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Abstract— The performance of the myoelectric pattern 

recognition system sharply decreases when working in various 

limb positions. The issue can be solved by cumbersome training 

procedure that can anticipate all possible future situations. 

However, this procedure will sacrifice the comfort of the user. 

In addition, many unpredictable scenarios may be met in the 

future. This paper proposed a new adaptive myoelectric 

pattern recognition using advance online sequential extreme 

learning (AOS-ELM) for classification of the hand movements 

to five different positions. AOS-ELM is an improvement of OS-

ELM that can verify the adaptation validity using entropy. The 

proposed adaptive MPR was able to classify eight different 

classes from eleven subjects by accuracy of 95.42 % using data 

from one position. After learning the data from whole positions, 

the performance of the proposed system is 86.13 %. This 

performance was better than the MPR that employed original 

OS-ELM, but it was worse than the MPR that utilized the 

batch classifiers. Nevertheless, the adaptation mechanism of 

AOS-ELM is preferred in the real-time application. 

I.   INTRODUCTION 

The development of the prosthetic device for the hand 
rehabilitation is very advanced. The researchers have been 
able to build a dexterous prosthetic hand that is very close to 
resemble the hand functionality precisely. Few commercial 
dexterous hands have been produced, such as iLimb [1], a 
bebionic hand [2] and so on. Inevitably, the achievement on 
the hardware side should be followed by the development of 
the controller side. 

  So-called myoelectric pattern recognition (MPR) has 
been developed to control the prosthetic hand. The advantage 
of the MPR is that it can predict user’s intention to move a 
particular movement. The efficacy of MPR is very noticeable 
in the laboratory environment. However, it is facing a serious 
problem in the real-time application. There is the big gap 
between the real success of the laboratory experiments and 
the clinical applications. Farina, et al. [3] noted that the 
primary causes of the gap are related to the robustness of 
MPR in the clinical applications.  

Furthermore, Ning, et al. [4] explained that the robust 
MPR can be achieved by fulfilling four conditions. Firstly, 
major MPRs should provide the simultaneous and 
proportional controller that can handle multi-degrees of 
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freedom. Secondly, MPR has to have sensory feedback. 
Thirdly, MPR should adapt to the changes of EMG signal 
characteristic, and the last, MPR should integrate with sensor 
modalities to allow complex actions. 

The need of adaptive MPR can be avoided by involving all 
possible conditions that will be possibly faced in the training 
session. Unfortunately, this method leads a cumbersome 
training process [5]. Besides, no one can guarantee that 
conditions can be covered at the beginning due to a variation 
of the user’s pattern over time. The changes can be 
influenced by the muscle fatigue, humidity, electrode 
displacement, different limb positions and other potential 
causes. In this situation, the adaptive myoelectric pattern 
recognition is needed. 

Some adaptive myoelectric pattern recognitions have 
been developed. For instance, Nishikawa, et al. [6] proposed 
supervised adaptation technique using three layers feed-
forward neural networks to predict forearm motions. Chen, et 
al. [7] proposed a new adaptive MPR using self-enhanced 
linear and quadratic discriminant analysis (SLDA and 
SQDA). Furthermore, Sensinger, et al. [8] investigated 
different schemes of adaptation. They suggested that the 
supervised adaptation mechanism should be considered to be 
applied in a clinically feasible pattern recognition system. 
Different from previous approaches that used a batch 
machine learning, Gijsberts, et al. [9] utilized an incremental 
machine learning as the classifier, which is called Ridge 
Regression with Random Fourier Features (iRFFRR). 
Following Gijsberts’s work, Anam, et al. [10] proposed an 
adaptive MPR using online sequential extreme learning 
machine (OS-ELM). 

OS-ELM that was used in Anam’s work does not have a 
mechanism to reject bad training results. Whenever data 
comes as training package must be employed to update the 
classifier. In fact, the data may be corrupted by noise so that 
can reduce the performance of the system. To overcome this 
situation, in this paper, we propose a myoelectric pattern 
recognition using advance online sequential extreme learning 
machine (AOS-ELM). AOS-ELM has a mechanism to 
evaluate the training results by using entropy. Low entropy 
indicates that the output of the OS-ELM is profoundly 
correct. In this, the new adaptive MPR will be implemented 
to problem of MPR dealing with different limb position for 
classification of the hand movements. As discussed in [5], the 
different limb position highly affected the classification 
performance. Therefore, the adaptation is needed to tackle 
this situation and to avoid cumbersome training proses.    

The organization of the paper is as follow. The next 
section presents the method proposed in this paper consisting 
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of the feature extraction, dimensionality reduction, the 
classifier and the mechanism to update the classifier online. 
Afterward, the result and discussion are presented. Finally, 
the last section provides the conclusion.  

