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Abstract. Let G be a connected graph with vertex set V(G) and W =
{fwi, wy, ...,wp, } SV(G). A representation of a vertex v € V(G) with respect to
W is an ordered m-tuple r(v|W) = (d(v,w,),d(v,w,),...,d(v,w,,)) where
d(v,w) is the distance between vertices v and w. The set W is called a resolving
set for G if every vertex of G has a distinct representation with respect to W. A
resolving set containing a minimum number of vertices is called a basis for G.
The metric dimension of G, denoted by dim (&), is the number of vertices in a
basis of G. In general, the comb product and the corona product are non-
commutative operations in a graph. However, these operations can be
commutative with respect to the metric dimension for some graphs with certain
conditions. In this paper, we determine the metric dimension of the generalized
comb and corona products of graphs and the necessary and sufficient conditions
of the graphs in order for the comb and corona products to be commutative
operations with respect to the metric dimension.

Keywords: comb product; commutative with respect to metric dimension; corona
product; generalized comb and corona products; metric dimension basis.

1 Introduction

Let G be a finite and simple connected graph. The vertex and edge sets of graph
G are denoted by V(G) and E(G), respectively. The distance between vertices Vv
and w in G, denoted by d (v, w), is the length of the shortest path between v and
w. Let W = {w;,w,,...,w;,} € V(G) be the ordered set and v a vertex on
graph G. The representation of v with respect to W is an ordered m-tuple,
r(w|W) = (d(v,wy),d(v,wy), ...,d(v,w,,)). The set W is called a resolving
set of G if all vertices of G have distinct representations with respect to W. A
minimum resolving set of graph G is called a basis of G. The cardinality of a
basis is called the metric dimension of G, denoted by dim(G). Chartrand, et al.
[1] characterized the metric dimension of certain graphs, i.e. dim(G) = 1 if and
only if G = P, and dim(G) = n — 1 if and only if G = K,, for graph G of order
n>2.
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Saputro, et al. [2] obtained the metric dimension of the comb product of graph
G o H. This product is a special case of the rooted product graph, which has
been defined by Godsil and McKay in [3]. Let G and H be two connected
graphs and o be a vertex of H. The comb product between G and H, denoted by
G o H, is a graph obtained by taking one copy of G and |V (G)| copies of H and
grafting the i-th copy of H at the vertex 0 to the i-th vertex of G.

Theorem 1. [2] Let G and H be connected graphs of order at least 2. If
|[V(G)| = m and H is not a path, then:

m (dim(H) — 1), if there exists a basis of H containing o
mdim(H), otherwise

dim(GoH) = {

Frucht and Harary [4] provide the definition of the corona product. Let G be a
connected graph of order n and H (not necessarily connected) be a graph of
order at least two. The graph G corona H, denoted by G O H, is a graph that is
obtained by taking n copies of graphs Hi, Hy,...,H, of H, and connecting the i-th
vertex of G to all vertices of H;. The metric dimension of the corona product of
two graphs has been determined by Iswadi, et al. [5].

Theorem 2. [4] Let G be a connected graph and H be a graph of order at least 2.
Then:

|G| dim(H),if H contains a dominant vertex

dim(G O H):{ |G|dim(K; + H), otherwise

In this paper, we discuss the metric dimension of the generalized comb product
and the generalized corona product of graphs. We also discuss commutative
characterization with respect to the metric dimension of the comb product and
the corona product. The definition of the comb product, the rooted product and
the corona product will be generalized by the k-comb product, the k-rooted
product and the k-corona product, respectively. The generalized corona product
includes the corona product of a graph and a sequence of graphs. The
generalized definitions will be given in the next section.

2 Generalized Comb and Corona Product Graphs

An operation * defined on two graphs is said to be commutative if 4*8 = B*4
for every graph A and B. An operation * defined on two graphs G and H is said
to be commutative with respect to the metric dimension if dim(G * H) =
dim(H * G), denoted by (G * H) = dim(H * G).

Let G and H be connected graphs, n be the order of G and 0 be a vertex of A.
The k-comb product of G and H, denoted by GoyH, is a graph obtained from &
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and H by taking one copy of G and nk copies of H, i.e. H11, Hiz His, ..., Hi, Hzs,
Hzz, Hzs, ..., Hoig ...y Hpi, Hpz Hps, ..., Ho and grafting the vertex 0; j=1,23,
..., kK with the i-th vertex of G. In graph GoyH, the vertex 0,,=0, for s = 1,2,

..., K, and GoyH = GoH. Hence, the k-comb product can be considered the
generalized comb product.

