

ON METRIC DIMENSION OF EDGE-CORONA GRAPHS

\mathbf{R} inurwati^{1,2}, Herry Suprajitno¹ and Slamin³

1 Mathematics Department Universitas Airlangga Indonesia e-mail: rinur@matematika.its.ac.id herrysuprajitno.math.unair@gmail.com

²Mathematics Department Sepuluh Nopember Institute of Technology Indonesia

³Information System Study Program University of Jember Indonesia e-mail: slamin@unej.ac.id

Abstract

Given graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$, an ordered set $U \subseteq V_G$ is called a resolving set of *G* if coordinate of distances of every vertex in *G* to vertices in *U* is different. Metric dimension of *G* is the minimal cardinality of a resolving set of *G*. An edge-corona graph $G \, \Diamond \, H$ is obtained by joining end vertices of $e_j \in E_g$, $j \in \{1, 2, ..., |E_G|\}$ with all vertices from *j*th-copy of *H*. This paper [discusses some characterization and exact values for metric dimension](http://repository.unej.ac.id/) of edge-corona from a connected graph not tree *G* with an arbitrary nontrivial graph *H*.

Received: April 3, 2017; Revised: June 7, 2017; Accepted: June 20, 2017 2010 Mathematics Subject Classification: 05C12.

Keywords and phrases: edge-corona, resolving set, metric dimension.

966 Rinurwati, Herry Suprajitno and Slamin

1. Introduction

Throughout we use simple graph and finite graph. Given a graph $G = (V_G, E_G)$, let V_G be a vertex set of *G* and let E_G be an edge set of *G*. For a further reference, we can see Chartrand et al. [2].

For an ordered set $U = \{u_1, u_2, ..., u_k\} \subseteq V_G$, a representation of $t \in V_G$ to *Ur*(*t*|*U*) is defined to be $r(t|U) := (d(t, u_1), d(t, u_2), ..., d(t, u_k))$, where $d(t, u_i)$ is a distance from a vertex *t* to a vertex u_i . *U* is called a *resolving set* for *G* if for arbitrary two vertices *s*, $t \in V_G$, $r(s|U) \neq r(t|U)$. A resolving set for *G* with minimum cardinality is called *basis* for *G*. *Metric dimension* of *G*, denoted by $dim(G)$, is the cardinality of a basis in *G*.

The results by Chartrand et al. [2] are used in this paper to mention the research on metric dimension of graphs obtained by operation of graphs. Previous researches on metric dimensions of corona graphs have been [done, for example, by Iswadi et al. \[5\] and Yero et al. \[7\]. In \[4\], Hou and](http://repository.unej.ac.id/) Shiu defined edge-corona operation of graphs and gave some results about spectrums of edge-corona graphs, but there is no result about metric dimension of edge-corona graphs yet. Recently, in [6], Rinurwati et al. studied about local metric dimension of edge-corona graphs.

Motivated by above results, we study further on edge-corona graphs. An *edge-corona graph* $G \, \Diamond \, H$ is obtained by joining end vertices of edge $e_j \in E_G$, $j \in \{1, 2, ..., |E(G)|\}$ with all vertices from *j*th-copy of *H*. The following figures are some examples of edge-corona graphs:

On Metric Dimension of Edge-corona Graphs 967

[This paper discusses some characterization and exact values for metric](http://repository.unej.ac.id/) dimension of edge-corona from a connected graph not tree *G* with an arbitrary nontrivial graph *H*.

2. Results

We begin with the following:

Lemma 1. *Let the order and size of a connected graph G and a graph H be, respectively,* $p_1 \geq 3$ *,* $q_1 \geq 2$ *and* $p_2 \geq 2$, $q_2 \geq 0$. If *jth-copy of H*, $H_j = (V_{H_j}, E_{H_j})$; $j \in \{1, 2, ..., q_1\}$, *is a subgraph of G* \Diamond *H*, *then the following hold*:

(a) *If* $s, t \in V_{H_i}$, then $d_G \otimes_H (s, u) = d_G \otimes_H (t, u)$ for every $u \in$ $V_{G \; \Diamond \; H} - V_{H \; i}$.

(b) *If* $V_{H_i} \cap U = \emptyset$ *for some j, then U is not a resolving set for* $G \Diamond H$.

