

RESPON HASIL TIGA VARIETAS TOMAT (Lycopersicum esculentum M.) DENGAN APLIKASI BA (BENZILADENIN)

SKRIPSI

Oleh

Indah Dwi Retnowati NIM. 121510501003

PROGRAM STUDI AGROTEKNOLOGI FAKULTAS PERTANIAN UNIVERSITAS JEMBER 2017

RESPON HASIL TIGA VARIETAS TOMAT (Lycopersicum esculentum M.) DENGAN APLIKASI BA (BENZILADENIN)

SKRIPSI

Diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Sarjana (S1) pada Program Studi Agroteknologi Fakultas Pertanian Universitas Jember

Oleh:

Indah Dwi Retnowati NIM. 121510501003

PROGRAM STUDI AGROTEKNOLOGI FAKULTAS PERTANIAN UNIVERSITAS JEMBER 2017

PERSEMBAHAN

Dengan memanjatkan puji syukur kehadirat Allah SWT skripsi ini saya persembahkan untuk:

- Kedua orang tua saya yang tercinta yaitu Bapak Sukriyanto dan Ibu Muningsih. Tidak lupa pula untuk kakak saya tercinta Yudi Eko Prastyo dan adik saya tercinta Kartika Adi Saputra. Terima kasih atas doa dan dukungannya.
- 2. Almamater Fakultas Pertanian Universitas Jember Yang sangat saya cintai dan banggakan.
- 3. Seluruh guru dan dosen saya yang telah memberikan banyak ilmu pengetahuan yang menjadi bekal masa depan saya.
- Seluruh keluarga besar dan teman-teman yang telah memanjatkan doa, memberi bantuan, dukungan serta berjuang bersama hingga saya menyelesaikan penelitian ini.

MOTTO

Sekali anda mengerjakan sesuatu, jangan takut gagal dan jangan tinggalkan itu.

Orang-orang yang bekerja dengan ketulusan hati adalah mereka yang paling
bahagia (Chanakya)

Sesuangguhnya Allah tidak akan mengubah nasib suatu kaum hinggga mereka mengubah diri mereka sendiri (Q.S. Ar-Ra'ad:11)

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama: Indah Dwi Retnowati

NIM : 121510501003

Menyatakan dengan sesungguhnya bahwa karya ilmiah yang berjudul "Respon Hasil Tiga Varietas Tomat (*Lycopersicum esculentum* M.) dengan Aplikasi BA (Benziladen)" adalah benar-benar hasil karya sendiri, kecuali kutipan yang sudah saya sebutkan sumbernya, belum pernah diajukan pada institusi mana pun dan bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa ada tekanan dan paksaan dari pihak mana pun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.

Jember, 20 Mei 2017 Yang Menyatakan,

Indah Dwi Retnowati NIM. 121510501003

SKRIPSI

RESPON HASIL TIGA VARIETAS TOMAT (Lycopersicum esculentum M.) DENGAN APLIKASI BA (BENZILADEN)

Oleh

Indah Dwi Retnowati NIM 121510501003

Pembimbing:

Dosen Pembimbing Utama : Ir.Kacung Hariyono, MS., Ph.D.

NIP. 196408141995121001

Dosen Pembimbing Anggota: Ir.Bambang Kusmanadhi, M.Agr.Sc.

NIP. 195704271986011002

PENGESAHAN

Skripsi yang berjudul "Respon Hasil Tiga Varietas Tomat (*Lycopersicum* esculentum M.) dengan Aplikasi BA (Benziladen) "Telah diuji dan disahkan pada:

Hari, Tanggal: Selasa, 20 Mei 2017

Tempat : Fakultas Pertanian Universitas Jember

Dosen Pembimbing Utama,

Dosen Pembimbing Anggota,

<u>Ir. Kacung Hariyono, MS., Ph.D.</u> NIP. 196408141995121001 <u>Ir. Bambang Kusmanadhi, M.Agr.Sc.</u> NIP. 195704271986011002

Dosen Penguji I,

Dosen Penguji II,

<u>Ir. Sigit Soeparjono, MS., Ph.D.</u> NIP. 196005061987021001 <u>Ir. Setiyono, MP.</u> NIP.196301111987031002

Mengesahkan Dekan,

<u>Ir. Sigit Soeparjono, MS., Ph.D.</u> NIP. 196005061987021001

RINGKASAN

Respon Hasil Tiga Varietas Tomat (*Lycopersicum esculentum* M.) dengan Aplikasi BA (Benziladenin); Indah Dwi Retnowati, 121510501003; 2017: Halaman; 33 Program Studi Agroteknologi, Fakultas Pertanian, Universitas Jember.

Tanaman tomat merupakan tanaman sayuran yang banyak dibudidaya oleh petani di Indonesia. Produksi tomat di Indonesia jika dibandingkan dengan Negara lain. Untuk menaggulangi kendala tersebut dapat dilakukan dengan cara memperbaiki sistem budidaya. Teknik budidaya yang dilakukan yaitu dengan penggunaan varietas yang bersertifikat serta pemberian hormon agar tanaman tomat memiliki pertumbuhan dan hasil yang baik. Penelitian ini tentang bagaimana cara memperbaiki pertumbuhan dan meningkatkan hasil buah tomat dengan pemberian konsentrasi BA dan penggunaan varietas yang tepat.

Tujuan dari penelitian ini mendapatkan kombinasi antara konsentrasi BA dan varietas yang dapat memberikan hasil terbaik pada tanaman tomat. Percobaan ini dilaksanakan di green house Agroteknopark Universitas Jember dimulai pada bulan Juni sampai dengan Oktober 2016. Percobaan ini disusun menggunakan Rancangan Acak Lengkap Faktorial. Terdiri dari dua faktor yaitu varietas dan konsentrasi BA dengan 12 kombinasi perlakuan dan 3 ulangan. Faktor pertama; varietas tomat terdiri 3 macam, yaitu V1: Nirmala, V2: Pandu dan V3: Timoty. Faktor kedua; konsentrasi BA terdiri dari 5 taraf yaitu S0: 0 ppm (kontrol), S1: 50 ppm, S2: 100 ppm, S3: 150 ppm, S4: 200 ppm. Data hasil percobaan dianalisis dengan menggunakan analisis ragam (ANOVA). Jika F hitung berbeda nyata maka dilakukan Uji Jarak Berganda Duncan pada taraf 5%.

Berdasarkan hasil penelitian yang telah dilaksanakan tidak terdapat interaksi yang nyata antara perlakuan kombinasi varietas tomat dengan konsentrasi BA pada semua parameter pengamatan. Varietas Tymoti menghasilkan tinggi tanaman dan jumlah buah panen tertinggi serta umur berbunga tercepat. Sedangkan varietas Pandu menghasilkan berat rata-rata per buah, panjang dan diameter buah tertinggi. Konsentrasi BA 100 ppm menghasilkan jumlah dan berat buah tertinggi serta kerontokan buah terendah.

Dari hasil penelitian direkomendasikan menggunakan varietas Tymoti dan konsentrasi BA 100 ppm.

SUMMARY

Response Results of Three Tomato Varieties (Lycopersicum esculentum M.) with BA (Benziladenin) Application; Indah Dwi Retnowati, 121510501003; 2017: 58 pages; Agrotechnology Study Program, Faculty of Agriculture, University of Jember.

Tomato plants are vegetables cultivated by many farmers in Indonesia. Tomato production in Indonesia is still low compared to other countries. To overcome these obstacles can be done by improving the cultivation system. The cultivation technique is done with the use of certified varieties as well as the giving of hormones for tomato plants have good growth and yield. This study is about how to improve growth and improve the yield of tomatoes by giving BA concentrations and appropriate use of varieties.

The purpose of this study was to get a combination of BA concentrations and varieties that could give the best results in tomato plants. This experiment was conducted at Agroteknopark green house of Jember University starting from June to October 2016. This experiment was prepared using Completely Randomized Design Factorial. Consisting of two factors namely varieties and concentration of BA with 12 treatment combinations and 3 replications. First factor; Varieties of tomatoes consists of 3 kinds, namely V1: Nirmala, V2: Pandu and V3: Timoty. Second factor; The concentration of BA consists of 5 levels ie S0: 0 ppm (control), S1: 50 ppm, S2: 100 ppm, S3: 150 ppm. The experimental data were analyzed using various analysis (ANOVA). If F arithmetic is real different then Duncan Multiple Testing is done at 5% level.

Based on the results of the research that has been conducted there is no real interaction between the treatment of combination of tomato varieties with the concentration of BA on all observation parameters. Tymoti varieties produce the highest crop yields and the highest number of fruit harvest and the fastest flowering age. While Pandu varieties produce the average weight per fruit, length and diameter of the highest fruit. The concentration of 100 ppm BA produces the

highest amount and weight of fruit and lowest fruit loss. From the results of the study recommended using Tymoti varieties and BA concentration of 100 ppm.

PRAKATA

Puji syukur saya panjatkan kehadirat Allah SWT atas segala petunjuk, karunia dan jalan yang diberikan sehingga penulis dapat menyelesaikan skripsi yang berjudul **Respon Hasil Tiga Varietas Tomat** (*Lycopersicum esculentum* **M.) dengan Aplikasi BA (Benziladenin)**. Karya tulis ilmiah ini disusun untuk memenuhi salah satu syarat dalam menyelesaikan Pendidikan Strata Satu (S1) pada Pogram Studi Agroteknologi Fakultas Pertanian Universitas Jember.