Let G'be a connected labeled graph of order n and H be a sequence of n rooted
graphs Hy, Hj,, Ha, ..., Hy,. The k-rooted product of ¢ and #, denoted by
G oy H, is a graph obtained from G and H by taking one copy of G and k copies
Of}[, 1.e. H11, H12, H13, s Hlka H21, sz, H23, ceey sz, W, Hnl: an, Hn3, ceey an
and grafting the rooted vertex of Hj;, , j =1, 2, 3, ..., k with the i-th vertex of G.
In graph G oy #, the vertex 0,, = o,fors = 1,2,...,k,and G 0; H = GoJ.
Hence, the k-rooted product can be considered the generalized rooted product.

Rodriguez, et al. [6] defined the corona product of two graphs as follows. Let G
be a connected labeled graph of order n and H be a sequence of n graphs H;,
H,, Hs, ..., Hyn. The corona product of ¢ and H, denoted by G © H,, is a graph
obtained from G and H by taking one copy of G and k copies of H, i.e. Hyy, Hyp,
ng, ‘eeg Hlk: H21, H22, H23, .5 H2k, . Hnla an, Hn3, . an and jOiIliIlg by an
edge each vertex of Hj;, j = 1, 2, 3, ..., k with the i-th vertex of G.

Let G'be a connected graph of order n and A be a graph. The k-corona product
of G'and H, denoted by G Oy H , is a graph obtained from G and H by taking
one copy of & and nk copies of A, i.e. Hyy, Hip, His, ..., Hik, Ho1, Hao, Hos, ..,
Ha, ..., Hot, Hiz, His, ..., Hok, and joining by an edge each vertex of Hjj, j = 1,
2, 3, ..., k with the i-th vertex of G. If k=1 then G O; H = G O H. Hence, the
k-corona product can be considered the generalized corona product.

Let G'be a connected labeled graph of order n and H be a sequence of n graphs
Hi, Hy, Hs, ..., Hn. The k-corona product of G and H, denoted by G O, H, is a
graph obtained from G and H by taking one copy of & and k copies of H, i.e.
Hll: H12, H13, ey Hlk! Hgl, H22, H23, vy H2k, Ty, Hnly an, Hng, oy an and
joining by an edge each vertex of Hjj, j = 1, 2, 3, ..., k with the i-th vertex of G.
Ifk=1,thenG O, H =G O H.

3 Metric Dimension of Generalized Comb Product Graphs

The metric dimension of the generalized comb product (including the rooted
product) and the corona product graphs are presented in the next theorems. We
first present the metric dimension of the rooted product of graph & and sequence
of graphs H as follows.
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Theorem 3. Let G be a labelled connected graph of order n > 2 and H a
sequence of n connected non path rooted graphs of order at least two, namely
Hi, Ha, Hs, ..., Hy. If 0; is the root of H; for every i =1, 2,...,n, then:

dim(G o H)= Y1, (dim(H,)) — a;),

1,if o; belongs to a basis of H;

where a; = ,
t {0,0therwme

Proof. Let G be a labeled graph on n vertices and H be a sequence of n
connected rooted non path graphs of order at least two Hy, H,, Hs, ..., Hp. Let o;
be the root of H; and B; a basis of H;, for every i = 1, 2, ..., n. Choose
W = Ui({B; — {0;}}, so [W| = XL, (dim(H))) — a;),
1,if o; belongs to a basis of H;

where a; = )
t {O,OtherWLse

Suppose that x,y are any two distinct vertices in G 0 /. Then there are four
possibilities:

(a) X,y are rooted vertices.

(b) x,y belong to H;, x,y # o0;.

(c) x belongs to H; and Y is a rooted vertex.

(d) x belongs to H; and y belongs to H;, x # 0;,y # 0; i # j.

We consider all possibilities:

(a) Suppose X,y are rooted vertices. Let x = 0;,y = 0;. We get d(0;,0;) #
d(0;,0;), s0 d(o;,v) # d(oj,v) forevery v € B; and r(x|W) # r(y, W).

(b) Suppose X and y belong to H;. Let x =x;,y =y;. There are two
possibilities, namely r(x;|{B; — {0;}}) # r(y;|1{B; — {0;}}) or r(x;|{B; —
{0}}) = r(yil {B; — {oi}}).

Ifr(x;[{B; —{0i}}) # r(yil {B; — {0:}}), then r(x;|W) # r(y;| W).