(c) *If U is a basis for* $G \, \Diamond \, H$ *, then* $V_G \cap U$ *is empty.*

(d) For every connected graph H and resolving set U of $G \, \Diamond \, H$, $U_j = U \bigcap V_{H_j}$ *is a resolving set for* H_j .

968 Rinurwati, Herry Suprajitno and Slamin

Proof. (a) We know that $s, t \in V_{H_i}$. Let $z = s_j \in V_G$, and take any $u \in V_{G \, \Diamond \, H}$ and $u \notin V_{H_i}$. The result can be followed directly from the fact that

$$
d_{G \Diamond H}(s, u) = d_{G \Diamond H}(s, z) + d_{G \Diamond H}(z, u) = d_{G \Diamond H}(t, z) + d_{G \Diamond H}(z, u)
$$

= $d_{G \Diamond H}(t, u)$.

(b) We suppose that $V_{H_j} \cap U = \emptyset$ for some $j \in \{1, ..., q_1\}$. Let s, $t \in V_{H_j}$. By (a), we have $d_{G \, \Diamond H}(s, y) = d_{G \, \Diamond H}(t, y)$ for every vertex $y \in U$, which is a contradiction.

(c) We suppose that $V_G \cap U \neq \emptyset$. We will present that $U_1 = U - V_G$ is a resolving set for $G \, \Diamond H$. Let $s, t \in V_{G \, \Diamond H}$, with $s \neq t$. There are four cases to be considered:

Case 1. *s*, $t \in V_H$.

[Using \(a\), we conclude that there exists a vertex](http://repository.unej.ac.id/) $x \in V_{H_i} \cap U_1$ such that $d_{G \, \Diamond \, H}(s, x)$ is not equal to $d_{G \, \Diamond \, H}(t, x)$.

Case 2. $s \in V_{H_j}$, $t \in V_{H_h}$ and $j \neq h$.

Let $u \in V_{H_i} \cap U_1$. Then we have $d_{G \, \Diamond H}(s, u) \leq 2 \leq d_{G \, \Diamond H}(t, u)$.

Case 3. *s*, $t \in V_G$.

Let $s = s_{h_i}$ be a vertex of $e_j = s_{i_j} s_{h_i}$ of *G*, where $i \neq h \in \{1, 2, ..., p_1\}$ for some $j \in \{1, 2, ..., q_1\}$, and let $t \neq s_{i_j}$. Let $z \in V_{H_j} \cap U'$. Thus, we have

$$
d_{G \Diamond H}(s, z) = 1 < 1 + d_{G \Diamond H}(t, s) = d_{G \Diamond H}(t, z).
$$

On Metric Dimension of Edge-corona Graphs 969

Case 4. $s \in V_{H_i}$, $t \in V_G$. There are two subcases:

(1) If *s* is adjacent to *t*, then $t = s_{i_j}$ or $t = s_{h_j}$ of $e_j = s_{i_j} s_{h_j}$ of G, for some $j \in \{1, 2, ..., q_1\}$. Let $e_k = s_{i_k} s_{h_k} \in E_G$; $j \neq k \in \{1, 2, ..., q_1\}$ and $i \neq h \in \{1, 2, ..., p_1\}$. Let $a \in V_{H_k} \cap U_1$. Let $t = s_{h_i} = s_{i_k}$. Then we have $d_{G \, \Diamond \, H}(s, a) = d_{G \, \Diamond \, H}(s, t) + d_{G \, \Diamond \, H}(t, a) = 1 + d_{G \, \Diamond \, H}(t, a) > d_{G \, \Diamond \, H}(t, a).$

(2) If *s* is not adjacent to *t*, then $t = s_{i_k} \neq s_{h_i}$ or $t = s_{h_k}$. We have

$$
d_{G \, \Diamond \, H}(s, a) = d_{G \, \Diamond \, H}(s, t) + d_{G \, \Diamond \, H}(t, a) > d_{G \, \Diamond \, H}(t, a).
$$

So, U_1 is a resolving set for $G \, \Diamond \, H$.

