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Abstract— Continuous prediction of dynamic joint angle 

from surface electromyography (sEMG) signal is one of the 

most important applications in rehabilitation area for stroke 

survivors as these can directly reflect the user motor intention. 

In this study, new shoulder joint angle prediction method in 

real-time based on the biosignal: sEMG is proposed. Firstly, 

sEMG to muscle activation model is built up to extract the user 

intention from contracted muscles and then feed into the 

extreme learning machine (ELM) to estimate the angle in real-

time continuously. The estimated joint angle is then compare 

with the webcam captured joint angle to analyze the 

effectiveness of the proposed method. The result reveals that 

correlation coefficient between actual angle and estimated 

angle is as high as 0.96 in offline and 0.93 in online mode. In 

addition, the processing time for the estimation is less than 

32ms in both cases which is within the semblance of human 

natural movements. Therefore, the proposed method is able to 

predict the user intended movement very well and naturally 

and hence, it is suitable for real-time applications.   

I. INTRODUCTION 

Consequences of neuron impairment due to stroke, 

traumatic brain injury (TBI) or spinal cord injury (SCI) lead 

to severe physical disability either in one side of the body: 

Hemiplegia or both side of the body: Quadriplegia depends 

on which part of the brain is damaged. As a result, patients 

find it difficult to perform daily activities independently and 

this lead to low self-esteem and depression [1]. To recover 

from such impairment, rehabilitation is conducted in several 

phases such as in hospital, out-patient therapy and eventually 

in home-based program. In the context of rehabilitation, 

sEMG is a very useful and important tool to extract the 

intention of movement because the sEMG signal is able to 

indicate the intention of movement even before the actual 

movement has occurred [2]. Therefore, a lot of researchers 

have been making use of such benefit to develop sEMG 

based rehabilitation systems especially to predict the 

intention of movement. As far as prediction of movement by 

means of sEMG is concerned, various prediction models 

have been proposed [3]. Among the prediction methods, joint 

angle prediction is the most direct estimated output to drive 

the rehabilitation system or prosthesis. Therefore researchers 
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are trying to predict the joint angles as accurate as possible so 

that rehabilitation system or prosthesis will mimic the natural 

movement of human arm. Such work can be found in Shrirao 

et al., [4] where sEMG signals were trained in several neural 

networks to predict the index finger joint angle and their 

results were reported with RMS errors ranged from 

0.085±0.036 to 0.163±0.054 for both extension and flexion 

movements. In the study of Ngeo et al., [5], finger joint 

angles are estimation model were developed with 

parameterized electromechanical delay and artificial neural 

network for regression with the correlation as high as 

0.85±0.07 for offline mode. In the work of Suncheol and K. 

Jung [6], shoulder and elbow joint angles were estimated 

from feedforward neural network with joint angular 

velocities and achieved less than 0.15 for normalized root 

mean square error while greater than 0.9 for correlation 

coefficient. Another prediction method of joint angles was 

proposed by Pan et.al.,[7]. In their method, the continuous 

joint angle prediction was done by linear discriminant 

analysis (LDA) classifier with 14 state-space models and 

average estimation performance of the joint angles was 

reported 0.843. However, there are very limited studies for 

online prediction with high accuracy between actual and 

estimated joint angle.   

Therefore, in this paper, new prediction method of joint 

angle through sEMG signals alone is proposed for both 

offline and online prediction. Shoulder joint is chosen for 

prediction as this is the most important joint to rehabilitate in 

the context of upper limb. In proposed method, random 

movements of shoulder joint angle in abduction and 

adduction are mapped based on sEMG signals by well known 

machine learning regression technique with muscle activation 

model and performance is evaluated. The rest of the paper is 

organized as followed. Section II details the proposed method 

for prediction including hardware set-up, data collection and 

processing, and finally details the machine learning algorithm 

that employ in the proposed method. In Section III, 

experimental result and discussion are explained followed by 

conclusion and future work is described in Section IV.  

II. METHODS    

A. Hardware Set-up 

In this paper, sEMG signals are utilized as a main input 

for the estimation of joint angle. The signals are extracted via 

FlexComp Infiniti data acquisition device from Thought 
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Technology [8] with . Three pre-amplified sEMG sensors and 

electrodes are attached to three extrinsic muscles from upper 

arm namely anterior deltoid (AD), posterior deltoid (PD) and 

upper trapezius (UT) as shown in Fig.1 (red dot). These 

muscles are chosen as they are the most contributed muscles 

during shoulder articulation according to our previous study 

[9]. Two color markers are attached to shoulder joint and 

wrist joint to calculate the target joint angle via webcam as 

shown in Fig. 1 (yellow square). The signal processing is 

performed in Matlab 2012b platform and joint angle 

measurement is recorded with Adobe Flash Professional 

CS6. The recorded data are sent to Matlab for processing in 

real-time through user datagram protocol (UDP). Detail 

procedures of data collection and processing are explained in 

the following section.   