II. METHOD 

A. Adaptive myoelectric pattern recognition 

The scheme of the adaptive myoelectric pattern 

recognition (Adaptive MPR) is presented in Fig. 1. The 

adaptive MPR follows the state-of-the-art of MPR that 

consists of an EMG collection, feature extraction, 

dimensionality reduction and the classification. When the 

user thinks that the recognition system does not classify the 

movement properly, the user provides the target class to the 

trainer unit. The trainer unit will collect the features related 

to the target class given by the user and then employ the 

target class and the features to update the classifier. The user 

should not provide a large data to the trainer unit. Five 

minutes data collection from all movements may be enough 

to update the classifier. 

 

1) Data acquisition 

The EMG signals were collected in [5].  Eleven (11) 

subjects participated in the data collection were two females 

and nine males, aged between 20 and 37 years of age. They 

were asked to perform eight movements (Fig. 2) with 

duration of 5 seconds for each action.  Seven EMG channels 

were put across the circumference of the forearm using 

Delsys De 2.x series EMG sensors. The EMG signals were 

sampled and sent to the PC using A 12-bit analog-to-digital 

computer at a sampling frequency of 4000 Hz. Furthermore, 

there are five different limb position involved in the data 

collection, as depicted in Fig. 3. 

2) Feature extraction 

This proposed system extracted wavelet features from 

electromyography (EMG) signals using fuzzy wavelet-

packet based feature [11]. The features were extracted using 

the overlapped segmentation methods with the window 

length of 200 ms and incremented every 50 ms. The fuzzy-

wavelet packet yielded in 19176 samples with 113 features 

in each position. The data will be divided into training and 

testing data with an equal number. Therefore, the number of 

training and testing data is 9588 each.     

3) Dimensionality reduction 

The proposed adaptive MPR employed a new 

dimensionality reduction proposed by Anam, et al. [12] 

called spectral regression extreme learning machine (SR-

ELM). SR-ELM is an extension of linear discriminant 

analysis that can improve the class separability.  

The feature extraction produced 113 features from seven 

channels. These features will be projected to new feature 

representation with a smaller dimension. Using SR-ELM, 

the number of features will be reduced to c-1 features where 

c is the number of classes. Therefore, the number of new 

features is seven features only.   

4) Advanced online sequential extreme learning machine 

(AOS-ELM) 
The advanced online sequential extreme learning machine 

(AOS-ELM) is an improvement of online sequential extreme 
learning machine (OS-ELM). OS-ELM is extreme learning 
machine that trains the weight incrementally using chunk-by-
chunk data.  

Assume, there are N arbitrary samples 1{( , )}
N

i i ix t   R
n
 x 

R
m
, the output of a single hidden layer feed-forward network 

(SLFN) with L hidden nodes is 
 

𝑓(𝒙𝑖) = ∑𝛽𝑗𝐺(𝒂𝑗 , 𝑏𝑗 , 𝒙𝑖)

𝐿

𝑗=1

= 𝒉(𝒙𝒊)𝜷 = 𝒕𝑖 , 𝑖 = 1, . . 𝑁 (1) 

where f is an output of ELM, G is a hidden layer output, 

ih(x )  R
NxL

 is a matrix of hidden layer output, and   R
Lxm

 

is a matrix of output weight.  
 The training procedure of OS-ELM involves an 

initialization and a sequential stage. In the initialization stage, 

a small amount of data {(𝒙𝑖 , 𝒕𝑖)}𝑖=1
𝑁0 is extracted from the 

training dataset with condition 𝑁0 ≥ 𝐿. Below is the 
procedure for the initialization stage. 
a. Set the hidden node parameters randomly (weight a and 

bias b) 
b. Compute the initial hidden layer output matrix H0. 
 

𝐻0 = [

𝐺(𝒂1, 𝑏1, 𝒙1) ⋯ 𝐺(𝒂𝐿 , 𝑏𝐿 , 𝒙1)
⋮ ⋯ ⋮

𝐺(𝒂1, 𝑏1, 𝒙𝑁0
) ⋯ 𝐺(𝒂𝐿, 𝑏𝐿, 𝒙𝑁0

)
] (2) 

 
c. Calculate the initial output weight β

(0)
 

The goal of ELM is to minimize ‖𝑯0𝛽 − 𝑻0‖ where the 

target 𝑻0 = [𝒕1, … , 𝒕𝑁0
]
𝑁0𝑥𝑚

𝑇
,. The solution is 𝛽(0) =

𝑴0𝑯0
𝑇𝑻0, where 𝑀0 = (𝐻0

𝑇𝐻0)
−1 and 𝐾0 = 𝐻0

𝑇𝐻0 = 𝑀0
−1. 

k=0 is set as the initial sequent. 