(d) Let $U_j = U \bigcap V_{H_j}$. For $s \in U_j$ or $t \in U_j$, it is obvious that $r(s|U_j) \neq r(t|U_j)$. We suppose that s, $t \in (V_{H_j} - U_j)$. It is known that *U* is a resolving set for $G \, \Diamond H$. We obtain that $r(s|U)$ is not the same as $r(t|U)$. Using (a), we obtain $d_G \, \delta_H(s, a) = d_G \, \delta_H(t, a)$ for every $a \in (V_{G \circ H} - V_{H_i})$. So, there is a vertex $a \in U_j$ with $d_{G \circ H}(s, a) \neq$ $d_{G \, \Diamond \, H}(t, a)$. Therefore, either *a* is adjacent to *s* and *a* is not adjacent to *t* or *a* is not adjacent to *s* and *a* is adjacent to *t*. In Case 1, we have $d_{G \, \Diamond H}(s, a) = d_{H_i}(s, a) = 1$ and $d_{G \, \Diamond H}(t, a) = 2 \le d_{H_i}(t, a)$. It is analogous for cases when *a* is not adjacent to *s* and *a* is adjacent to *t*. Thus, U_j is a resolving set for H_j .

Theorem 2. *[Let the order and size of a connected graph](http://repository.unej.ac.id/)* (*not a tree*) *G and a graph H be, respectively,* $p_1 \geq 3$ *,* $q_1 \geq 3$ *<i>and* $p_2 \geq 2$, $q_2 \geq 1$ *. Then*

$$
\dim(G \Diamond H) \ge q_1 \dim(H).
$$

Proof. We consider that *W* is a minimum resolving set for $G \Diamond H$. From Lemma 1(c), we obtain $W \cap V_G = \emptyset$. Then, by Lemma 1(b), we have for

970 Rinurwati, Herry Suprajitno and Slamin

every $j \in \{1, 2, ..., q_1\}$, there is a set $W_j \neq \emptyset \subseteq W$ such that $W = \bigcup_{j=1}^{q_1} W_j$. Moreover, by Lemma 1(d), we obtain that W_i is a resolving set for H_i . Therefore,

$$
\dim(G \lozenge H) = |W| = \sum_{j=1}^{q_1} |W_j| = \sum_{j=1}^{q_1} \dim(H) \ge q_1 \dim(H).
$$

Then we obtain the lower bound on dim($G \Diamond H$).

Theorem 3. *[Let the order and size of a connected graph](http://repository.unej.ac.id/)* (*not a tree*) *G and a graph H be, respectively,* $p_1 \geq 3$ *,* $q_1 \geq 3$ *<i>and* $p_2 \geq 2$, $q_2 \geq 1$. *If diameter of* $HD(H)$ *is smaller than or equal to two, then*

$$
\dim(G \Diamond H) = q_1 \dim(H).
$$

Proof. Let $W_j \subset V_{H_j}$ be a resolving set for H_j and let $W = \bigcup_{j=1}^{q_1} W_j$. We will prove that *W* is a resolving set for $G \Diamond H$. There are four cases to be considered:

Case 1. *s*, $t \in V_{H_j}$. Because $D(H) \le 2$, we obtain $r(s|W_j) \ne r(t|W_j)$ for every $j \in \{1, 2, ..., q_1\}$, so $r(s|W) \neq r(t|W)$.

Case 2. $s \in V_{H_i}$, $t \in V_{H_h}$, and $j \neq h$. Let $a \in V_{H_i}$. Thus, we obtain $d(s, a) \leq 2 \leq d(t, a).$

Case 3. *s*, $t \in V_G$. For every $a \in V_H$, we find $d(s, a) = 1 \le d(t, s)$ $+ d(s, a) = d(t, a).$

Case 4. $s \in V_{H_i}$ and $t \in V_G$. If *s* is adjacent to *t*, then $t = t_j = s_{i_j}$ or $t = t_h = s_{h_i}$ of $e_j = s_{i_i} s_{h_i}$ of *G*. Let $a \in W_h$, for some $j \neq h$. Hence, we obtain $d(s, a) = 1 + d(t, a) > d(t, a)$. Furthermore, if *s* is not adjacent to *t*, for $a \in W_h$, then we obtain $d(s, a) > d(t, s) + d(s, a) = d(t, a)$. Therefore,

On Metric Dimension of Edge-corona Graphs 971

for every $s \neq t \in V_{G \Diamond H}$, we have $r(s|W) \neq r(t|W)$, so dim($G \Diamond H$) \leq $q_1 \dim(H)$. Combining with Theorem 2, we conclude that $\dim(G \lozenge H)$ = $q_1 \dim(H)$.