If r({B; —{0}}) = r(vil {Bi — {0;}}), then d(x;|o;) # d(yilo;), so
r(xi|{Bjo — {0j}}) = r(yi| {B; — {0;}}). For i # j, we get r(x;|W) #
(il W).

(c) Suppose x belongs to H; and y is a rooted vertex. This means that y belongs
to G. There are two possibilities, namely X = 0; or X # 0;. For X = 0;, because
d(Oi'Oi) * d(y, Oi) and 0; € Bi, we get T'(XlBi U B] - {Oi, 0]}) *
r(y|B; U B; — {oi,oj}) for i #j, so r(x|W) #r(y|W). For x # o;,
without loss of generality, let x =o0;, i #j. We get r(xlBi UB; —
{oi,oj}) +r(y|B; U B; — {oi,oj}), sor(x|W) # r(y|W).

(d) If x belongs to H; and y belongs to H;, i # j, then r(x|Bi UB; — {oi, oj}) *
r(y|B; U B; — {oi,oj}). We get r(x|W) # r(y|W).
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Hence, we have W = UL {B; —{0;}} is a resolving set of G o . We now
show that W is minimal. Suppose that S is any set such that S € V(G o H') and
S| < |W]. Since |S| < |W]|, then there is i such that S contains at most
|B; — {0;}] — 1 elements of H;. As a result, there are two vertices in H; that
have the same representation with respect to S. Thus, S is not a resolving set.
Consequently, W is a basis of G 0 H and dim(G o H) = Yi-,; (dim(H;) — ;)
where:
{1, if o; belongs to a basis of H;
a; = , .
0, otherwise

In the next theorem, we give the metric dimension of the generalized k-comb
product of graphs G and H.

Theorem 4. Let G be a connected graph of order n, 4 is a non path graph of
order at least two, and o is grafting vertex of G o, H. Then:

nk(dim(H) —1),if there exists a basis of H containing o

dim(G o, H)= { nk dim(H), otherwise

Proof. Let G be a connected graph of order n, H a non path graph of order at
least two, and 0 a grafting vertex of G o, H. Consider nk copies of A are Hyy,
H12, H13, o00g Hlk, H21, sz, H23, o005 sz, 0o Hnl, an, Hn3, o00g) an. Let B be a
basis of H, B;; be a basis H;; and 0;; be a copy of 0 in H;, i =1,2,3,..,n;j =
1,2,3,..,k. We get o;; =0; for j=1,23,..,k and |B;j| = |B| = dim(H).
There are two possibilities, namely there is a basis of A containing 0 and no
basis of H containing 0.

We consider the first case. Suppose there is a basis of A containing o. Choose
W= U, Uf=1{Bij —{0;}}. We get |W| = nk (dim(H) —1). Suppose X,y are
any two distinct vertices in G 0, H. Then there are five possibilities, namely:

(a) xandy belong to G.

(b) xandy belong to H;; = H;; x,y +# o;.

(c) X belongs to G'and y belongs to H;; = H;; y # 0;.

(d) x belongs to H;; and y belongs to H;;, where j # [; x,y # 0;.

(e) X belongs to H;;j and y belongs to Hy,; for i # k; x # 0;,y # 0.

We consider all possibilities:

(a) Suppose x and y belong to G. Let x = 0; and y = 0;. Then d(0;0;) #
d(o;,0;) so (d(o;,v)# d(o;,v) for every €By, [=12,.., k.
Consequently, r(x|W) # r(y, W).
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(b) Suppose x and y belong to H;j = Hi;x,y # 0;. Let x = x;,y = y;. Hence,
there are two possibilities, r(x;|{B;; — {0;}}) # r(y;i|[{B;; — {0;}}) or
r(x;|[{Bij — {0i}}) = r(il {Bij — {oi}]). For r(x;|{Bij — {oi}}) #
r(yi| {Bij — {0:}}), we get r(x;|W) # r(y;| W). Suppose 7(x;|{B;j —
{0:}}) = r(il {B;j — {0;}}). Since B;j is a basis of H;; and o; € B;; then
d(xilo;) # d(y;|o;). Hence, (x;|[{Bj; — {0x}}) = 7(¥il {Bix — {0x}}) for
i # k. Therefore r(x;|W) # r(y;| W).