Penyusunan karya tulis ilmiah ini tidak lepas dari bantuan berbagai pihak, oleh karena itu penulis ingin menyampaikan ucapan terima kasih dan penghargaan setinggi-tingginya kepada:

- 1. Ir. Sigit Soeparjono, M.S., Ph.D. selaku Dekan Fakultas Pertanian Universitas Jember.
- 2. Ir. Hari Purnomo, M. Si., Ph.D., DIC selaku Ketua Program Studi Agroteknologi.
- 3. Ir. Kacung Hariyono, MS., Ph.D., selaku Dosen Pembimbing Utama atas bimbingan, kesabaran, motivasi, dan meluangkan waktu hingga terselesaikannya skripsi ini.
- 4. Ir. Bambang Kusmanadhi M.Agr.Sc., selaku Dosen Pembimbing Anggota, yang telah meluangkan waktu, tenaga, pikiran, dalam memberikan ilmu dan bimbingan sehingga terselesaikannya skripsi ini.
- Ir. Sigit Soeparjono, M.S., Ph.D.., Selaku Dosen Penguji I dan Ir. Setiyono M.P., Selaku Dosen Penguji II, terima kasih atas masukan ilmu, motivasi serta kritik dan saran yang diberikan.
- 6. Pimpinan dan staf UPT Agroteknopark, yang telah banyak membantu serta memberi ijin penggunaan green house sehingga saya dapat melaksanakan penelitian.
- 7. Prof. Dr. Ir Endang Budi Trisusilowati, MS., Ir. Sutjipto, MS (Alm) dan Ir.Sigit Prastowo, MP. Selaku Dosen Pembimbing Akademik, terima kasih atas bimbingan, nasehat, serta motivasi yang diberikan hingga akhir semester.

- 8. Kedua Orang tua tercinta Bapak Sukriyanto dan Ibunda Muningsih yang senantiasa memberikan doa, dukungan semangat, kasih sayang, dan dukungan materil serta moril yang telah diberikan sehingga terselesaikannya skripsi ini.
- 9. Kakakku Yudi Eko Prastyo dan Adikku Kartika Adi Saputra yang senentiasa memberikan dukungan dan kasih sayang.
- 10. Teman-teman seperjuangan Bella Desi Pradilla, Siti Mahmuda Turrosida, Desi Rohmawati, Yulia Fatmawati, Devi Anggun Cholifah, Dini Intan Kurniawati, Aulia Arta, Riza Maisaroh, Fajar Dwi terima kasih atas segala dukungan, semangat, motivasi, kasih sayang, serta bantuan selama penelitian.
- 11. Teman-teman Cover'A, terima kasih atas semua kebahagian dan kenangan yang telah tercipta selama masa perkuliahan.
- 12. Kosan 77A, terima kasih semua kenangan selama ini, semoga kita semua semakin sukses kedepannya.
- 13. Dulur-dulur UKSM Panjalu terimakasih atas semua pengalaman dan pelajaran hidup serta kenangan yang sangat luar biasa.
- 14. Keluarga besar Agroteknologi 2012 atas kenangan, kebersamaan dan suka duka selama masa perkuliahan;
- 15. Semua pihak yang tidak dapat disebutkan satu per satu yang telah memberikan semangat, dukungan dan bantuan

Penulis juga menyampaikan bahwa penyusunan skripsi ini masih banyak kekurangan, oleh karena itu, kritik dan saran yang bersifat membangun penulis harapkan demi sempurnanya tulisan ini. Akhirnya penulis berharap, semoga skripsi ini dapat bermanfaat bagi semua.

Jember, Mei 2017

Penulis

DAFTAR ISI

Hal	aman
HALAMAN JUDUL	i
HALAMAN PERSEMBAHAN	ii
HALAMAN MOTTO	iii
HALAMAN PERNYATAAN	iv
HALAMAN PEMBIMBINGAN	V
HALAMAN PENGESAHAN	vi
RINGKASAN	vii
SUMMARY	ix
PRAKATA	xi
DAFTAR ISI	xiii
DAFTAR TABEL	xv
DAFTAR GAMBAR	xvi
DAFTAR LAMPIRAN	xvii
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan	3
1.4 Manfaat	3
BAB 2. TINJAUAN PUSTAKA	
2.1 Botani Tanaman Tomat	4
2.2 Syarat Tumbuh	5
2.3 BA (benziladenin)	7
2.4 Varietas	9
2.5 Hipotesis	11
BAB 3. METODE PENELITIAN	12
3.1 Tempat dan Waktu Penelitian	12
3.2 Rahan dan Alat	12

3.3 Rancangan Percobaan	12
3.4 PelaksanaanPenelitian	13
3.5 Parameter Percobaan	15
3.6 Analisis Data	15
BAB 4. HASIL DAN PEMBAHASAN	16
BAB 5. KESIMPULAN DAN SARAN	30
5.1 Kesimpulan	30
5.2 Saran	30
DAFTAR PUSTAKA	31
LAMPIRAN	33

DAFTAR TABEL

	Halan	ıan
2.1	Deskripsi varietas	10
4.1	Nilai F-hitung parameter pengamatan	16
4.2	Rata-rata hasil varietas pada setiap parameter pengamatan	23
4.3	Pengaruh konsentrasi BA terhadap penurunan persentase kerontokan buah	25
4.3	Pengaruh konsentrasi BA terhadap persentase kenaikan jumlah buah	
	pertanaman	27
4.3	Pengaruh konsentrasi BA terhadap persentase kenaikan berat buah	
	pertanaman	28

DAFTAR GAMBAR

	Hala	man
2.1	Struktur kimia BA (benziladenin)	7
4.1	Pengaruh varietas pada tinggi tanaman	17
4.2	Pengaruh varietas pada umur berbunga	18
4.3	Pengaruh varietas pada umur panen	19
4.4	Pengaruh varietas pada jumlah buah panen pertanaman	19
4.5	Pengaruh varietas pada rata-rata berat buah.	20
4.6	Pengaruh varietas pada panjang dan diameter buah tomat	21
4.7	Foto Panjang dan Diameter Buah Tomat Varietas Nirmala, Pandu,	
	dan Tymoti	22
4.8	Pengaruh konsentrasi BA pada persentase kerontokan buah	24
4.9	Pengaruh konsentrasi BA terhadap jumlah buah panen pertanaman	26
4.10	Pengaruh konsentrasi BA terhadap berat buah pertanaman	27

DAFTAR LAMPIRAN

Hala	aman
Lampiran 1. Analisis data penelitian	33
1a. Tinggi Tanaman	33
1b. Jumlah cabang produktif	34
1c. Umur berbunga	35
1d. Umur panen	36
1e. Jumlah buah perdompol	37
1f. Persentase kerontokan buah	38
1g. Jumlah buah panen	40
1h. Berat buah panen	42
1i. Berat rata-rata buah	43
1j. Panjang buah	44
1k. Diameter buah	45
Lampiran 2. Dokumentasi Penelitian	46

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Tanaman tomat merupakan tanaman sayuran yang banyak dibudidaya oleh petani di Indonesia. Penanaman tomat di Indonesia pada tahun 2013 mencapai 59.758 ha dengan produksi mencapai 992.780 ton atau 16,61 ton/ha (Direktorat Jendral Hortikultura, 2014). Tomat merupakan produk hortikultura yang sangat berguna bagi kebutuhan tubuh sebagai sumber vitamin, mineral, penyegar, pemenuhan akan serat, dan kesehatan. Buah tomat dimanfaatkan masyarakat sebagai bahan sayuran, bumbu masak, buah meja, penambah nafsu makan dan minuman serta bahan kosmetik dan obat-obatan. Buah tomat yang masak banyak digemari orang, karena rasanya segar, enak, dan sedikit masam. Daging buahnya banyak mengandung air, menyimpan biji-biji yang jumlahnya banyak, mengandung vitamnin A dan C, serta sedikit vitamin B (Tim Bina Karya, 2013).

Produksi tomat di Indonesia pada tahun 2008-2012 berkisar 15,19 ton/ha masih rendah jika dibandingkan dengan Negara lain, misalnya Cina 49,09 ton/ha, India 43,56 ton/ha dan Turki 34,65 ton/ha (Pusat Data dan Informasi Pertanian, 2014). Rendahnya produktifitas tomat di Indonesia disebabkan oleh banyak faktor antara lain sistem budidaya yang kurang tepat, salah satunya penggunaan varietas yang tidak cocok. Faktor lain yang menyebabkan produksi tomat rendah adalah penggunaan zat pengatur tumbuh yang membantu pertumbuhan tomat belum optimal. Puspitasari dkk. (2013), menyatakan bahwa rendahnya produktivitas buah tomat dapat dipengaruhi oleh penurunan persentase pembentukan buah dan jumlah gugurnya bunga dan buah yang tinggi. Untuk menanggulangi kendala tersebut dapat dilakukan dengan cara memperbaiki sistem budidaya. Teknik budidaya yang dilakukan yaitu dengan penggunaan varietas yang bersertifikat serta pemberian hormon agar tanaman tomat memiliki pertumbuhan dan hasil yang baik.

Penanaman tomat dengan menggunakan varietas unggul diperlukan untuk meningkatkan hasil dan kualitas buah (Wijayati dan Widodo, 2005). Menurut Hidayati dan Dermawan (2012), karakter unggul yang dimiliki varietas-varietas

baru mampu meningkatkan hasil tanaman. Kebanyakan varietas tomat hanya cocok ditanam di dataran tinggi, tetapi Badan Penelitian dan Pengambangan Pertanian telah melepas varietas tomat untuk dataran rendah, yaitu Ratna, Berlian, Mutiara serta beberapa varietas lainnya (Purwati dan Asga, 1990). Hasil penelitian Puspitasari dkk. (2013), pada dua varietas yaitu Tombatu F1 dan Juliet F1 menunjukkan hasil varietas Tombatu F1 memiliki persentase "fruit drop" lebih tinggi, umur panen pertama dan umur panen terakhir lebih tinggi dibandingkan dengan varietas Juliet F1. Namun menurut hasil penelitian, ratarata bobot per buah tomat varietas Tombatu ialah 63,70 g dengan bobot buah panen 1,3 kg per tanaman. Hasil ini berbeda jauh dengan deskripsi varietas bahwa rata-rata bobot per buah tomat varietas Tombatu ialah 80-90 gram dengan bobot buah berkisar 3-4 kg per tanaman. Untuk meningkatkan hasil tomat, pemilihan varietas saja tidaklah cukup. Maka diperlukan usaha lain salah satunya adalah pemberian hormon atau Zat Pengatur Tumbuh pada tanaman.