 
Fig. 1. The scheme of the proposed adaptive myoelectric pattern 

recognition 
 

 
Fig. 2. Eight different hand movements considered in the experiments 

 

 
Fig. 3. Five different limb positions  
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The second stage is the sequential learning. A new 
observation for (k+1)th chunk of data will involve: 

  
 

1

0

0

1
1

,

k

j
j

k

j
j

N

k i i
i N

N








 





x t . 

Below are some procedures involved. 
a. Compute the output matrix of the partial hidden layer 

Hk+1. 

𝐻0 =

[
 
 
 𝐺 (𝒂1, 𝑏1, 𝒙(∑ 𝑁𝑗

𝑘
𝑗=0 )+1) ⋯ 𝐺 (𝒂𝐿, 𝑏𝐿, 𝒙(∑ 𝑁𝑗

𝑘
𝑗=0 )+1)

⋮ ⋯ ⋮

𝐺 (𝒂1, 𝑏1, 𝒙∑ 𝑁𝑗
𝑘+1
𝑗=0

) ⋯ 𝐺 (𝒂𝐿, 𝑏𝐿 , 𝒙∑ 𝑁𝑗
𝑘+1
𝑗=0

) ]
 
 
 

𝑁𝑘+1𝑥𝐿

 

(3) 

b. Compute the output weight 
The target is: 

1

0 0
1

1
( ) 1

, ....,k k

j j
j j

k

T

k
N N

N x m



 





 

   

T t t      (4) 

1 1 1

T

k k k k   K K H H             (5) 

 1

( 1) ( ) 1 ( )

1 1 1k

k k T k

k k k  


 

    K H T H      (6) 

In the recursive process, the inverse of 𝐊𝑘+1
−1  should be 

avoided. Therefore, 

 

 

1

1
1

1 1

1
1 1 1 1

1 1 1

k

T

k k k

T

k k k k k






 


   

  

 

  

K K H H

K K H I H K H K

   (7) 

And 𝐌𝑘+1 = 𝐊𝑘+1
−1 .  

So, (5) and (6) can be modified by: 

 1

1

1 1 1 1k

T T

k k k k k k k k



     M M M H I H M H H M  (8) 

 ( 1) ( ) ( )

1 1 1 1

k k T k

k k k k  


     M H T H     (9) 

 

c. Calculate the output of ELM using 
( 1) ( )

 and 
k k

 


. Then 

compute the entropy E(k+1) and E(k) using: 

 ( ) ( ) ln ( )

N

j j

j

E n o n o n            (10) 

where o j (n)  is the output unit j at data n. 

If E(k+1)>E(k) then 
( 1) ( )

 = 
k k

 


, to achieve the output 

with low entropy. Otherwise, 
( 1)k




is equal to Eq. (9). 

d. Set k=k+1 and go to (a) in this phase. 
 

III. RESULT AND DISCUSSION 

In this paper, the proposed adaptive M-PR using AOS-

ELM was applied to classify eight hand movements on 

various limb positions. Some experiments were conducted to 

examine and investigate the efficacy of the proposed 

method.  

A. Classification performance on various positions 

This experiment aims to test the performance of the 

incremental learning compared to the batch learning. The 

incremental learning allows the MPR to be trained using a 

small number of training data. This is very useful to update 

the MPR bit-by-bit without collecting a large number of data 

in the beginning.  

To validate the performance of the incremental learning, a 

comparison between the incremental learning and the batch 

learning should be conducted. This experiment involved two 

incremental learnings, OS-ELM, and AOS-ELM and four 

batch learnings, extreme learning machine (ELM), support 

vector machine (SVM), linear discriminant analysis (LDA), 

and k-nearest neighbor (kNN). The experimental results are 

described in Table I and Fig. 4. 

Table I describes the accuracy of the MPR using various 

classifiers. In general, the batch learning performs better 

than the incremental learning. However, the difference is not 

significant. One-way analysis of variance (ANOVA) test on 

all classifiers results in p = 0.8736. The p value is more than 

0.05. Therefore, the performance difference between the 

batch and incremental learning is not significant. As for the 

comparison between AOS-ELM and OS-ELM, Table 1 

shows that AOS-ELM is better than OS-ELM. The 

additional procedure in AOS-ELM using entropy to evaluate 

the validity of the update enhances the performance of OS-

ELM. 

Fig. 4 provides more information regarding the 

performance of the system in different positions. It can be 

inferred that the MPR achieved better accuracy on Position 1 

than other positions.  

B. Performance of the adaptation 

This experiment aims to examine the performance of the 

adaptive MPR using OS-ELM and AOS-ELM. To evaluate 

the performance of the incremental learning  (OS-ELM and 

AOS-ELM), this section compares their performance with 

the batch learning methods. They are ELM, SVM, LDA, and 

kNN.   