We recall a well known lemma below to present a consequence of Theorem 3. We note that $K_{m,n}$ is a complete bipartite graph of order $m + n$, K_m is a complete graph of order *m*, and \overline{K}_n is an empty-graph of order *n*.

Lemma 4 [2]. *Given a connected graph G, order of G is* $p \geq 4$. $dim(G) = (p - 2)$ *if and only if G* = *K_{a, b}* (*a, b* ≥ 1); *G* = (*K_a* + \overline{K}_b), $(a \geq 1, b \geq 2),$ *or* $G = (K_a + (K_1 \cup K_b)),$ $(a, b \geq 1).$

Corollary 5. *Let the order and size of a connected graph* (*not a tree*) *G* and a connected graph *H* be, *respectively*, $p_1 \geq 3$, $q_1 \geq 3$ and $p_2 \geq 4$, $q_2 \geq 4$. Diameter of H is smaller than or equal to two.

 $\dim(G \wedge H) = q_1(p_2 - 2)$ *if and only if*

H = $K_{a,b}$ $(a, b \ge 1);$ $H = (K_a + \overline{K}_b), (a \ge 1, b \ge 2)$

or $H = (K_a + (K_1 \cup K_b)), (a, b \ge 1).$

[A special condition of Theorem 3 is given in the following results.](http://repository.unej.ac.id/)

Corollary 6. *Let the order and size of a connected graph* (*not a tree*) *be*, *respectively*, $p_1 \geq 3$ *and* $q_2 \geq 3$. If $H \cong F_{1, p_2}$ *or* $H \cong Q_{1, p_2}$ *with* $p_2 \geq 7$, *then*

$$
\dim(G \Diamond H) = q_1 \left[\frac{2p_2 + 2}{5} \right].
$$

A fan graph, denoted by F_{1, p_2} , is a joint graph $K_1 + P_{p_2}$, where K_1 is a trivial graph with one vertex and P_{p_2} is a path graph with p_2 vertices [4]. A wheel graph, denoted by W_{1, p_2} , is a joint graph $K_1 + C_{p_2}$, where K_1 is a trivial graph with one vertex and C_{p_2} is a cycle graph with p_2 vertices [6].

972 Rinurwati, Herry Suprajitno and Slamin

Theorem 7. *Let the order and size of a connected graph* (*not a tree*) *G and a graph H be, respectively,* $p_1 \geq 3$ *,* $q_1 \geq 3$ *and* $p_2 \geq 2$ *,* $q_2 \geq 1$ *<i>. Let* ω *be the cardinality of isolated vertices in H*. *Let* λ *be the cardinality of connected components in H with order greater than or equal to two*:

$$
\dim(G \lozenge H) \le \begin{cases} q_1(p_2 - \lambda - 1) & \text{for } \lambda \ge 1 \text{ and } \omega \ge 1, \\ q_1(p_2 - \lambda) & \text{for } \lambda \ge 1 \text{ and } \omega = 0, \\ q_1(p_2 - 1) & \text{for } \lambda = 0. \end{cases}
$$

Proof. We consider that $\omega \geq 1$ and $\lambda \geq 1$. Let $(A_{\ell})_i$, $\ell \in \{1, 2, ..., \lambda\}$ be ℓ th-connected component of H_j , $(p_\ell)_j$ is one of vertices of $(A_\ell)_j$ and $P_j \subseteq V_{G \, \lozenge \, H}$ with $P_j = \{(p_\ell)_j; \, \ell \in \{1, 2, ..., \lambda\}\}, \quad j \in \{1, 2, ..., q_1\}.$ If ω ≥ 2, let *b_j* be one of isolated vertices of *H_j*, and $Q_j = \{b_j\}$. If ω = 1, then we consider $Q_j = \emptyset$. Now, we will show that $W = \bigcup_{h=1}^{q_1} (P_h \cup Q_h)$ $W = \bigcup_{h=1}^{q_1} (P_h \cup Q_h)$ resolves a graph $G \, \Diamond \, H$. Let $s, t \in V_{G \, \Diamond \, H}$, $s \neq t$. We consider $s, t \notin W$. [So, there are four cases to be considered:](http://repository.unej.ac.id/)