(c) Suppose X belongs to G and y belongs to H;; = H;,y # 0;. There are two
possibilities, namely X = 0; and X # 0; . Let X = 0;. Since d(0;, 0;) # d(y,0:)
and o; € B;;, then r(x|Bi]- U By, — {0, 01}) # r(leij U By, — {05, 01})
for i # k. Therefore r(x|W) # r(y|W). Now, let x # o;. Without loss of
generality, let x = o, where # k . Then, r(xlBij U By, —{o;,01}) #
r(y|Bl-j U By, — {0, 0.}). Hence, r(x|W) = r(y|W).

(d) Suppose X belongs to H;; and y belongs to Hy, where j # [; x,y # o;.
Then, d(x,s) =d(x,0;) +d(o;,s),Vs € By and d(y,s,) =d(x,u,),
where s, is r-th element of B;; and u, is the r-th element of B;;.
Consequently, r(x|Bl-j U By, — {o;, ok}) * r(y|Bl-j U By, — {o;, ok}). So
r(x|W) = r(y|W).

(¢) Suppose X belongs to H;; and y belongs to Hy, for i # k,x # 0;,y # 0. By
the same reasoning as in the case X belongs to H;; and y belongs to Hy,
where # [, we get r(x|W) # r(y|W).

Hence, we have W = UX, Uﬁl{BU — {0;}} is a resolving set of Go,H. We
now show that W is minimal. Suppose that S is any set such that S C
V(G ox H) and |S| < [W|. Then, S contains at most |B;;| — 2 elements of
H;j for some index i. As a result, there are two vertices of H;; that have the
same representation with respect to S. Thus S is not a resolving set.
Consequently, W is a basis of G o, H and:

dim (GoyH) = nk(dim(h) — 1.
Now we consider the second case, where there is no basis of H containing 0.
Choose W = Ui, U;LI{BU}. Hence, |W| = nk (dim(H)). Take any two
distinct vertices X,y in G oy, H. There are five possibilities, namely:

(a) xandy belong to G.

(b) xandy belong to H;; = H;; x,y # o;.

(c) X belongs to G and y belongs to H;; = H;, y # o;.

(d) x belongs to H;j and y belongs to Hy;, where j # L, x,y # o;.

(e) x belongs to H;j and Yy belongs to Hy; for i # k,x # 0;,y # 0.
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By using the same technique as presented in the first case, it can be proved that
W = UP, U¥_,{B;;} is a basis of G o, H and:

dim(G o, H) = (dim(H)).

A more general result on the metric dimension of the generalized comb product
of graphs is presented in the following theorem.

Theorem 5. Let G be a connected labelled graph of order n and H be a
sequence of n non path rooted graphs of order at least two, namely H;, Hz, Hj, ...,
H,. Then dim(G oy H) = kYL, (dim( H;) — o), where
o = {1, if there is a basis of H; contaning rooted vertex
o, otherwise '

Proof. Suppose k copies of H are Hiz, Hiz His, ..., Hi, Hz1, H2z Hzs, ..., Ho, ...,
Hpi, Huz Hps, .., Hur Let B; be a basis of H;, B;; a basis of H;; and o;; a rooted

vertex of Hy;, i=1,23,..,n;j =123, ..., k. Hence, 0ij = 0; and |Bl-]-| =
|B;| for j=123,..,k. Choose W= UYL, U;-‘zl{Bij —0;}. Therefore,
[W| = kXX, (dim(H;) — a;), where:
o {1, if thereis a basis of H; contaning rooted vertex
t o, otherwise y

Suppose X,y are any two distinct vertices in G o, H. Then there are five
possibilities, namely:

(a) xandy belong to G.

(b) xandy belong to H;; = H;,x,y +# o;.

(c) X belongs to G and y belongs to H;; = H;, y # o;.

(d) x belongs to H;; and y belongs to Hy;, where j # L, x,y # o;.

(e) X belongs to H;j and Yy belongs to Hy; for i # k,x # 0;,y # 0.

By using the same technique as presented in the proof of Theorem 4, it can be
shown that W = UL, U§=1{Bij — {0;}} is aresolving set of G o) H .

Now, we show that W is minimal. Suppose that S is any set such that S ©
V(G ox H) and |S| < |W|. Then, S contains at most |B;; — {0;}| —1 elements
of H;; for some index i. As a result, there are two vertices of H;; that have the
same representation with respect toS. Thus, S is not a resolving set.
Consequently, W is a basis of G o, H and dim(G o, H) = kX7, (dim(H;) —
a;), where:
o = {1, if there is a basis of H; contaning rooted vertex
L 0, otherwise ’
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4 Metric Dimension of Generalized Corona Product Graphs

Similar to the generalized comb product, the metric dimension of the
generalized corona product of graphs is presented in this section. We start this
section with the metric dimension of the corona product of graph & and
sequence of graphs H as follows.