Pemberian BA (benziladenin) adalah salah satu teknik budidaya yang perlu dilakukan untuk membantu pertumbuhan dan hasil tanaman tomat menjadi lebih optimal. BA merupakan salah satu jenis sitokinin yang berperan dalam pengaturan pembelahan sel dan morfogenesis (Kardaji dan Buchory, 2008). Menurut Salisbury dan Ross (1992), Efek fisiologis lain dari sitokinin yaitu menstimulasi pertumbuhan tunas lateral dan mengeluarkan dominansi apikal, menstimulasi perluasan daun yang dihasilkan dari pembelahan sel, menunda penuaan dan meningkatkan aktivitas wadah penampung hara. Hasil penelitian Rachmawati (2008), juga membuktikan bahwa pemberian sitokinin dapat meningkatkan hasil cabai merah. Pertambahan ukuran sel menghasilkan pertambahan ukuran jaringan, organ dan akhirnya meningkatkan ukuran tanaman (buah) secara keseluruhan maupun berat tanaman tersebut. Jumlah sel yang meningkat, termasuk didalam jaringan pada daun, memungkinkan terjadinya peningkatan fotosintesis penghasil karbohidrat, yang dapat mempengaruhi bobot tanaman.

Penelitian tentang pemberian konsentrasi BA telah banyak dilakukan dan beberapa menunjukkan bahwa pemberian BA pada konsentrasi berbeda mampu

meningkatkan pertumbuhan. Namun aplikasi BA pada tanaman tomat masih belum banyak dilakukan. Penggunaan Varietas unggul juga banyak dilaporkan akan meningkatkan hasil tanaman tomat. Namun kenyataan bahwa kualitas dan hasil buah tomat di Indonesia masih rendah perlu diteliti lebih lanjut. Penelitian ini tentang bagaimana cara memperbaiki pertumbuhan dan meningkatkan hasil buah tomat dengan pemberian konsentrasi BA dan penggunaan varietas yang tepat.

1.2 Perumusan Masalah

- 1. Apakah terdapat interaksi antara varietas tomat dengan konsentrasi BA terhadap hasil tanaman tomat?
- 2. Bagaimana respon tiga varietas tomat terhadap hasil tomat?
- 3. Bagaimana pengaruh konsentrasi BA terhadap hasil tomat?

1.3 Tujuan

- 1. Untuk mengetahui interaksi antara konsentrasi BA dan varietas yang dapat memberikan hasil terbaik pada tanaman tomat.
- 2. Mengetahui respon varietas yang memiliki hasil terbaik.
- 3. Mengetahui konsentrasi BA yang paling baik untuk hasil tomat.

1.4 Manfaat Penelitian

Hasil penelitian ini diharapkan dapat memberikan informasi mengenai varietas tomat dan konsentrasi BA yang paling tepat sehingga hasil tomat dapat optimal. Penelitian ini juga dapat digunakan sebagai panduan bagi petani tomat dan menambah wawasan bagi peneliti maupun penulis dan konsumen tomat pada umumnya.

BAB 2. TINJAUAN PUSTAKA

2.1 Botani Tanaman Tomat

Tanaman tomat dalam tata nama tumbuhan diklasifikasikan ke dalam:

Kingdom : *Plantae* (Tumbuh-tumbuhan)

Divisi : Spermatophyta (Tumbuhan Berbiji)

Subdivisi : *Angiospermae* (Berbiji tertutup)

Kelas : *Dicotyledonae* (Biji berkeping satu)

Ordo : Tubiflorae

Famili : Solanaceae

Genus : Lycopersicum

Spesies : Lycopersicum esculentum commune

Tomat termasuk golongan tanaman semusim atau berumur pendek yaitu hanya sekali berproduksi dan setelah itu mati. Tanaman tomat berbentuk perdu atau semak yang menjalar pada permukaan tanah dengan panjang mencapai sekitar 2 cm. Batang tomat bagian luar berbentuk persegi empat hingga bulat, berbatang lunak tetapi cukup kuat, berbulu dan berambut halus, dan bercabang lebat. Batang tanaman pada saat muda berwarna hijau dan mudah patah, tetapi menjadi keras saat tua, dan hamper berkayu. Pada batang, terdapat daun yang tumbuh berselang-seling mengelilingi batang tanaman. Daun tomat berbentuk oval, berwarna hijau, bagian tepi daun bergerigi. Daun tomat terdiri atas helaian daun dan tangkai daun. Pada umumnya tanaman tomat mengeluarkan bunga pada umur 30 hari setelah tanam. Bunga tomat tersusun dalam rangkaian bunga yang jumlah kuntum bunganya beragam sesuai dengan jenis varietasnya. Kuntum bunga tomat terdiri atas daun kelopak, helai mahkota, bakal buah, kepala putik, tangkai putik, dan benang sari. Serbuk sari terdapat dalam kantong sari dan membentuk bumbung yang mengelilingi tangkai kepala putik. Sebagian besar bunga tomat menyerbuk sendiri, tetapi mudah juga dilakukakan persilangan. Tanaman tomat memiliki bentuk buah yang beragam sesuai dengan varietasnya. Ada buah yang berbentuk lonjong, bulat, dan oval. Ukuran buahnya juga

bervariasi, yang paling kecil memiliki berat sekitar 9 gram/buah dan yang berukuran besar sekitar 180 gram/buah (Tim Bina Karya Tani, 2013).

Akar sebagai tempat masuknya mineral (zat-zat hara) dari tanah menuju ke seluruh bagian tumbuhan. Sebagai tumbuhan dikotil, maka tanaman tomat memiliki akar tunggang yang tumbuh menembus kedalam tanah dan akar serabut yang tumbuh menembus ke dalam tanah dan akar serabut tumbuh menyebar ke arah samping. Secara morfologi, akar tersusun atas rambut akar, batang akar, ujung akar, dan tudung akar. Kemampuan akar menembus lapisan tanah terbatas, hanya mencapai kedalaman 30-70 cm. Sesuai sifat perakarannya, Tanaman tomat dapat tumbuh dengan baik dalam kondisi tanah gemburdan mengikat air.

2.2 Syarat Tumbuh

Tanaman tomat dapat tumbuh diberbagai ketinggian tempat, baik didataran tinggi maupun didataran rendah, tergantung pada varietasnya. Letak geografis sangat berpengaruh terhadap pertumbuhan tanaman karena berkaitan langsung dengan keadaan iklim setempat, seperti suhu udara, curah hujan, kelembapa udara, dan penyinaran matahari yang dibutuhkan oleh tanaman. Semakin tinggi suatu daerah, akan semakin rendah suhu udaranyadengan laju penurunan sebesar 0,5° C setiap kenaikan 100 meter dari permukaan laut. Sementara itu, intensitas sinar matahari dan kelembapan udara serta curah hujannya semakin tinggi. oleh karena itu, dalam kaitannya dengan ketinggian tempat, diharuskan memilih varietas tomat yang cocok untuk ditanam ditempat tersebut (Cahyono, 2008).

Tanaman tomat dapat tumbuh pada ketinggian 0-1.250 m dpl. Suhu rata-rata harian optimal untuk pertumbuhan tanaman tomat berkisar 18° C - 25° C pada siang hari dan 10° C - 20° C pada malam hari. Tanaman tomat menghendaki kelembapan udara yang cukup dan seimbang antara kelembapan tanah dan kelembapan udara. Curah hujan yang sesuai untuk pertumbuhan tanaman tomat adalah 750 mm – 1.250 mm pertahun. Keadaan ini berhubungan dengan ketersediaan air tanah bagi tanaman. Didaerah beriklim basah, tanaman tomat mudah terserang penyakit layu fusarium dan penyakit-penyakit lainnya. Dengan

demikian, pertumbuhan tanaman terhambat dan pada akhirnya produktifitas tanaman menurun.

Cahaya matahari sangat diperlukan dalam proses fotosintesis tanaman untuk membentuk bagian vegetatif tanaman (batang, cabang, dan daun) dan bagian generatif (bunga, buah, dan biji). Dalam proses fisiologi sinar matahari berfungsi sebagai sumber energy untuk asimilasi (Cahyono, 2008). Tanaman tomat memerlukan sinar matahari minimal 8 jam per hari. Walaupun demikian, tanaman tomat tidak tahan terhadap sinar matahari yang terik dan hujan lebat. Tanaman tomat memerlukan sinar matahari yang cukup untuk membentuk klorofil, pertumbuhan tanaman, dan kualitas produksi tanaman. Kekurangan sinar matahari dapat mengakibatkan pertumbuhan tanaman tomat menjadi lemah, pucat dan memanjang (Tim Bina Karya Tani, 2013). Menurut Pracaya (2009), intensitas sinar matahari sangat penting dalam pembentukan vitamin C dan karoten dalam buah tomat. Sinar matahari berintensitas tinggi akan menghasilkan vitamin C dan karoten (provitamin A) yang lebih tinggi.

Sifat fisika tanah yang baik untuk tanaman tomat adalah bertekstur lempung atau lempung berdebu. Tanah yang bertekstur remah atau gembut banyak mengandung bahan organic, subur, dan mudah mengikat air. Sifat fisik tanah yang baik akan meningkatkan peredaran oksigen dalam tanah dan menjamin ketersediaan oksigen dalam tanah. Dengan demikian, aktifitas mikroorganisme dalam tanah meningkat sehingga dengan mudah mengurai bahan-bahan organic yang diperlukan tanaman. sifat kimia tanah yang sangat berpengaruh terhadap pertumbuhan adalah derajat keasaman (pH) dan salinitas (kadar garam). Tanaman tomat akan tumbuh baik bila ditanam pada tanah yang memiliki derajad keasaman (pH) 5,5 - 6,8. Salinitas tanah dengan nilai Ece = 2,5 mmhos/cm tidak akan terjadi penurunan hasil. Sedangkan sifat biologi tanah sangat dipengaruhi oleh sifat kimia dan sifat fisika tanah. Sifat biologi tanah yang baik dapat membantu ketersediaan unsur-unsur hara, membantu melarutkan unsure hara yang tidak larut, dan dapat menyimpan kelebihan unsure hara. Selain itu, sifat biologi tanah yang baik dapat membantu proses nitrifikasi, dapat menekan pertumbuhan pathogen tanah,

menuburkan tanah, dan dapat membantu melancarkan peredaran udara di dalam tanah (Cahyono, 2008).