Case 1. $s = s_j \in V_G$ with $s = s_{i_j}$ or $s = s_{h_j}$ of edge $e_i = s_{i_j} s_{h_j}$; $s_{i_j}, s_{h_j} \in V_G$, *i*, $h \in \{1, 2, ..., p_1\};$ $j \in \{1, 2, ..., q_1\};$ and $t \in V_{H_j}$. Then for every vertex $a \in V_{H_h} \cap W$ with $h \neq j$, we obtain $d(t, a) = d(t, s) + d(s, a)$ $> d(s, a)$.

Case 2. $s = s_j \in V_G$ with $s = s_{i_j}$ or $s = s_{h_j}$ of edge $e_j = s_{i_j} s_{h_j}$; $s_{i_j}, s_{h_j} \in V_G$, *i*, $h \in \{1, 2, ..., p_1\}; j \in \{1, 2, ..., q_1\};$ and $t \notin V_{H_j}$. For every vertex $a \in (W \cap V_{H_i})$, we have $d(s, a) = 1 < d(t, a)$.

Case 3. $s \in V_H$ and $t \in V_{H_h}$, $h \neq j$. For every vertex $a \in W \cap V_H$, we obtain $d(s, a) \leq 2 \leq (t, a)$.

On Metric Dimension of Edge-corona Graphs 973

Case 4. *s*, $t \in V_{H_i}$. Let *s* be not an isolated vertex in V_{H_i} . There exists a vertex $a \in W \cap V_{H_i}$ such that *a* is adjacent to *s*, thus $d(s, a) = 1 < 2$ $d(t, a)$. So, for any two vertices $t, s \in V_{G \circ H}$ with $t \neq s$, we get $r(s|W) \neq r(t|W)$, and consequently, dim($G \Diamond H$) $\leq q_1(p_2 - \lambda - 1)$. If $\omega = 0$, then we take $W = \bigcup_{j=1}^{q_1}$ $W = \bigcup_{j=1}^{q_1} P_j$ and we get dim($G \Diamond H$) ≤ $q_1(p_2 - \lambda)$. If $\lambda = 0$, then we take $W = \bigcup_{j=1}^{q_1}$ $W = \bigcup_{j=1}^{q_1} Q_j$ so that we get dim($G \, \Diamond \, H$) $\leq q_1(p_2 - 1)$. So, this completes the proof.

Corollary 8. *Let the order and size of a connected graph* (*not a tree*) *G* and a connected graph *H* be, respectively, $p_1 \geq 3$, $q_1 \geq 3$ and $p_2 \geq 2$, $q_2 \geq 0$. *Then*

$$
\dim(G \lozenge H) = q_1(p_2 - 1) \text{ if and only if } H \cong K_{p_2}.
$$

Theorem 9. *Let the order and size of a connected graph* (*not a tree*) *G* and a connected graph *H* be, *respectively*, $p_1 \geq 3$, $q_1 \geq 3$ and $p_2 \geq 2$, $q_2 \geq 1$. *Then*

 $dim(G \lozenge H) = q_1(p_2 - 1)$ *if and only if H is isomorphic with* K_{p_2} .

Furthermore, if H is not isomorphic to K_{p_2} *, then* dim($G \, \Diamond H$) $\leq q_1(p_2 - 2)$ *.*

Proof. Since $\dim(K_{p_2}) = p_2 - 1$, by Theorem 3, we obtain $\dim(G \Diamond H)$ $= q_1 (p_2 - 1)$. On the other hand, we consider $H \not\equiv K_{p_2}$. Let $A \subseteq V_H$, $x \in V_H$, and $N_A(x) := \{ y \in A \mid y \text{ is adjacent to } x \}.$ Let *b*, $c \in V_H$ and $A_{b, c} = V_H \setminus \{b, c\}$. Because the graph *H* is connected and $H \not\equiv K_{p_2}$, there exist at least two vertices *b*, *c* of V_H such that $N_{A_{b,c}}(b) \neq N_{A_{b,c}}(c)$. Let b_j , $c_j \in V_{H_j}$ be *j*th-copy of *b*, $c \in V_H$, respectively. Let $W =$