Theorem 6. Let G be a connected labelled graph of order n and H be a
sequence of n rooted graphs. Then, dim(G © H) = }iL, (dim(K; + H;) — o),
where:

o = {1, if there is a basis of K; + H; containing vertex of K;
Lo, otherwise ’

Proof. Let V(G) = {v,v,, ..., v} and H be a sequence of n rooted graphs,
namely H;, Hz, Hs, .., H,. Let B be a basis of H, and B; a basis of (v;) + H;,i =
1,2,..,n. Choose W = U~,(B; — {v;}). Since, (v;)+ H; =K; + H,Vi =
1,2,..,n we have |W| = ¥, (dim(K; + H;) — a;), where:

e {1, if there is a basis of K; + H; containing vertex of K;
t= o, otherwise :

Suppose X,y are any two distinct vertices in G Oy H. Then there are four
possibilities, namely:

(a) xandy belong to G.

(b) x and y belong to H;.

(c) Xbelongs to G and y belongs to H;.

(d) x belongs to H; and y belongs to H; where i # j.

We consider all possibilities:

(a) Suppose X and y belong to G. Let x = v, y = v; where k # [. Then
d(vy,v) # d(vg, vg). Consequently, d(vy,v) # d(v;,v) for every
v € Hy,. Therefore, r(vi|W) # r(v;|W).

(b) If x and y belong to H;, then d(x,v;) = d(y,v;). Since B; is a basis of
(v;) + H;, we find d(x,s) # d(y,s) for some s € (B; —{v;}). Hence,
r(x|W) # r(y|W).

(c) Suppose x belongs to G and y belongs to H;. There are two possibilities,
namely x = v; or x = vy, where k # i. For x = v;, we find d(v;,u) #
d(y,u),Yu € Hy, where k # i. Hence, r(v;|By, — {vi}) # r(y|Br — {vi}).
Consequently, r(v;|W) # r(y|W). For x = v, where k # i, we find
(k| By — {vi}) # d(y|Bx — {vy}). Consequently, r(vy |W) # r(y|W).

(d) If x belongs to H; and y belongs to H;, where i # j, then d(x,v;) #
d(x,v)). Consequently, r(x|(B; U B; — {v;, vj}) #r|(B;VUB; —
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{vi,vj}). Therefore, r(x|W) # r(y|W) and W = UL (B; —{v;}) is a
resolving set of G (O H.

Now, we show that W is minimal. Suppose S is any set such that S € V(G ©
H) and |S| < |W]. Then, S contains at most |B; — {v;}] — 1 elements of
(vj) + H; for some index j. As a result, there are two distinct vertices of H; that

have the same representation with respect to S. Thus S is not a resolving set.
Consequently, W is a basis of GOH and dim(GOH) =
*, (dim(K; +H;) — «a;), where:

o = {1, if thereis a basis of K; + H; containing vertex of K,
Lo, otherwise ’

In the next theorem, we give the metric dimension of the generalized k-corona
product of graphs G and H.

Theorem 7. Let G'be a connected graph of order n and A be a graph of order at
least 2. If K; + H; has a basis Bj such that there is no vertex x in H; with
r(x|B;) = (2,2, ..., 2), for every i. Then:

kn (dim(K; + H) —1),if basis of K; + H containing vertex of K;

dim(G Oy H) = { kn (dim(K, + H)), otherwise

Proof. Let V(G) = {vq, vy, ..., 1, } and nk copies of H be Hy, Hyp, His,..., Hig,
H21, H22, H23, & sz, ., Hnla an, Hn3, L an. Let B be a basis of H and Bij a
basis of (v;) + Hyj,i =1,2,..,n;j = 1,2,.., k. Then there are two possibilities,
namely:

(i) there is a basis of K; + H containing a vertex of K.
(i1) there is no basis of K; + H containing a vertex of Kj.

(I)  Suppose there is a basis of K; + H containing a vertex of K;. Choose
W = Uk, U (Byj — (v:}). Since (v;) + Hi;j =Ky + HVi=12,..,n
j=12,..,k, then we have |W| = kn (dim(K; + H) — 1). Suppose Xy
are any two distinct vertices in G (O, H. Then there are five possibilities,
namely:

(a) xandy belong to G.