2.3 BA (Benziladenin)

Zat pengatur tumbuh adalah senyawa organik yang dalam jumlah sedikit mendorong, menghambat atau mengatur proses fisiologis di dalam tanaman. Penggunaan zat pengatur tumbuh dimaksudkan untuk mempercepat pertumbuhan sekaligus pertumbuhan yang optimum. Tanggapan terhadap zat pengatur pertumbuhan sangat bervariasi tergantung tingkat pertumbuhan yang telah dicapai tanaman dan konsentrasi yang diberikan (Kusumo, 1984). Penggunaan zat pengatur tumbuh dengan konsentrasi yang tepat akan menaikkan hasil, sedangkan pada konsentrasi yang tinggi dapat menghambat pertumbuhan, meracun bahkan mematikan tanaman (Danusastro, 1989).

BA merupakan jenis sitokinin digunakan untuk merangsang terbentuknya tunas, berpengaruh dalam metabolisme sel, dan merangsang sel dorman serta aktivitas utamanya adalah mendorong pembelahan sel (Wilkins, 1989). Benzyl Adenine (BA) merupakan zat pengatur tumbuh sintetik yang daya rangsangnya lebih lama dan tidak mudah dirombak oleh sistem enzim dalam tanaman. BA banyak digunakan karena mudah didapatkan dan harganya lebih murah. Nukleusidanya yaitu 6 Benziladenin Ribosi memiliki atom C dan H yang menempel pada atom N yang terikat pada cincin purin (Silva, 2012). Struktur kimia BA dapat dilihat pada gambar 2.1 Berikut ini.

Gambar 2.1. Stuktur kimia BA (Benziladenin)

Aplikasi pada kultur jaringan, sitokinin berperan dalam mendorong pembelahan sel atau jaringan yang digunakan sebagai eksplan dan merangsang perkembangan pucuk-pucuk tunas. Dalam perbanyakan in vitro, sitokinin digunakan untuk mengatasi dormansi apikal dan mempertinggi percabangan tunas lateral dari ketiak daun (Karjadi dan Buchory, 2008). Menurut Salisbury and Ross, (1992) . Sitokinin dapat ditemukan pada beberapa spesies tanaman salah satunya adalah tanaman tomat yang banyak ditemukan pada buahnya. Sitokinin pada konsentrasi lehih tinggi banyak ditemukan pada daerah meristematik dan daerah yang mengalami pertumbuhan terus menerus seperti akar, daun muda, buah yang berkembang dan biji. Sitokinin disintesis oleh akar dan mengangkutnya melalui xylem ke seluruh bagian tumbuhan, hal ini yang mengakibatkan terjadinya penimbunan pada daun, buah dan biji muda melalui pengangkutan xylem.

Keberhasilan aplikasi zat pengatur tumbuh ditentukan oleh beberapa faktor, diantaranya adalah : takaran atau konsentrasi yang digunakan harus tepat; metode pemberian zat pengatur pertumbuhan; waktu pemberian yang tepat, biasanya pada saat stomata membuka yaitu pada pagi hari; jenis zat pengatur pertumbuhan harus sesuai dengan tujuan pemberian karena golongan zat pengatur tumbuh mempunyai spesifikasi sendiri-sendiri terhadap pertumbuhan dan perkembangan tanaman. Dari hasil penelitian Hayata dkk. (1995), terhadap tanaman semangka, disebutkan bahwa penggunaan sitokinin sintetis : 1-(2-chloro-4pyridil)-3-phenylurea (CPPU) dengan konsentrasi 20 ppm dan 200 ppm dibantu polinasi buatan ternyata mampu meningkatkan bunga jadi buah masing-masing sebesar 90% daan 95,2%. Untuk konsentrasi 10 ppm meningkatkan jumlah buah sebesar 66,68%.

Menurut hasil penelitian Rahmayani dkk. (2013), pada beberapa perlakuan sitokinin memberikan pengaruh terhadap bobot buah tanaman cabai. Buah cabai yang diberi perlakuan sitokinin 100 ppm memiliki bobot buah yang lebih besar apabila dibandingkan dengan kontrol. Hasil penelitian Rachmawati (2008), juga membuktikan bahwa pemberian konsentrasi sitokinin 100 ppm pada cabai merah memiliki hasil terbesar dibandingkan dengan kontrol. Hal ini diduga karena

konsentrasi 100 ppm lebih memacu pembelahan sel, sesuai dengan fungsi hormon sitokinin adalah merangsang pembelahan sel dengan cepat dan mempengaruhi pembesaran sel (peningkatan ukuran). Adanya pembesaran sel mengakibatkan ukuran sel yang baru lebih besar dari sel induk. Pertambahan ukuran sel menghasilkan pertambahan ukuran jaringan, organ dan akhirnya meningkatkan ukuran tanaman (buah) secara keseluruhan maupun berat tanaman tersebut. Peningkatan pembelahan sel menghasilkan jumlah sel yang lebih banyak. Jumlah sel yang meningkat, termasuk didalam jaringan pada daun, memungkinkan terjadinya peningkatan fotosintesis penghasil karbohidrat yang dapat mempengaruhi bobot tanaman.

Menurut hasil penelitian Sumardi dkk. (2008), pada tanaman padi menunjukkan bahwa aplikasi hormon sitokinin jenis BAP mampu mempengaruhi pertumbuhan dan perkembangan biji. BAP 60 ppm dapat digunakan untuk membantu mengarahkan dan mempercepat translokasi serta partisi asimilat ke biji dari pada ke jerami. Kandungan sitokinin maksimun tercapai sebelum tercapainya laju pengisian biji maksimum, dengan demikian dapat diasumsikan bahwa sitokinin sebagai regulasi pada fase awal pengisian biji pada padi. Sitokinin jenis BA berperan dalam proses pembungaan pada tanaman. Peranan BA dapat mengakibatkan peningkatan perbandingan C/N yang menyebabkan peralihan dari masa vegetatif ke generative dengan terbentuknya kuncup bunga. Pada tanaman anggrek, BA berpengaruh baik dalam menginduksi pembungaan dan perkembangan secara keseluruhan, dengan persentase pembungaan mencapai 100% dan mampu mempercepat waktu inisiasi pembungaan (Marta dkk., 2011).

2.4 Varietas

Berdasarkan tipe pertumbuhannya tanaman tomat dibagi menjadi dua macam yaitu tipe determinan dan inderteminan. Tipe indeterminan memiliki cirriciri yaitu pertumbuhan diakhiri dengan tumbuhnya rangkaian bunga dan buah. Umur panen lebih pendek dan pertumbuhan batang cepat. Tipe indeterminate pertumbuhan tidak diakhiri dengan tumbuhnya bunga dan buah. Umur panen relative lama dan pertumbuhan batang relative lamban (Wiyarta, 2002).

Tanaman tomat merupakan salah satu tanaman menyerbuk sendiri. Terdapat dua golongan varietas unggul yang dapat dihasilkan dari tanaman menyerbuk sendiri, yaitu varietas galur murni dan varietas hibrida. Jenis tanaman tomat ada yang bersifat unggul dan ada yang bersifat tidak unggul. Jenis tanaman tomat yang bersifat unggul atas banyak varietas yang masing-masing memiliki sifat berbeda-beda (Syukur dkk., 2015). Menurut Hidayati dan Dermawan (2012), karakter unggul yang dimiliki varietas-varietas baru mampu meningkatkan produktifitas tanaman tomat. Keunggulan dari varietas-varietas tersebut adalah toleran dengan kondisi iklim dan tanah di Indonesia, bahkan sudah tersegmentasi menurut kondisi geografis di setiap pulau di Indonesia. Kondisi ini memudahkan petani untuk memilih varietas yang tepat. Bibit unggul adalah tanaman yang memiliki sifat-sifat agronomis yang baik. Kriteria keunggulan tomat yaitu sebagai berikut,

- 1. Daya hasil tinggi (rata-rata produksi pertanaman per satuan waktu atau pertanaman per luas area per satuan waktu)
- 2. Ketahanan terhadap organism pengganggu tanaman
- 3. Toleran terhadap cekaman lingkungan abiotik
- 4. Umur yang genjah
- 5. Kualitas atau mutu hasil tinggi
- 6. Memiliki daya simpan yang lebih lama
- 7. Bentuk tanaman sesuai diinginkan
- 8. Keunikan organ vegetative dan generative berdasarkan karakter kualitatif (Syukur dkk., 2015).

Berikut adalah deskripsi varietas yang diguanakan dalam penelitian ini.