974 Rinurwati, Herry Suprajitno and Slamin

 $_{=1}^{2}(V_{H_j}-\{b_j, c_j\}).$ $\bigcup_{j=1}^{p_2} (V_{H_j} - \{b_j, c_j\})$. Now, we show that *W* resolves a graph $G \, \Diamond \, H$. Let $f \neq g \in V_{G \, \Diamond H}$ but $f, g \notin W$. We have three cases as follows:

Case 1. $f = b_j$ and $g = c_j$. Because $N_{A_b c}(b) \neq N_{A_b c}(c)$, we obtain $r(f|W) \neq r(g|W)$.

Case 2. $f = s_j \in V_G$ with $f = s_{i_j}$ or $f = s_{h_j}$ of edge $e_j = s_{i_j} s_{h_j}$; $s_{i_j}, s_{h_j} \in V_G$, *i*, $h \in \{1, 2, ..., p_1\}$, $j \in \{1, 2, ..., q_1\}$, and $g \in V_{H_j}$. We have $d(g, s) = (d(g, f) + d(f, s)) = (1 + d(f, s)) > d(f, s)$. If $f \in V_{H_j}$ and *g* ∈ V_{H_h} with $h \neq j$, then for every vertex $s \in (V_{H_i} - \{b_j, c_j\})$, we have $d(f, s) \leq 2 \leq d(g, s).$

Case 3. $f, g \in V_G$ with $f = s_j = s_{i_j}$ or $f = s_j = s_{h_j}$ of edge $e_j =$ $s_{i_j} s_{h_j}$; s_{i_j} , $s_{h_j} \in V_G$; *i*, $h \in \{1, 2, ..., p_1\}$; $j \in \{1, 2, ..., q_1\}$; and $f \neq g$. Let $f = s_j$. Then, for every vertex $s \in (V_H, -\{b_j, c_j\})$, we have $d(f, s)$ $= 1 < d(g, s)$. Therefore, for any two different vertices $f, g \in V_{G \Diamond H}$, we get $r(f | W) \neq r(g | W)$. So, dim($G \Diamond H$) $\leq q_1(p_2 - 2)$.

[The above bound is tight as we have presented in Corollary 5.](http://repository.unej.ac.id/)

Theorem 10. *Let the order and size of a connected graph* (*not a tree*) *G* and a connected graph *H* be, *respectively*, $p_1 \geq 3$, $q_1 \geq 3$ and $p_2 \geq 2$, $q_2 \geq 1$. *Then*

$$
\dim(G \lozenge H) \le q_1(\dim(K_2 + H) - 1).
$$

Proof. Let $K_2 + H_j$ be a subgraph of $G \, \Diamond \, H$ graph which is formed by connecting every end vertices s_{i_j} and s_{h_j} of edge $e_j = S_{i_j} S_{h_j} \in E_G$ with all vertices in H_j . For every edge $e_j \in E_G$, let U_j be a basis of $K_2 + H_j$ and $U = \bigcup_{j=1}^{q_1} U_j$. By Lemma 1(c), we obtain that s_{i_j} and s_{h_i} do not

On Metric Dimension of Edge-corona Graphs 975

belong to any basis for $K_2 + H_i$. Hence, there is no vertex from G that contained in *U*. In other words, $U \cap V_G \neq \emptyset$. Now, we will prove that *U* is a resolving set for $G \, \Diamond \, H$. Given two vertices $s, t \in V_{G \, \Diamond \, H}$, there are four cases to be considered:

Case 1. $s, t \in V_{H_i}$. There exists $x \in U_j$ such that $d_{K_2 + H_i}(s, x) \neq$ $d_{K_2+H_j}(t, x)$. This leads to $d_{G \, \Diamond H}(s, x) \neq d_{G \, \Diamond H}(t, x)$.