(b) xandy belong to H;; = H;.

(c) Xbelongs to Gandy belongs to H;; = H;.

(d) Xxbelongs to H;; and y belongs to H;;, where j # L.
(e) Xxbelongs to H;; and y belongs to Hy,; for i # k.
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We consider all possibilities:

(a) Suppose x and y belong to G. Let x = v, y = v;, where k # [. Then,
d(vy,v) # d(vg, vg). Hence, d(vg,v)# d(v,v) for every v € Hy;.
Consequently, r (v, [W) # r(v|W).

(b) If x and y belong to H;; = H;, then d(x,v;) = d(y, v;). Since Bjj is a basis
of (v;) + H;; and v; € Byj, then d(x,s) # d(y,s) for some s € (B;; —
{v;}). As aresult, r(x|W) # r(y|W).

(c) Suppose x belongs to G and y belongs to H;;j = H;. Then there are two
possibilities, namely x = v; or x = vy, where k # i. For x = v;, this case is
equal to the case X belongs to G and y belongs to H;; = H;. For x = vy,
where k # i, we get d(vy,v;) # d(v;,v;). Consequently, d(vy,v) #
d(v;, v) for every v € H;j. Therefore, r(vy |[W) # (v |W).

(d) Suppose X belongs to H;; and y belongs to Hy, where j # . Assume
rxw) =r(ylw),  then  r(x|(By —{v}) = r(|By—{w:}) =
(2,2,...,2). However, this is contrary to the fact that B;; and B;; are bases
of (v;) + H;j and (v;) + H;; respectively. Hence, r(x|W) # r(y|W).

(e) If x belongs to H;; and y belongs to Hy, for i # k, then d(x, v;) # d(x, vy).
Consequently, 7r(x|(B;; U By, — {v;}) # r(y[(Bij U Byy — {v;}). Thus,
r(x|W) # r(y|W) and W = U}, Uf=1(Bij — {v;}) is a resolving set of
G O H.

We now show that W is minimal. Suppose S is any set such S € V(G O H)
and |S| < |W|. Then, S contains at most |B;;| — 2 elements of (v;) + H;; for
some index j. As a result, there are two distinct vertices of H;; that have the

same representation with respect to S. Therefore, W is a basis of G Oy H and
dim(G Oy H) =|W| = kn (dim(K; + H) —1).

(I) Now we consider the second case, where there is no basis of K; + H
containing a vertex of K;. Choose W = UjL, U]k:l(Bij). Since (v;) + Hjj =
K;+HVi=12,nj=12,..,k, we have |W|=nk(dim (K; + H)).
Suppose X,y are any two distinct vertices of G Oy H. Then there are five
possibilities, namely:

(a) xandy belong to G.

(b) xandy belongto H;; = H; .

(c) Xxbelongs to G and y belongs to H;; = H;.

(d) xbelongs to H;; and y belongs to H;;, where j # L.
(e) X belongs to H;; and y belongs to Hy,; for i # k.
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By using the same technique as presented in the first case, it can be shown that
W = UfL, U%_,(B;;}) is a resolving set of G Oy H. Now, we show that W is
minimal. Let S be any set such that S € V(G Oy H) and |S| < |W|. Then, S
contains at most |B;;| — 1 elements of (v;) + H;; for some index j. Since B;; is
a basis of (v;) + H;j and v;  Bjj, then there are two distinct vertices of H;;

that have the same representation with respect to S. Thus S is not a resolving
set. Therefore, W is a basis of G Oy H and dim(G Oy H) =|W| =
nk (dim(K; + H)).

A more general result on the metric dimension of the generalized corona
product of graphs is presented in the following theorem.

Theorem 8. Let G be a connected labelled graph of order n and H be a
sequence of n rooted graphs. If K; + H; has a basis B such that there is no
vertex X in H; with r(x|B;) = (2,2, ..., 2) for every i. Then:

dim(G O H) = kY-, (dim(K; + H;) — a;), where:

N {1, if thereis a basis of K; + H; containing vertex of K;
Lo, otherwise ’