B. Data Collection  

One healthy able-bodied subject with the age of 31 who 

gave informed consent to participate in the experiment was 

recruited for this study. Data were collected at one of the 

laboratory rooms in Faculty of Engineering and Information 

Technology, University of Technology Sydney. The subject 

was requested to sit in front of the desktop that attached to 

the webcam at comfortable height with shoulder 0˚ 

abduction, 0˚ extension and 0˚ external rotation. After the 

hardware preparations were completed, both sEMG signals 

and joint angles were collected. There were two sessions for 

data collection. In the first session, the data were collected for 

training and testing in offline mode. After that, the collected 

data were fed into extreme learning machine (ELM) for angle 

estimation. In second session, online estimation was 

performed to estimate the shoulder joint angle in 

abduction/adduction based on the trained result. During all 

sessions, subject was asked to move his shoulder joint from 

0˚ to 170˚ randomly in abduction/adduction for 10 cycles for 

10 trials. The subject was allowed to rest anytime between 

the trials. Among the recorded data, 8 trials were used for 

training in ELM and 2 trials for testing.  

C. Data Processing 

The overall block diagram of proposed prediction system 

is depicted in Fig. 2. The raw signals from data acquisition 

device are first preprocess (block #1) by band-pass filtering 

(20Hz – 500Hz) to remove both low and high frequency 

noise followed by rectification and normalization by 

maximum voluntary contraction (MVC). The normalized 

data are then down samples to match the joint angle data. The 

processed data are send to muscle activation model with 

EMD (block #2) to convert from EMG to muscle activation 

level. There is an EMD between EMG signals and exerted 

tension in the muscles in which the values are generally 

between 30ms and 100ms. Therefore, EMD cannot be 

ignored in prediction process to estimate the muscle 

activation at the current time. The neural activation values in 

terms of EMD can be approximated by (1): 

nk t =  emgk t − d − 
1

nk t − 1 − 
2

nk (t − 2)      (1)       

where emgk (t - d) is processed sEMG signal of muscle k at 

time t, d is electromechanical delay and , 1, and 2 are the 

recursive coefficients with constraint as follows: 

1 = 1 + 2                                 (2) 

2 = 1 . 2                                                          (3) 

|1| < 1, |2| <1                                (4) 

 - 1 - 2 = 1                                (5) 

Then the muscle activation ai is given in (6): 

𝑎𝑖 𝑡 =  
 𝑒𝐴𝑖.𝑛 𝑖(𝑡)−1 

 𝑒𝐴𝑖−1 
        (6) 

where ai(t) is muscle activation for muscle “i” at time “t” and 

the Ai coefficient is a shaping factor specific to muscle “i”. 

The example of signal processing for 2 cycles of shoulder 

abduction/adduction is shown in Fig. 3. The resultant data are 

then feed into block #3, regression ELM for should joint 

angle prediction.  

D. Proposed Joint Angle Prediction Method  

In this paper, shoulder joint angle prediction is proposed 

in both offline and online (real-time) by making use of sEMG 

signals. The signal is first preprocessed: rectified, normalized 

and filtered, and then fed into muscle activation model which 

converts neural activities into muscle activities by 

considering electromechanical delay (EMD). The parameters 

of the EMD are optimized using the Optimization Toolbox 

from Matlab 2012b. The joint angle of the shoulder is 

recorded from subject upper limb motion via webcam, 

 

Figure 1. Locations of sEMG electrodes (red dot) and color markers (yellow 

square) 

 

Figure 2. Block diagram of proposed prediction system 
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processed and input to ELM as target data. Together with the 

resultant data from muscle activation model and target data, 

ELM regression algorithm trains and predicts the shoulder 

joint angle. The block diagram of the proposed joint angle 

prediction method is presented in Fig 2. 

E. Arm Motion Recording 

The motion of the arm is recorded with Logitech 

QuickCam E3560 which attached to the same PC as data 

processing. The markers that attached on the subject shoulder 

joint and wrist joint are registered via webcam to track the 

current position of the subject arm. The processing of the 

joint angle calculation is performed in Flash Professional 

CS6. The marker at shoulder joint is calibrated as an origin 

position to calculate arm length and horizontal distance 

between shoulder marker and wrist marker. The captured 

parameters are used to calculate the abduction/adduction joint 

angle by trigonometry. Tracking of the markers are refreshed 

in every frame to update the current position of markers and 

therefore update the joint angle calculation in every frame as 

real-time joint angle data. The calculated angles are sent to 

Matlab platform in real-time via UDP to serve as training and 

testing data for ELM in offline mode and as target data to 

evaluate the prediction performance in online mode. 