Tabel 2.1 Deskripsi Varietas

Varietas/Ket	Nirmala	Pandu	Tymoti F1
Tipe pertumbuhan	Determinate	Determinate	Determinate
Rekomendasi Dataran dan iklim	Menengah - tinggi	daya adaptasi sangat luas terhadap berbagai jenis tanah dan cuaca/ iklim.	Rendah – menengah dan toleran terhadap iklim panas
Ketahanan penyakit	Tahan penyakit layu	Tahan terhadap penyakit layu Bakteri dan layu fusarium	tahan Geminivirus dan layu bakteri. Toleran busuk ujung buah
Umur panen	85-90 hst	75-80 hst	55-60 hst
Deskripsi buah	Bentuk lonjong, dengan pundak lebih lebar. Kulit tebal, keras dan cupat buah kecil.	Oval dan keras. Ukuran buah sedang dengan warna buah merah menyala	Bulat
Bobot per buah (g)	±160 gr	75 – 100 gr	40 - 50 gr
Potensi hasil	5 – 6 kg/tanaman	3 – 4 kg/tanaman	3 - 3,5 kg/tanaman 50 - 60 ton/ha

Menurut hasil penelitian Wijayani dan Widodo (2005), Pada usaha peningkatan kualitas beberapa varietas tomat didapatkan hasil bahwa varietas Bonanza dan Kaliurang 206 lebih unggul dibandingkan varietas Intan pada hasil bobot buah dan jumlah buah. Usaha untuk meningkatkan hasil selain harus terpenuhinya syarat-syarat kultur teknis yang baik, juga harus dilakukan melalui usaha pemuliaan tanaman. Setiap program pemuliaan tanaman bertujuan untuk mendapatkan varietas baru dengan sifat-sifat keturunan yang lebih baik dari yang sudah diusahakan. Varietas unggul menjadi salah satu komponen yang tidak dapat diabaikan, karena menjadi penjamin keberhasilan usahatani hortikultura. Penentu jaminan tersebut dibuktikan oleh peran yang nyata dalam peningkatan produksi, baik dalam jumlah maupun mutu hasil tanaman (Purwati, 2009).

2.5 Hipotesis

- 1. Terdapat interaksi antara konsentrasi BA dan varietas terhadap hasil tomat.
- 2. Respon varietas berbeda terhadap hasil tomat.
- 3. Konsentrasi BA memiliki pengaruh yang berbeda terhadap hasil tomat.

BAB 3. METODE PENELITIAN

3.1 Tempat dan Waktu

Percobaan ini dilaksanakan di Agroteknopark Universitas Jember Jl. Kalimantan 37, Desa Sumbersari, Kecamatan Sumbersari, Kabupaten Jember dengan ketinggian tempat ±101 m dpl. Pelaksanaan penelitian berlangsung selama empat bulan yang dimulai pada bulan Juni sampai dengan Oktober 2016.

3.2 Bahan dan Alat

3.2.1 Bahan

Bahan yang digunakan yaitu bibit tanaman tomat varietas Nirmala, Pandu, Timoty, sitokinin sintetis BA (*benziladenin*), tanah, polybag 40 x 40 cm, pupuk organik, Urea, pupuk Ponska.

3.2.2 Alat

Alat yang digunakan antara lain timbangan analitik, meteran, timba, kamera, alat tulis, alat semprot/sprayer.

3.3 Rancangan Percobaan

Percobaan ini menggunakan Rancangan Acak Lengkap Faktorial. Terdiri dari dua faktor yaitu varietas dan konsentrasi BA dengan 12 kombinasi perlakuan dan 3 ulangan.

Faktor 1 adalah varietas tanaman tomat yang digunakan

1. V1: varietas Nirmala

2. V2: varietas Pandu

3. V3 : varietas Timoty F1

Faktor 2 merupakan konsentrasi BA yang terdiri dari 5 taraf

1. S0: konsentrasi BA 0 ppm (kontrol)

2. S1: konsentrasi BA 50 ppm

3. S2: konsentrasi BA 100 ppm

4. S3: konsentrasi BA 150 ppm

5. S4: konsentrasi BA 200 ppm

Berikut merupakan denah penelitian:

V2S0	V3S4	V3S0
V1S3	V2S1	V1S3
V3S1	V3S1	V3S4
V1S2	V1S1	V1S4
V2S3	V2S4	V3S2
V2S1	V3S3	V1S2
V3S2	V2S0	V1S0
V2S4	V2S2	V3S0
V3S3	V3S3	V1S0
V1S4	S1V1	V2S2
V2S2	V1S3	V2S0
V2S3	V1S2	V3S1
V3S0	V2S3	V1S4
V1S0	V3S2	V1S1
V3S4	V2S1	V2S4

3.4 Tahapan Pelaksanaan

1. Pembibitan

Biji yang telah mendapatkan perlakuan fungisida disemaikan dalam media sosis. Media penyemaian berupa tanah, pasir, dan pupuk kandang (perbandingan 1:1:1). Setiap media sosis diisi dengan satu benih tomat. Persemaian dinaungi agar tidak terkena sinar matahari langsung dan air hujan. penyiraman dilakukan satu kali sehari pada waktu pagi atau sore hari.

2. Persiapan Media

Media yang digunakan dalam percobaan ini adalah tanah, pasir dan bahan organik. Persiapan media dilakukan dengan cara mencampur media dengan perbandingan 1:1:1. Media diaduk hingga rata dan dibasahi sampai kapasitas lapang kemudian dimasukkan kedalam polybag.

3. Penanaman

Bibit tomat dipindahkan ke polybag pada saat berumur 30 hari dipersemaian. Bibit di masukkan sebatas leher batang, kemudian ditutup dengan media tanam serta sedikit ditekan agar tanaman bisa tegak.

4. Pemasangan turus (lanjaran)

Tiga minggu setelah tanam, tiap batang tomat diberi turus supaya tanaman tidak roboh. Turus ditancapkan tegak pada tanah dekat batang tanaman tomat sedalam 10 cm dan tinggi 2 m.

5. Pemupukan

Pupuk dasar yang diberikan adalah pupuk organik yang telah dicampur dalam media dan Urea 10 gr/tanaman (200 kg/ha). Phonska 24 gr/tanaman (500 kg/ha) sebagai pupuk susulan yang diberikan 2 kali, yaitu pada 10 HST dan 35 HST.

6. Pemeliharaan tanaman

(a) Penyiraman, dilakukan pada pagi dan sore hari; (b) Penyulaman dilakukan 1 minggu setelah pindah tanam pada tanaman yang mati atau pertumbuhannya kurang baik; dan (c) Penyiangan dilakukan dengan membersihkan gulma yang ada disekitar pertanaman dengan cara mencabut gulma.

7. Pengendalian hama dan penyakit

Pengendalian hama menggunakan insectisida Avidor 25 WP Bahan aktif Imidakloprid 25% dengan konsentrasi 2 g/l air. Pengendalian fungisida menggunakan Manzate 82 WP bahan aktif Mancozeb 83% yaitu 2 g/l air. Penyemprotan dilakukan pada tanaman terserang hama dan penyakit.

8. Pemberian perlakuan BA

BA diaplikasikan pada tanaman tomat sebelum pembungaan yaitu pada 20 HST sebanyak 20 ml/tanaman dan 35 HST sebanyak 30 ml/tanaman. Pemberian BA dilakukan dua kali dengan cara disemprotkan pada seluruh tanaman tomat dengan konsentrasi yang sudah ditentukan. Penyemprotan dilakukan dengan memberi penghalang antar perlakuan tanaman untuk menghindari tercampurnya konsentrasi BA pada perlakuan lain.

9. Panen

Buah tomat dipanen pertama pada waktu berumur 3 bulan setelah tanam. Panen dilakukan beberapa kali, yaitu antara 9 kali pemetikan buah dengan selang 2-3 hari sekali. Diusahakan buah yang dipetik tidak jatuh atau terluka.. Ciri-ciri tanaman tomat yang siap panen yaitu kulit buah berubah, dari warna hijau menjadi kekuning-kuningan, bagian tepi daun tua telah mengering, dan batang tanaman menguning atau mengering. Buah tomat dipanen pada pagi hari dalam keadaan cuaca cerah. Tanaman tomat di petik dengan cara memutar buah dengan hati-hati sampai tangkai buah terputus.

3.5 Variabel Percobaan

- 1. Tinggi tanaman, diukur dari pangkal batang sampai ujung titik pertumbuhan tanaman tomat dengan meteran dalam satuan cm pada 7, 14, 21, 28 HST.
- 2. Jumlah cabang produktif per tanaman.
- 3. Umur berbunga, dilakukan ketika tanaman menghasilkan bunga pertama kali.
- 4. Umur panen, dilakukan ketika buah panen pertama kali
- 5. Jumlah buah perdompol, menghitung jumlah buah perdompol dalam setiap tanam.
- 6. Persentase kerontokan buah 100%.
- 7. Jumlah buah panen pertanaman, jumlah buah dihitung pada saat panen dalam setiap tanaman.
- 8. Bobot buah pertanaman, menimbang berat hasil panen tomat pertanaman.
- 9. Bobot rata-rata buah (g)
- 10. Panjang dan diameter buah, dihitung nilai rata-rata jumlah total panjang dan diameter buah pertanaman.

3.6 Analisis Data

Data hasil percobaan dianalisis dengan menggunakan analisis ragam (ANOVA). Jika F hitung berbeda nyata maka dilakukan Uji Jarak Berganda Duncan pada taraf 5%.

BAB 5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilaksanakan dapat disimpulkan bahwa:

- 1. Tidak terdapat interaksi yang nyata antara perlakuan kombinasi varietas tomat dengan konsentrasi BA pada semua parameter pengamatan.
- 2. Varietas Tymoti menghasilkan tinggi tanaman dan jumlah buah panen tertinggi serta umur berbunga tercepat. Sedangkan varietas Pandu menghasilkan berat rata-rata per buah, panjang dan diameter buah tertinggi.
- 3. Konsentrasi BA100 ppm menghasilkan jumlah dan berat buah tertinggi serta kerontokan buah terendah.

5.2 Saran

Berdasarkan penelitian yang telah dilaksanakan, aplikasi BA dengan konsentrasi 100 ppm dapat mengurangi kerontokan buah pada tomat. Penggunaan varietas Tymoti disarankan karena memiliki jumlah buah yang lebih banyak dan umur panen yang lebih cepat. Kendala dalam penelitian ini salah satunya Serangan hama dan penyakit tanaman tomat sehingga diperlukan pengendalian yang tepat. Selain itu juga perlu dilakukan pemantauan dan perawatan yang intensif agar pertumbuhan dan hasil tomat dapat optimal.