Proof. Let G'be a connected labelled graph of order n and H be a sequence of n
rooted graphs, namely Hi, Hs, H;, ..., H, and K copies of H are Hii, Hiz, His, ...,
Hiy o1, Foo, o3, ..., Foiy oy Ho, Hpp, His, ..., Hor Let Bbe a basis of H and Bij a
basis of (v;) + H;;,i=1,2,..,n;j = 1,2,.., k. Since H;; = H;,i = 1,2,..,n;
j=12,..,k, we have (v;) + H;; = (v;) + H; and B;; = B;. Choose W =
UL, U?=1(Bij —{vi}), so that there is no vertex X in H;; with r(x|B;) =
(2,2,...,2) forevery i. Since (v;) + H;j = Ky + H,Vi=12,..,n;j = 1,2,...,k
we have |W| = k Y-, (dim(K; + H;) — a;), where:
o = {1, if thereis a basis of K; + H; containing vertex of K;
Lo, otherwise ’

Suppose X,y are any two distinct vertices in G Oy H. Then there are five
possibilities, namely:

(a) xandy belong to G.

(b) xandy belong to H;; = H;.

(c) X belongs to G'and y belongs to H;; = H;.

(d) x belongs to Hi; and y belongs to H;;, where j # [.

(e) X belongs to H;; and y belongs to Hy; for i # k.

By using the same technique as presented in the proof of Theorem 7, it can be
shown that W = UL, Uf=1(Bl-j — {v;}) is a resolving set of G O H. Now, we
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show that W is minimal. Suppose S is any set such that S € V(G Oy H) and
|S| < |[W|. Then, S contains at most |B;; — {v;}| — 1 elements of (v;) + H;; for
some index j. Consequently, there are two distinct vertices of H;; that have the
same representation with respect to S. Thus, S is not a resolving set. Therefore,
W is a basis of G Oy H and dim(G Oy H) = |W| =k X", (dim(K; +H;) —
a;), where:

o = {1, if thereis a basis of K; + H; containing vertex of K;
t o, otherwise :

For junior researchers it is advisable to read the paper of Susilowati, et al. in [7]
to facilitate understanding of the proof.

5 Commutative Characterization of Comb and Corona
Products of Graphs with Respect to Metric Dimension

In this section, we present a commutative characterization with respect to the
metric dimension of the comb product, the corona product, the generalized
comb product and the generalized corona product of two graphs. The
commutative characterization of the comb product of graphs are presented in
the following theorems.

The first one shows the conditions when the grafting vertex is an element of the
basis and the second one shows the conditions when the grafting vertex is not
an element of the basis.

Corollary 9. Let ¢ and H be connected non path graphs of order at least two.
Let the grafting vertex of GoH be an element of basis of H and the grafting
vertex of HoG an element of the basis of G. Then:

IV(6)| dim(H) — 1) = |V(H)|(dim(G) — 1) & (GoH) = dim(HoG)

Proof. (=) Suppose |V(G)|dim(H) — 1) = |[V(H)|(dim(G) — 1). By using
Theorem 1, we get dim(GoH) = |V(G)|(dim(H) —1) and dim(HoG)=
|[V(H)|(dim(G) — 1). Hence, we find dim(GoH) = dim(HoG) or (GoH) =
dim(HoG).

(<) Suppose (GoH) = dim(HoG) or (GoH) = dim(HoG). By applying
Theorem 1 again, we find dim(GoH) = |[V(G)|(dim(H) — 1) and dim(HoG) =
|V(H)|(dim(G) — 1). This yields:

[V(6)|(dim(H) — 1) = [V(H)|(dim(G) — 1).
Corollary 10. Let G and H be connected non path graphs of order at least two.

Let the grafting vertex of GoH not be an element of basis of H and the grafting
vertex of H o G not be an element of the basis of G. Then:
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[V(G)| (dim(H)) = |V(H)|(dim(G)) < (GoH) = dim(HoG)

Proof. This theorem immediately follows from applying Theorem 1 and using
the same steps as in Theorem 9.

We now show the commutative characterization of the generalized comb
product of graphs with respect to the metric dimension with the following
theorems.

Corollary 11. Let G and H be connected non path graphs of order at least two.
If the grafting vertex of GoyH is an element of the basis of H and the grafting
vertex of H 0, G is an element of the basis of G, then:

(G opH) = dim(H 0,6) < |V(6)| (dim(H) — 1) = [V(H)| (dim(G) — 1).

Proof. (=) Suppose (GopH) =4im (HorG). We get that dim(GopH) =
dim(H 0,G). By using Theorem 4, we obtain k|V(G)|(dim(H)—-1) =
k|V(H)|(dim(G) —1). Hence, we get:

[V(G)|(dim(H) —=1) = [V(H)|(dim(G) —1).