Case 2. $s \in V_{H_i}$ and $t \in V_{H_h}$, $j \neq h$. Let $y \in U_j$. We obtain $d_{G \, \Diamond H}(s, y) \leq 2 < 3 \leq d_{G \, \Diamond H}(t, y).$

Case 3. Let $e_j = s_{i_j} s_{h_j}$, $e_k = s_{i_h} s_{h_k} \in E_G$ with $j \neq k$. Let $s_{i_j} = s$, $s_{h_i} = t$, $s_{i_k} = u$ and $s_{h_k} = v$. Suppose *s* and *t* are adjacent to the vertices of V_{H} \cdot There are two subcases:

Subcase 1. $t = u$ and $s \neq v$. Thus, for every vertex $x \in U_j$, we obtain

$$
d_{G \; \Diamond \; H}(s, \; x) = 1 < d_{G \; \Diamond \; H}(s, \; v) + 1 = d_{G \; \Diamond \; H}(v, \; x)
$$

and $d_{G \, \Diamond \, H}(s, x) = d_{G \, \Diamond \, H}(t, x)$.

Subcase 2. $t \neq u$ and $s \neq v$. Hence, for every vertex $x \in U_j$, we obtain

$$
d_{G \Diamond H}(s, x) = 1 < d_{G \Diamond H}(t, u) + 1 \le d_{G \Diamond H}(s, u) + 1
$$

$$
= d_{G \Diamond H}(x, u) < d_{G \Diamond H}(x, v)
$$

and $d_{G \, \Diamond H}(s, x) = d_{G \, \Diamond H}(t, x)$.

Case 4. $s \in V_H$ and $t \in V_G$. There are two subcases:

Subcase 1. *s* is adjacent to *t*. Then $t = s_{i}$ or $t = s_{h}$. For every vertex $x \in U_k$, $k \neq j$, $k \in \{1, 2, ..., q_1\}$, we obtain

976 Rinurwati, Herry Suprajitno and Slamin

$$
d_{G \Diamond H}(s, x) = d_{G \Diamond H}(t, x) + 1 > d_{G \Diamond H}(t, x).
$$

Subcase 2. *s* is not adjacent to *t*. Then $t = s_{i_k}$ or $t = s_{h_k}$ with $j \neq k$ for some $k \in \{1, 2, ..., q_1\}$. Hence, there exists $x \in U_k$ adjacent to *t*. Thus, we have

$$
d_{G \Diamond H}(s, x) = d_{G \Diamond H}(s, t) + 1 > d_{G \Diamond H}(t, x).
$$

Therefore, for any two vertices *s*, $t \in V_{G \circ H}$ with $s \neq t$, we obtain $r(s|U) \neq$ $r(t | U)$, consequently, dim($G \Diamond H$) $\leq q_1 \dim(K_2 + H)$.

Theorem 11. *Let the order and size of a connected graph* (*not a tree*) *G* and a connected graph *H* be, respectively, $p_1 \geq 3$, $q_1 \geq 3$ and $p_2 \geq 7$, $q_2 \geq 6$. *[Diameter of H is greater than or equal to six or](http://repository.unej.ac.id/)* $H \cong C_{p_2}$:

$$
\dim(G \lozenge H) = q_1([\dim(K_2 + H)] - 1).
$$

Proof. We consider *W* is a basis for $G \, \Diamond \, H$. By Lemma 1(c), we obtain $W \cap V_G = \emptyset$, so $W = \bigcup_{j=1}^{q_1} W_j$, with $W_j \subset V_{H_j}$. By using Lemma 1(b), we have $W_j \neq \emptyset$ for every $j \in \{1, 2, ..., q_1\}$. Furthermore, we will show that for every $u \in V_{H_i} - W_j$ holds $r(u | W_j) \neq (1, 1, ..., 1)$. There are two cases:

Case 1. *H* is a cycle graph of order $p_2 \ge 7$. If $r(x|W_i) = (1, 1)$ for some $x \in V_{H_i} - W_j$, then as $p_2 \ge 7$, there are two vertices $s, t \in V_{H_j} - W_j$ such that $d_{H_i}(s, u) > 1$ and $d_{H_i}(t, u) > 1$, for every $u \in W_j$. So, $d_{G \, \Diamond H}(t, u) =$ $d_{G \, \Diamond \, H}(s, u) = 2$ for every $u \in W_i$. This is a contradiction, since by using Lemma 1(a), we have $d_{G \circ H}(s, u) = d_{G \circ H}(t, u)$ for every $x \in W - W_i$.