DAFTAR PUSTAKA

- Cahyono B. 2008. *Tomat, Usaha Tani dan Penanganan Pascapanen*. Yogyakarta: Kanisius.
- Danusastro. 1989. Zat Pengatur Tumbuh. Jakarta: Gramedia.
- Direktorat Jendral Hortikultura. 2014. Stastistik Produksi Hortikultura Tahun 2013. Direktorat Jendral Hortiultura, Kementrian Pertanian.
- Hayata, Y., Y. Niimi dan N. Iwasaki. 1995. Synthetic Cytokinin-1-(2-Chloro-4pyridil)-3-Phenylurea (CPPU). Promotes Fruit Set and Induces Parthenocarpy in Watermelon. *J. Amer. Soc. Horti. Sci.*, 120 (6): 997-1000.
- Hidayati N., dan R. Dermawan. 2012. Tomat Unggul. Jakarta: Penebar Swadaya.
- Karjadi. A. K., dan Buchory A. 2008. Pengaruh Auksin dan Sitokinin terhadap Pertumbuhan dan Perkembangan Jaringan Meristem Kentang Kultivar Granola. *Hortikultura*, 18 (4): 380-384.
- Kartapradja, R. dan D. Djuariah, 1992. Pengaruh Tingkat Kematangan Buah Tomat Terhadap Daya Kecambah, Pertumbuhan Dan Hasil Tomat. *Buletin Penelitian Hortikultura*, 24 (2): 22-30.
- Kusumo. 1984. Zat Pengatur Tumbuh. Jakarta: Yasaguna.
- Martha H. L.A., E. E. Nurlaelih, dan T. Wardiyati. 2011. Aplikasi Zat Pengatur Tumbuh Dalam Induksi Pembungaan Anggrek Bulan (*Phalaenopsis* sp.). *Buana Sains*, 11 (2): 119-126.
- Pracaya. 2009. Bertanam Tomat. Yogyakarta: Kanisius.
- Purwati, E. dan Ali Asga, 1990. Seleksi Varietas Tomat Untuk Perbaikan Kualitas. *Buletin Penelitian Hortikultura*, 20 (1): 1-9.
- Purwati E. 2009. Daya Hasil Tomat Hibrida (F1) di Dataran Medium. *Hortikultura*, 19 (2): 125-130.
- Pusat Data dan Informasi Pertanian. 2014. *Outlook Komoditi Tomat*. Pusat Data dan Informasi Pertanian Sekertariat Jendral Kementerian Pertanian.
- Puspitasari Y. D., N. Aini, dan Koesriharti. 2013. Respon Dua Varietas Tomat (*Lycopersicon esculentum* Mill.) Terhadap Aplikasi Zat Pengatur Tumbuh Naphthalene Acetic Acid (NAA). *Produksi Tanaman*, 2 (7): 566-575.

- Rachmawati, D. D. 2008. Kajian Pemakaian Mulsa dan Konsentrasi Benzyl Amino Purine (BAP) Terhadap Hasil dan Kualitas Cabai Merah Besar (*Capsicum annuum* L.). *Tesis*.
- Rahmayani E., Rizki, dan Novi. 2013. Pengaruh Beberapa Konsentrasi Sitokinin Terhadap Pembentukan Buah Partenokarpi Pada Tanaman Cabai (*Capsicum annum* L.). *MIPA*, 1 (1): 1-6.
- Salisbury F. B., dan C. W. Ross. 1992. Fisiologi Tumbuhan, Jilid Tiga: Perkembangan Tumbuhan dan Fisiologi Lingkungan. Bandung: ITB.
- Silva J. A. T. 2012. Is BA (6–Benzyladenine) BAP (6-Benzylaminopurine). *The Asian and Australasian Journal of Plant Science and Biotechnologi*, 6 (1): 121-124.
- Sumardi, Kasli, A. Syarif, N. Akhir, M. Kasim, dan S. Anwar. 2008. Aplikasi Zat Pengatur Tumbuh NAA Dan BAP pada Tanaman Padi Sawah yang Ditanam Dengan Metode SRI (The System Of Rice Intensification). *Jerami*, 1 (1): 121-127.
- Syukur M., H. E. Saputra, dan R. Hermanto. 2015. *Bertanam Tomat di Musim Hujan*. Jakarta: Niaga Swadaya.
- Tim Bina Karya Tani. 2013. *Pedoman Bertanam Tomat*. Bandung: CV. Yrama Widya.
- Wahyudi. 2012. Bertanam Tomat di Dalam Pot dan Kebun Mini. Jakarta: Agromedia.
- Wijayani A., dan W. Widodo. 2005. Usaha Meningkatkan Kualitas Beberapa Varietas Tomat Dengan Sistem Budidaya Hidroponik. *Ilmu Pertanian*, 12 (1): 77-83.
- Wilkins M.B. 1989. *Physiology Of plant Growth and Development 1*. Jakarta: Bina Aksara.
- Wiryanta B. T. W. 2002. Bertanam Tomat. Jakarta: Agromedia Pustaka.

Lampiran 1. Analisis Data Penelitian

Lampiran 1a. Tinggi tanaman

Davidalisaan		Ulangan		Turnelale	Rata
Perlakuan	UL 1	UL 2	UL 3	Jumlah	rata
V1S0	88	60	84	232	77.33
V1S1	77	69	80	226	75.33
V1S2	67	83	72	222	74.00
V1S3	62	71	65	198	66.00
V1S4	78	77	74	229	76.33
V2S0	60	72	53	185	61.67
V2S1	82	76	62	220	73.33
V2S2	65	80	71	216	72.00
V2S3	63	72	67	202	67.33
V2S4	74	67	60	201	67.00
V3S0	80	76	76	232	77.33
V3S1	80	72	72	224	74.67
V3S2	77	75	62	214	71.33
V3S3	77	81	82	240	80.00
V3S4	80	71	75	226	75.33
Total	1110	1102	1055	3267	72.6

CV = 10%

Analisis ragam Tinggi tanaman

SK	DB	JK	KT	F-hit	5%	1%	
Perlakuan	14	1078.13					
Varietas (V)	2	450.53	225.27	4.23	3.32	5.39	*
Sitokinin (S)	4	53.69	13.42	0.25	2.69	4.02	ns
VXS	8	573.91	71.74	1.35	2.27	3.17	ns
Galat	30	1596.67	53.22				
total	44	2674.80	60.79				

Uji Duncan Faktor Tunggal V (Varietas)

Varietas		V3	V1	V2	N0TASI
		75.73	73.80	68.27	NUIASI
V3	75.73	0			a
V1	73.80	1.93	0		a
V2	68.27	7.47	5.53	0	b

Sy = 1.88

SSR 5% = 5%; db galat, p(jarak=2) = 2,89; 3.04

UJD = 5,44 ; 5.73

Lampiran 1b. Jumlah Cabang Produktif

Davidsky		Ulangan		Turnelah	Rata
Perlakuan	UL 1	UL 2	UL 3	Jumlah	rata
V1S0	3	2	5	10	3.33
V1S1	2	3	3	8	2.67
V1S2	2	3	3	8	2.67
V1S3	2	3	3	8	2.67
V1S4	2	2	3	7	2.33
V2S0	2	2	2	6	2.00
V2S1	2	3	2	7	2.33
V2S2	2	3	3	8	2.67
V2S3	2	2	3	7	2.33
V2S4	2	3	3	8	2.67
V3S0	3	3	4	10	3.33
V3S1	3	2	4	9	3.00
V3S2	3	3	5	11	3.67
V3S3	3	3	2	8	2.67
V3S4	3	2	3	8	2.67
Total	36	39	48	123	2.73

CV= 27%

Analisis ragam Jumlah Cabang Produktif

SK	DB	JK	KT	F-hit	5%	1%	
Perlakuan	14	8.13					
Varietas (V)	2	3.33	1.67	3	3.32	5.39	ns
Sitokinin (S)	4	1.47	0.37	0.66	2.69	4.02	ns
VXS	8	3.33	0.42	0.75	2.27	3.17	ns
Galat	30	16.67	0.56				
total	44	24.80	0.56				

Lampiran 1c. Umur Berbunga

Dawlalanan		Ulangan		Turnelah	Rata
Perlakuan	UL 1	UL 2	UL 3	Jumlah	rata
V1S0	23	32	23	78	26.00
V1S1	23	22	21	66	22.00
V1S2	27	22	23	72	24.00
V1S3	32	22	20	74	24.67
V1S4	23	28	28	79	26.33
V2S0	28	28	33	89	29.67
V2S1	28	28	28	84	28.00
V2S2	28	28	28	84	28.00
V2S3	34	28	26	88	29.33
V2S4	27	28	28	83	27.67
V3S0	20	23	28	71	23.67
V3S1	20	20	23	63	21.00
V3S2	28	20	23	71	23.67
V3S3	20	20	20	60	20.00
V3S4	20	20	22	62	20.67
Total	381	369	374	1124	24.98

CV= 13%

Analisis ragam umur berbunga

SK	D	В	JK	KT	F-hit	5%	1%	- //
Perlakuan	1	4	425.64					
Varietas (V)		2	343.24	171.62	17.43	3.32	5.39	**
Sitokinin (S)		4	36.31	9.08	0.92	2.69	4.02	ns
VXS		8	46.09	5.76	0.59	2.27	3.17	ns
Galat	3	0	295.33	9.84		AL		
total	4	4	720.98	16.39			//	

Uji Duncan Faktor Tunggal V (Varietas)

Varietas		V3	V1	V2	NOTASI
		21.8	24.6	28.5	NUTASI
V3	21.8	0			a
V1	24.6	2.8	0		b
V2	28.5	6.7	3.9	0	c