F. Regression Extreme Learning Machine Model 

ELM is a generalization of single-hidden layer 

feedforward networks (SLFNs) which hidden layer’s nodes 

implement a random computational process and does not 

required to be tuned [10]. The algorithm has proven that it 

has higher scalability and less computational complexity, 

hence, it becomes the most attractive for nonlinear modeling. 

In this work, muscle activation data as input to the regression 

ELM model and estimated the joint angle with non-kernel 

based output function as follows [11]: 

𝑓 𝑥 = ℎ 𝑥           (7) 

 =  𝐻+ 𝑇         (8) 

𝐻+ = 𝐻𝑇   
1

𝐶
+ 𝐻𝐻𝑇 

−1

       (9) 

where h(x) = [h1(x), … , hL(x)] is the output vector of the 

hidden layers of L nodes with respect to input x. h(x) and  = 

[1, …, L]T is the vector of the output weights between 

hidden layer and output node. H+ is the Moore-Penrose 

generalized inverse of matrix H which is the hidden layer 

output matrix and C is a user specified parameter. The 

activation function of the ELM is employed sigmoid function 

as (10) due to its better prediction result compared to other 

activation functions such as hard-limit, Gaussian and 

multiquadric.  

𝐺 𝑎, 𝑏, 𝑥 =  
1

1+exp  − 𝑎.𝑥+𝑏  
       (10) 

where G (a, b, x) is a nonlinear piecewise continuous 

function for universal approximation capability theorems 

[12]. In offline mode, 8 out of 10 trials data are trained and 

the rest are used for testing. In online mode, the trained result 

from the offline is utilized for real-time prediction. The 

results from both offline and online testing are discussed in 

the following section.       

III. EXPERIMENTAL RESULT AND DISCUSSION 

Prediction of the joint angle is experimented in both 

offline and online mode. Before the experiment was 

conducted, the objective of the experiment was explained to 

the subject and few sessions of training were also given. 

Afterward, subject was asked to move his shoulder joint with 

random degree such as 45˚, 90˚, 135˚ and 170˚ in 

abduction/adduction motion. During the process of motion, 

sEMG and arm motion data were recorded via data 

acquisition device and webcam. After getting the sEMG data, 

preprocessing of the signals were performed followed by 

computing the optimized parameters for the EMD with 

optimization toolbox in Matlab. The best parameters of the 

EMD were given as 1 = 2 = -0.9612 and d = 60ms. Then, 

the angle data from recorded motion were computed via 

webcam and together with muscle activation data (block #2 

and block #4), sent for ELM training and testing. The 

outcome of the offline result in one test trial is presented in 

Fig. 4. The results are validated with 5-fold cross validation 

and average correlation is as high as 0.9613 with processing 

time of less than 32ms. This result proved that proposed 

method for joint angle estimation is quite accurate with very 

fast processing time than other aforementioned approaches. 

With this motivated result from offline mode, online or real-

time estimation was performed based on the trained offline 

results from ELM. Fig. 5 shows the 5-fold cross validation 

result of real-time testing. The average correlation of the real-

time result achieved 0.9371 with the processing time of less 

than 32ms which is same as offline testing. This shows that 

the proposed prediction method is able to reflect well for the 

joint angle even in real-time. Although offline and online 

testing that presented in this paper focus on one degree of 

freedom at joint angle at shoulder joint, multiple degree of 

freedom of upper limb are currently under study and positive 

results will report in near future. 

 

Figure 3. sEMG signal processing for two cycle of abduction motion: 

rectified sEMG signal (Green), low pass filtered sEMG (Red) and muscle 

activation with EMD (Blue) 
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IV. CONCLUSION AND FUTURE WORK 

The fast and accurate joint angle prediction method is 

proposed in this paper. With the consideration of 

electromechanical delay in extracted sEMG signal along with 

less computational complexity extreme learning machine are 

employed as an angle estimator. The experiments were 

conducted in both offline and online mode to estimate 

shoulder abduction/adduction motion. The accuracy results 

are very encouraging with very fast processing time as a 

preliminary step for direct joint angle estimation from just 

sEMG signals. These positive results encourage for the next 

steps: more non-clinical and clinical trials, multiple joint 

angle predictions in random motion of upper limb which are 

currently under testing and results will be published in near 

future. As a whole picture, the proposed estimation method 

will be integrated with our previous work [9] to offer as an 

novel fast recovery upper limb rehabilitation system.      
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Figure 4. Result from offline testing with the correlation coefficient between actual and predicted angle is 0.9613. The label on x-axis correspond to time 

in sec and y-axis of the plot correspond to the abduction joint angle 

 

Figure 5. Result from online testing with the correlation coefficient between actual and predicted angle is 0.9371. The label on x-axis correspond to time 

in sec and y-axis of the plot correspond to the abduction joint angle 
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