 

    

 

Theorem 4.  Let G    fnK1 with |V(G)| = 5n+1, then dimA,l (G) = n for n 3.  

Proof. Choose ).(},...,2,1|{
2

GVniaS i   We will show that S is a local adjacency resolving set of G. The 

adjacency representations of vertices from SGV )( are as follows: 

                     )1,...,1,1()|( ScrA   

                     

},,...,2,1{);|()2,...,2,2()|( 31 niSarSar iiA   but 31 ~ ii aa   

                      },,...,2{);|()2,...,2,1,2,...,2()|( 21 niSvrSvr iA

termi

iA 


 but .~ 21 ii vv   

All of the adjacency representations of adjacent vertices are distinct. So, },...,2,1|{
2

niaS i  is a local 

adjacency resolving set for G. The cardinality of S, |S| = n is minimum, because if |S| < n certainly there are 

SGVyx  )( such that ).|()|( SyrSxr   Let },1,...,2,1|{
21  niaS i  nnS  1|| 1  

then 

 )2,...,2,2()|( 11 Sar n ),|()|()|()|( 13121211 SarSvrSarSvr nnnn  and ~~~~ 2211 nnnn vava
 

.3na  So, dimA,l (G) = n.          
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Local Adjacency Metric Dimension of Wheel Graphs with Pendant Points. 

Theorem 5. Let G   WnK1 with |V(G)| = 3n+1, then dimA,l (G) = 






 

6

9n
 for n 4.  

 

      Buczkowski et.al. in [11] have mentioned that the metric dimension of the wheel graph, Wn = K1 + Cn, is 















 




.,

5

22

6,3,3

)dim(
otherwise

n

nfor

Wn  

where K1 is a trivial graph and Cn is a cycle graph of order n.  

 

      From the results have discussed above, we can conclude that )dim()(dim 1, nnlA WKW  and 

)(dim)(dim 1,1, KGKW lAnlA  with G be a wheel related graph. 
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