Sy = 0.81

SSR 5% = 5%; db galat, p(jarak=2) = 2,89; 3.04

UJD = 2,34 ; 2.46

Lampiran 1d. Umur Panen

Danialana		Ulangan		Torrelah	Rata
Perlakuan	UL 1	UL 2	UL 3	Jumlah	rata
V1S0	74	66	70	210	70.00
V1S1	66	70	70	206	68.67
V1S2	66	74	74	214	71.33
V1S3	66	74	70	210	70.00
V1S4	66	70	70	206	68.67
V2S0	77	74	83	234	78.00
V2S1	74	70	74	218	72.67
V2S2	77	83	74	234	78.00
V2S3	77	74	70	221	73.67
V2S4	77	80	74	231	77.00
V3S0	66	66	66	198	66.00
V3S1	66	66	70	202	67.33
V3S2	70	66	66	202	67.33
V3S3	70	70	70	210	70.00
V3S4	66	70	66	202	67.33
Total	1058	1073	1067	3198	71.07

CV= 4%

Analisis ragam umur panen

SK	DB	JK	KT	F-hit	5%	1%	
Perlakuan	14	669.47	47.82				
Varietas (V)	2	552.53	276.27	27.87	3.32	5.39	**
Sitokinin (S)	4	33.47	8.37	0.84	2.69	4.02	ns
VXS	8	83.47	10.43	1.05	2.27	3.17	ns
Galat	30	297.33	9.91				
total	44	966.80	21.97				

Uji Duncan Faktor Tunggal V (Varietas)

	Varietas	V3 68	V1 70	V2	N0TASI
V3	68	0	70	70	a
V1	70	2	0		a
V2	76	8	6	0	b

Sy = 0.81

SSR 5% = 5%; db galat, p(jarak=2) = 2,89; 3.04

UJD = 2,35; 2.47

Lampiran 1e. Jumlah Buah Per Dompol

Davidsky		Ulangan		Turnelale	Rata
Perlakuan	UL 1	UL 2	UL 3	Jumlah	rata
V1S0	4.00	4.50	4.80	13.30	4.43
V1S1	3.75	3.00	6.00	12.75	4.25
V1S2	3.50	4.20	5.57	13.27	4.42
V1S3	5.00	4.00	4.40	13.40	4.47
V1S4	5.00	5.75	6.00	16.75	5.58
V2S0	3.30	6.50	4.00	13.8	4.60
V2S1	2.75	6.50	4.33	13.58	4.53
V2S2	6.00	4.75	5.00	15.75	5.25
V2S3	8.00	5.50	4.50	18.00	6.00
V2S4	5.67	3.25	3.00	11.92	3.97
V3S0	2.57	2.83	2.80	8.20	2.73
V3S1	5.40	3.42	5.67	14.49	4.83
V3S2	7.80	4.40	3.28	15.48	5.16
V3S3	4.50	5.00	3.58	13.08	4.36
V3S4	8.25	3.00	4.10	15.35	5.12
Total	75.49	66.60	67.03	209.12	4.65

CV= 31%

Analisis ragam Jumlah Buah Per Dompol

SK	DB	JK	KT	F-hit	5%	1%	
Perlakuan	14	24.27	1.73				
Varietas (V)	2	1.39	0.70	0.33	3.32	5.39	ns
Sitokinin (S)	4	6.96	1.74	0.82	2.69	4.02	ns
VXS	8	15.92	1.99	0.94	2.27	3.17	ns
Galat	30	63.45	2.12				
total	44	87.72	1.99				

Lampiran 1f. Persentase Kerontokan Buah (%)

Perlakuan		Ulangan		Jumlah	Rata
Periakuan	UL 1	UL 2	UL 3	Juillan	rata
V1S0	20.00	35.72	39.13	94.85	31.62
V1S1	40.00	42.86	4.00	86.86	28.95
V1S2	40.00	25.00	0.00	65.00	21.67
V1S3	25.00	0.00	25.00	50.00	16.67
V1S4	20.00	15.00	15.00	50.00	16.67
V2S0	28.57	32.00	26.60	87.17	29.06
V2S1	38.89	38.46	35.00	112.35	37.45
V2S2	10.00	13.64	0.00	23.64	7.88
V2S3	0.00	10.00	0.00	10.00	3.33
V2S4	20.00	43.48	29.41	92.89	30.96
V3S0	43.75	39.30	48.15	131.20	43.73
V3S1	15.63	31.43	5.60	52.66	17.55
V3S2	0.00	31.25	36.11	67.36	22.45
V3S3	8.58	0.00	28.58	37.16	12.39
V3S4	7.00	33.33	20.00	60.33	20.11
Total	317.42	391.47	312.58	1021.47	22.70

Trasformasi Arc Sin $\sqrt{Persentase}$

Perlakuan		Ulangan		Jumlah	Rata
Periakuan	UL 1	UL 2	UL 3	Juman	rata
V1S0	26.56	36.69	38.70	101.95	33.98
V1S1	39.23	40.92	11.54	91.69	30.56
V1S2	39.23	30.00	17.46	86.69	28.90
V1S3	30.00	15.89	30.00	75.89	25.30
V1S4	26.56	22.79	22.79	72.14	24.05
V2S0	32.33	34.45	31.05	97.83	32.61
V2S1	38.59	38.35	36.27	113.21	37.74
V2S2	18.44	21.64	12.92	53.00	17.67
V2S3	10.47	18.44	12.25	41.16	13.72
V2S4	26.56	41.27	32.83	100.66	33.55
V3S0	41.38	38.82	43.91	124.11	41.37
V3S1	23.26	34.06	13.69	71.01	23.67
V3S2	15.89	33.96	36.93	86.78	28.93
V3S3	17.05	15.89	32.33	65.27	21.76
V3S4	15.34	35.24	26.56	77.14	25.71
Total	400.89	458.41	399.23	1258.53	27.97

CV= 30%

Analisis ragam persentase kerontokan buah

SK	DB	JK	KT	F-hit	5%	1%	
Perlakuan	14	5086.37	363.31				
Varietas (V)	2	20.98	10.49	0.07	3.32	5.39	ns
Sitokinin (S)	4	3104.39	776.10	4.86	2.69	4.02	**
VXS	8	1961.00	245.12	1.54	2.27	3.17	ns
Galat	30	4789.21	159.64				
total	44	9875.58	224.44		3		

Uji Duncan Faktor Tunggal S (Konsentrasi Sitokinin)

	Sitokinin	S3	S2	S4	S1	S 0	NOTASI
, k	SHOKIIIII	22.45	25.16	28.52	30.66	35.99	NUIASI
S 3	22.45	0					a
S2	25.16	2.71	0	7			a
S4	28.52	6.07	3.35	0			a
S1	30.66	8.20	5.49	2.14	0		ab
S 0	35.99	13.54	10.82	7.47	5.33	0	b

Sy = 2.75

SSR 5%= 5%; db galat, p(jarak=2) = 2,89; 3.04; 3.12; 3.20

UJD = 7.96; 8.38; 8.60; 8.82

Lampiran 1g. Jumlah Buah Panen

Dawlakwan		Ulangan		Turnelah	Rata
Perlakuan	UL 1	UL 2	UL 3	Jumlah	rata
V1S0	20	18	14	52	17.33
V1S1	15	16	24	55	18.33
V1S2	14	21	39	74	24.67
V1S3	15	24	22	61	20.33
V1S4	25	23	30	78	26.00
V2S0	10	13	11	34	11.33
V2S1	11	8	13	32	10.67
V2S2	18	19	20	57	19.00
V2S3	13	18	18	49	16.33
V2S4	17	13	12	42	14.00
V3S0	18	17	14	49	16.33
V3S1	27	24	34	85	28.33
V3S2	39	22	23	84	28.00
V3S3	32	30	25	87	29.00
V3S4	33	14	25	72	24.00
Total	307	280	324	911	20.24

CV= 28%

Analisis ragam Jumlah Buah Panen

SK	DB	JK	KT	F-hit	5%	1%
Perlakuan	14	1570.31	112.17			
Varietas (V)	2	912.31	456.16	14.08	3.32	5.39 **
Sitokinin (S)	4	413.64	103.41	3.19	2.69	4.02 *
VXS	8	244.36	30.54	0.94	2.27	3.17 ns
Galat	30	972.00	32.40			
total	44	2542.31	57.78			

Uji Duncan Faktor Tunggal V (Varietas)

	Varietas	V3	V1	V2	N0TASI	
varietas		25.13	21.33	14.27	NUIASI	
V3	25.13	0			a	
V1	21.33	3.80	0		a	
V2	14.27	10.86	7.06	0	b	

Sy = 1,47

SSR 5% = 5%; db galat, p(jarak=2) = 2,89; 3.04

UJD = 4.25 ; 4.47

Uji Duncan Faktor Tunggal S (Konsentrasi Sitokinin)

	Sitokinin	S2	S 3	S4	S 1	S0	N0TASI
	SILOKIIIII	23.89	21.89	21.33	19.11	15	NUIASI
S2	23.89	0					a
S3	21.89	2.00	0				a
S4	21.33	2.56	0.56	0			a
S1	19.11	4.78	2.78	2.22	0		ab
S 0	15	8.89	6.89	6.33	4.11	0	b

Sy = 1,90

SSR 5%= 5%; db galat, p(jarak=2) = 2,89; 3.04; 3.12; 3.20 UJD = 5,48; 7,77; 5,92; 6,70