Case 2. Diameter of *H* is greater than or equal to six. Let *s* and *t* be two vertices in $V_{H_i} - W_j$. Because *W* is a resolving set for $G \, \Diamond \, H$, we obtain that $r(s|W)$ is not equal to $r(t|W)$. By Lemma 1(a), it is mentioned that

On Metric Dimension of Edge-corona Graphs 977

 $d_{G \circ H}(s, u) = d_{G \circ H}(t, u)$ for every vertex $u \in V_{G \circ H} - V_{H_i}$. So, there is a vertex $x \in W_j$ such that $d_{G \circ H}(s, x)$ is not equal to $d_{G \circ H}(t, x)$, consequently, either *x* is adjacent to *t* and *x* is not adjacent to *s* or *x* is not adjacent to *t* and *x* is adjacent to *s*. Moreover, we consider that there is a vertex $y \in V_{H_i} - W_j$ such that $r(y|W)$ is equal to (1, 1, ..., 1). If there exists vertex $u \in W_j$ such that $d_{H_i}(z, u) > 1$, then for every $c \in V_{H_i} - (W_j \cup \{y, z\})$, there is a vertex $x \in W_j$ such that *z* is adjacent to *x*. Therefore, the diameter of H_j is lower than or equal to five. Furthermore, if for every $z \in V_{H_i} - W_j$, there is a vertex $x_z \in W_j$ such that x_z is adjacent to z , then the diameter of H is lower than or equal to four. So, if diameter of *H* is greater than or equal to six, then for every vertex $y \in V_{H_j} - W_j$ holds $r(y|W_j) \neq (1, 1, ..., 1)$.

We use $K_2 + H_j$ as the subgraph of $G \, \Diamond \, H$ which is formed by connecting every end vertices s_i , s_h of edge $e_i = s_i s_h$ of *G*, to every vertex in H_i . From Cases 1 and 2 above, we obtain that for every vertex $y \in V_{H_j} - W_j$ holds $r(s_j | W_j) = r(y | W_j) \neq (1, 1, ..., 1)$. Therefore, *W_j* is a resolving set for $K_2 + H_j$. So, for every $j \in \{1, 2, ..., q_1\}$ holds $\dim(K_2 + H_i) - 1 \leq |W_i|$. Therefore, $\dim(G \Diamond H) \leq q_1(\dim(K_2 + H_i) - 1)$. The proof is complete.

The following is a consequence of Theorem 11.

Corollary 12. *Let the order and size of a connected graph* (*not a tree*) *G be*, *respectively*, $p_1 \geq 3$ *and* $q_2 \geq 3$ *. The following hold:*

(i) If $p_2 \ge 7$, then $\dim(G \lozenge P_{p_2}) = q_1 \left(\left[\frac{2p_2 + 2}{5} \right] - 1 \right)$. (ii) If $p_2 \ge 7$, then $\dim(G \otimes C_{p_2}) = q_1 \left(\left[\frac{2p_2 + 2}{5} \right] - 1 \right)$.

978 Rinurwati, Herry Suprajitno and Slamin

Acknowledgement

The authors thank the anonymous referees for their valuable suggestions and constructive criticism which improved the presentation of the paper.

References

- [1] P. S. Buczkowski, G. Chartrand, C. Poisson and P. Zhang, On *k*-dimensional graphs and their bases, Period. Math. Hungar. 46(1) (2003), 9-15.
- [2] G. Chartrand L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
- [3] J. Caceres, C. Hernando, M. Mora, M. L. Puertas, I. M. Pelayo and C. Seara, On the metric dimension of some families of graphs, Electron. Notes Discrete Math. 22 (2005), 129-133.
- [4] Y. Hou and W. C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra 20 (2010), 586-594.
- [5] H. Iswadi, E. T. Baskoro and R. Simanjuntak, On the metric dimension of corona product of graphs, Far East J. Math. Sci. (FJMS) 52(2) (2011), 155-170.
- [\[6\] Rinurwati, Slamin and H. Suprajitno, General results of local metric dimensions of](http://repository.unej.ac.id/) edge-corona of graphs, Int. Math. Forum 11(16) (2016), 793-799.
- [7] I. G. Yero, D. Kuziak and J. A. Rodriguez-Velazquez, On the metric dimension of corona product graphs, Comput. Math. Appl. 61(9) (2011), 2793-2798.