(<)  Suppose [V(G)| (dim(H) — 1) = |V(H)| (dim(G) —1).  Then,
k|V(G)|(dim(H) —1) = k|V(H)|(dim(G) —1). By using Theorem 4 again, we
getdim(Go,H) = dim(H 04,G), so (GopH) = dim(H 0,G).

Corollary 12. Let ¢ and H be connected non path graphs of order at least two.
If the grafting vertex of Go,pH is not an element of the basis of H and the
grafting vertex of Ho, G is not an element of the basis of G, then:

(GopH) = dim(H 0,6) & |V(6)| (dim(H)) = |V(H)| (dim(G)).

Proof. This theorem immediately follows from applying Theorem 4 and using
the same steps as in Theorem 11.

The two theorems below show the commutative characterization of the corona
product of graphs with respect to the metric dimension when both graphs either
contain a dominant vertex or do not contain a dominant vertex.

Corollary 13. Let ¢ and H be connected graphs of order n > 2 containing a
dominant vertex. Then, |G| dim(H) = |H|dim(G) & G ©® H = dim(H © G).

Proof. (=) Suppose |G| dim( H) = |H| dim(G). By using Theorem 2, we get
dim(G © H) = |G|dim(H) and dim(H ©® G) = |H|dim(G). Hence, we find
dim(G O H) = [H| dim(G) = dim(H © G). So (G © H) = dim(H © G).
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(<) Suppose (G OH)=dim(HOG) or (G OH)=dim(HOG). By
applying Theorem 2 again, we find dim(G © H) = |G|dim(H) and dim(H ©
G) = |H|dim(G). This yields |G| dim( H) = |H| dim(G).

Corollary 14. Let ¢ and H be connected graphs of order n > 2 containing no
dominant vertex. Then |G|dim(K; + H) = |H|dim(K; + G) & (G O H) =
dim(H © G).

Proof. This theorem immediately follows from applying Theorem 2 and using
the same steps as in Theorem 13.

We now show the commutative characterization of the generalized corona
product of graphs with respect to the metric dimension with the following
theorems.

Corollary 15. Let ¢ and H be connected graphs of order at least two. Let the
vertex of K; be an element of the basis K; + H and the vertex of K; an element
of the basis K; + G. If K; + H has a basis B so that there is no vertex X in H
with r(x|B) = (2,2, ...,2) and K; + G; has a basis C so that there is no vertex
X in G; with r(x|C) = (2,2, ..., 2), then:

(G Oy H) Zgim (H Oy 6) < [V(6)| (dim(K, +H) — 1) =
IV (H)| (dim(K; +G)—1).

Proof. (=) Let G and H be connected graphs of order at least two. Suppose the
vertex of K, is an element of basis K; + H and the vertex of K, is an element of
basis K; + G, and (G Oy H) = dim(H Oy G). By using Theorem 6, we obtain:

k|V(G)| (dim(K; +H) —1) = k|V(H)| (dim(K; +G) — 1). Hence, we find
[V(G)| (dim(K; +H)—1) =|V(H)|(dim(K; +G) —1).

(<) Suppose |V(G)|(dim(K; +H) — 1) = |V(H)| (dim(K; + G) — 1). Then,
kIV(G)|(dim(K; + H) — 1) = k|V(H)| (dim(K; + G) — 1). By using Theorem
6 again, we find dim(G Oy H) =dim(H OxG), so (GO H) =
dim(H O G). m

Corollary 16. Let ¢ and H be connected graphs of order at least two. Suppose
the vertex of K; is not an element of basis K; + H and the vertex of K; is not an
element of basis K; + G. If K; + H has a basis B such that there is no vertex X in
Hr(x|B) = (2,2,...,2) and K; + G; has a basis C such that there is no vertex X
in G; with r(x|C) = (2, 2, ..., 2), then:

(G Ok H) =dim(H O G) & |V(G)| (dim(K; + H)) =
|[V(H)| (dim(K; + G)).
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Proof. This theorem immediately follows from applying Theorem 6 and using
the same steps as in Theorem 15.

6 Conclusion

In this paper, the metric dimensions of the k-comb and the k-corona products of
graphs were discussed. Suppose we state the k-comb and k-corona in this paper
as (k, k, k,... k)-comb and (k, Kk, k,... k)-corona respectively. We conclude this
paper with open problems on the metric dimension of (ky, ka, ks, ... ky)-comb and
(K, ka, Ks,... kn)-corona of graph G of order n and n sequence of graphs H .
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