Lampiran 1h. Berat Buah Panen

V1S0 617 673 549 1839 613 V1S1 591 671 667 1929 643 V1S2 924 877 765 2566 853 V1S3 656 877 540 2073 69 V1S4 1130 1136 1062 3328 110 V2S0 805 679 615 2099 699 V2S1 867 587 650 2104 70 V2S2 612 1119 1599 3330 111 V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 <td< th=""><th>Perlakuan</th><th></th><th>Ulangan</th><th></th><th>Jumlah</th><th colspan="2">Rata</th></td<>	Perlakuan		Ulangan		Jumlah	Rata	
V1S1 591 671 667 1929 643 V1S2 924 877 765 2566 853 V1S3 656 877 540 2073 693 V1S4 1130 1136 1062 3328 110 V2S0 805 679 615 2099 699 V2S1 867 587 650 2104 703 V2S2 612 1119 1599 3330 111 V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	Periakuan	UL 1	UL 2	UL 3	Juillali	rata	
V1S2 924 877 765 2566 853 V1S3 656 877 540 2073 693 V1S4 1130 1136 1062 3328 110 V2S0 805 679 615 2099 699 V2S1 867 587 650 2104 70 V2S2 612 1119 1599 3330 111 V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V1S0	617	673	549	1839	613.00	
V1S3 656 877 540 2073 69 V1S4 1130 1136 1062 3328 110 V2S0 805 679 615 2099 699 V2S1 867 587 650 2104 70 V2S2 612 1119 1599 3330 111 V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V1S1	591	671	667	1929	643.00	
V1S4 1130 1136 1062 3328 110 V2S0 805 679 615 2099 699 V2S1 867 587 650 2104 70 V2S2 612 1119 1599 3330 111 V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V1S2	924	877	765	2566	855.33	
V2S0 805 679 615 2099 699 V2S1 867 587 650 2104 70 V2S2 612 1119 1599 3330 111 V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V1S3	656	877	540	2073	691.00	
V2S1 867 587 650 2104 70 V2S2 612 1119 1599 3330 111 V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V1S4	1130	1136	1062	3328	1109.33	
V2S2 612 1119 1599 3330 111 V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V2S0	805	679	615	2099	699.67	
V2S3 1014 963 982 2959 986 V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V2S1	867	587	650	2104	701.33	
V2S4 850 756 850 2456 818 V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V2S2	612	1119	1599	3330	1110.00	
V3S0 917 532 437 1886 628 V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V2S3	1014	963	982	2959	986.33	
V3S1 813 920 1182 2915 97 V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V2S4	850	756	850	2456	818.67	
V3S2 984 1158 465 2607 869 V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V3S0	917	532	437	1886	628.67	
V3S3 1290 809 866 2965 988 V3S4 1001 472 640 2113 704	V3S1	813	920	1182	2915	971.67	
V3S4 1001 472 640 2113 704	V3S2	984	1158	465	2607	869.00	
	V3S3	1290	809	866	2965	988.33	
T-4-1 12071 12220 11970 27170 927	V3S4	1001	472	640	2113	704.33	
10tal 130/1 12229 11869 3/169 823	Total	13071	12229	11869	37169	825.98	

CV = 26%

Analisis ragam Berat Buah Panen

	D		VA /			- 1
SK	В	JK	KT	F-hit	5%	1%
Perlakuan	14	1257908.31	89850.59	/		
Varietas (V)	2	49973.64	12493.41	0.27	3.32	5.39
Sitokinin (S)	4	500266.09	125066.52	2.70	2.69	4.02
VXS	8	707668.58	88458.57	1.91	2.27	3.17
Galat	30	1388910.67	46297.02			
total	44	2646818.98	60154.98			

Uji Duncan Faktor Tunggal S (Konsentrasi Sitokinin)

	Sitokinin	S2	S 3	S4	S1	S 0	NOTASI
	SHOKIIIII	944.78	888.56	877.44	772.00	647.11	NOTASI
S2	944.78	0					a
S 3	888.56	56.22	0				a
S4	877.44	67.33	11.11	0			a
S 1	772.00	172.78	116.56	105.44	0		ab
S0	647.11	297.67	241.44	230.33	124.89	0	b

Sy = 71.72

SSR 5%= 5%; db galat, p(jarak=2) = 2,89; 3.04; 3.12; 3.20

UJD = 207.28; 218,04; 223,77; 229,51

Lampiran 1i. Berat Rata-rata buah

		Ulangan		Jumlah	Rata
Periakuan	UL 1	UL 2	UL 3	Juillali	rata
V1S0	30.85	37.38	39.21	107.44	35.81
V1S1	39.40	41.93	27.79	109.12	36.37
V1S2	46.85	41.76	35.71	124.32	41.44
V1S3	61.60	36.54	34.77	132.91	44.30
V1S4	45.20	49.39	35.40	129.99	43.33
V2S0	44.72	52.23	55.90	152.85	50.95
V2S1	78.82	73.37	50.00	202.19	67.40
V2S2	61.20	58.89	79.95	200.04	66.68
V2S3	77.75	68.73	68.75	215.23	71.74
V2S4	67.29	74.08	81.83	223.20	74.40
V3S0	36.68	31.29	31.21	99.18	33.06
V3S1	30.10	38.30	34.76	103.16	34.39
V3S2	33.08	36.77	37.65	107.50	35.83
V3S3	30.75	38.60	25.83	95.18	31.73
V3S4	30.33	29.35	25.60	85.28	28.43
Total	714.62	708.61	664.36	2087.59	46.39

CV = 17%

Analisis ragam Berat Rata-rata Buah

SK	DB	JK	KT	F-hit	5%	1%	
Perlakuan	14	10567.31	754.81				
Varietas (V)	2	9288.61	4644.31	73.75	3.32	5.39	**
Sitokinin (S)	4	521.03	130.26	2.07	2.69	4.02	ns
VXS	8	757.67	94.71	1.50	2.27	3.17	ns
Galat	30	1889.21	62.97				
total	44	12456.52	283.10				

Uji Duncan Faktor Tunggal V (Varietas)

Varietas		V2	V1	V3	NOTACI
		66.23	40.25	32.69	N0TASI
V2	66.23	0			a
V1	40.25	25.98	0		b
V3	32.69	33.55	7.57	0	С

 $\overline{\mathrm{Sy} = 2.05}$

SSR 5% = 5%; db galat, p(jarak=2) = 2,89; 3.04

UJD = 5.92 ; 6,23

Lampiran 1j. Panjang Buah

Doulolmon		Ulangan		Turnelak	Rata
Perlakuan	UL 1	UL 2	UL 3	Jumlah	rata
V1S0	5.23	4.59	4.48	14.30	4.77
V1S1	4.46	4.00	4.13	12.59	4.20
V1S2	3.94	4.32	4.37	12.63	4.21
V1S3	4.90	4.48	5.28	14.66	4.89
V1S4	5.40	4.46	5.48	15.34	5.11
V2S0	4.55	4.84	5.95	15.34	5.11
V2S1	5.85	4.24	4.73	14.82	4.94
V2S2	4.75	4.83	5.60	15.18	5.06
V2S3	4.20	4.72	5.17	14.09	4.70
V2S4	5.10	5.40	5.63	16.13	5.38
V3S0	4.25	3.82	3.74	11.81	3.94
V3S1	4.05	4.27	3.83	12.15	4.05
V3S2	4.19	3.97	4.15	12.31	4.10
V3S3	3.64	4.17	3.82	11.63	3.88
V3S4	3.79	3.87	3.77	11.43	3.81
Total	68.30	65.98	70.13	204.41	4.54

CV= 9%

Analisis ragam Panjang Buah

SK	DB	JK	KT	F-hit	5%	1%	
Perlakuan	14	11.93	0.85	7 /			
Varietas (V)	2	8.97	4.49	24.70	3.32	5.39	**
Sitokinin (S)	4	0.78	0.19	1.07	2.69	4.02	ns
VXS	8	2.19	0.27	1.51	2.27	3.17	ns
Galat	30	5.45	0.18				
total	44	17.38	0.40				

Uji Duncan Faktor Tunggal V (Varietas)

Varietas		V2	V1	V3	NOTASI
	v arietas	5.04	4.63	3.96	NUIASI
V2	5.04	0			a
V1	4.63	0.41	0		b
V3	3.96	1.08	3.55	0	c

Sy = 0.11

SSR 5% = 5%; db galat, p(jarak=2) = 2,89; 3.04

UJD = 0.32 ; 0.33

Lampiran 1k. Diameter Buah

Doulolmon		Ulangan		Turnelale	Rata
Perlakuan	UL 1	UL 2	UL 3	Jumlah	rata
V1S0	3.69	3.74	4.00	11.43	3.81
V1S1	3.28	3.30	3.60	10.18	3.39
V1S2	3.32	3.60	3.88	10.80	3.60
V1S3	4.58	4.20	3.60	12.38	4.13
V1S4	4.93	3.92	4.35	13.20	4.40
V2S0	4.10	4.28	5.20	13.58	4.53
V2S1	5.73	4.01	4.48	14.22	4.74
V2S2	4.67	5.13	5.14	14.94	4.98
V2S3	4.35	4.55	5.10	14.00	4.67
V2S4	5.10	5.32	5.87	16.29	5.43
V3S0	3.60	3.60	3.76	10.96	3.65
V3S1	3.58	4.10	4.10	11.78	3.93
V3S2	3.88	3.87	4.34	12.09	4.03
V3S3	3.69	4.36	3.37	11.42	3.81
V3S4	3.89	3.38	4.22	11.49	3.83
Total	62.39	61.36	65.01	188.76	4.19

CV= 10%

Analisis ragam Diameter Buah

SK	DB	JK	KT	F-hit	5%	1%	
Perlakuan	14	13.92	0.99				
Varietas (V)	2	10.22	5.11	27.75	3.32	5.39	**
Sitokinin (S)	4	1.79	0.45	2.42	2.69	4.02	ns
VXS	8	1.91	0.24	1.29	2.27	3.17	ns
Galat	30	5.53	0.18				
total	44	19.44	0.44			- /	

Uji Duncan Faktor Tunggal V (Varietas)

Varietas		V2	V1	V3	NOTASI
		4.87	3.87	3.85	NULASI
V2	4.87	0			a
V1	3.87	1.00	0		b
V3	3.85	1.02	0.02	0	b

Sy = 0.11

SSR 5% = 5%; db galat, p(jarak=2) = 2,89; 3.04

UJD = 0.32 ; 0.34

Lampiran 2. Dokumentasi penelitian

Lahan percobaan

Penanaman benih sekaligus pengukuran tinggi tanman 0 HST

Aplikasi BA

Panen buah tomat

Proses pengukuran diameter dan panjang buah tomat

Hasil panen buah tomat varietas Nirmala

Hasil panen buah tomat varietas Pandu

Hasil panen buah tomat varietas Tymoti