Five scenarios were considered for the incremental 

learning system. The first scenario is the system is trained 

TABLE I. THE ACCURACY OF THE SYSTEM USING VARIOUS CLASSIFIERS 
Position OS-ELM AOS-ELM ELM SVM LDA kNN 

1 93.55 95.42 96.40 96.56 96.10 96.50 

2 91.39 91.40 91.92 91.48 89.85 91.92 

3 91.99 92.10 92.29 92.64 92.01 92.63 

4 93.17 93.67 93.87 94.00 93.29 94.13 

5 93.00 92.97 93.28 92.98 92.06 93.18 

Average 92.62 93.11 93.55 93.53 92.66 93.67 

 

 
Fig. 4. The accuracy of different classifiers across five different 

positions 
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and tested using EMG of position 1. In the next scenario, the 

trained OS-ELM and AOS-ELM will be retrained using a 

half of data from position 2 and tested using the rest of data 

of Position 2. The same procedure was repeated until the last 

position, which is Position 5.  

As for the batch learning, in each scenario, the classifiers 

were trained using a half of whole data in the scenario and 

then tested using the rest of it. For instance, in the scenario 

“1+2+3”, the batch classifiers were trained and tested using 

data from Position 1, 2 and 3. The experimental results are 

showed in Table 2 and Fig. 5.  

Table 2 expresses the fact that involving all positions in 

the experiment reduces the accuracy of the system. This 

phenomenon occurred in the incremental and batch 

classifiers. This table also indicates that OS-ELM and AOS-

ELM are able to learn new data from a different position 

even though the data was presented chunk-by-chunk. It 

means the adaptive MPR using OS-ELM and AOS-ELM can 

be a promising a solution for a robust MPR that can adapt to 

the new environment without conducting a cumbersome 

training procedure. 

Unfortunately, the performance of OS-ELM and AOS-

ELM is not as good as the batch classifiers when all 

positions are involved in the experiment. Fig. 5 explains this 

fact clearly. On the position 1, the incremental classifiers 

were able to perform as good as the batch classifiers. 

However, the accuracy of the incremental classifiers is not 

comparable to the batch classifiers on the scenario (1,2,3,4) 

and (1,2,3,4,5). This issue should be solved in future. 

Inevitably, the adaptation mechanism and the ability to work 

on a small number of the training data is one advantageous 

of the incremental. 

As for AOS-ELM, Fig. 5 shows that the performance of 

AOS-ELM is better than OS-ELM in all scenarios. In the 

beginning, the accuracy of AOS-ELM and OS-ELM are 

95.42% and 93.55%, respectively. At last, after training for 

all positions, the accuracy of AOS-ELM and OS-ELM are 

similar, 86.13% and 86.07%, respectively. 

IV.  CONCLUSION 

This paper proposed a new adaptive myoelectric pattern 
recognition using advanced online sequential extreme 
learning for classification of the hand movements to five 
different positions. In the position 1, the proposed adaptive 
MPR was able to classify eight different classes from eleven 
subjects by accuracy of 95.42 % and 93.55% using AOS-
ELM and OS-ELM, respectively. After learning the data 
from all positions, the performance of the proposed system is 
86.13 % and 86.07% using AOS-ELM and OS-ELM, 
respectively. This performance was worse than the MPR that 
utilized the batch classifiers. Nevertheless, the adaptation 
mechanism of AOS-ELM and OS-ELM is preferred in the 
real-time application. 

 
[1] TouchBionics, "The Big Picture: Bionic Hand," Spectrum, IEEE, vol. 

44, pp. 22-22, 2007. 

[2] C. Medynski and B. Rattray, "Bebionic prosthetic design," 2011. 

[3] D. Farina, J. Ning, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, 
et al., "The Extraction of Neural Information from the Surface EMG 

for the Control of Upper-Limb Prostheses: Emerging Avenues and 

Challenges," Neural Systems and Rehabilitation Engineering, IEEE 
Transactions on, vol. 22, pp. 797-809, 2014. 

[4] J. Ning, S. Dosen, K. Muller, and D. Farina, "Myoelectric Control of 

Artificial Limbs?? Is There a Need to Change Focus? [In the 
Spotlight]," Signal Processing Magazine, IEEE, vol. 29, pp. 152-150, 

2012. 

[5] R. N. Khushaba, M. Takruri, J. V. Miro, and S. Kodagoda, "Towards 
limb position invariant myoelectric pattern recognition using time-

dependent spectral features," Neural Networks, vol. 55, pp. 42-58, 

2014. 
[6] D. Nishikawa, W. Yu, M. Maruishi, I. Watanabe, H. Yokoi, Y. Mano, 

et al., "On-line Learning Based Electromyogram to Forearm Motion 

Classifier with Motor Skill Evaluation," JSME International Journal 
Series C, vol. 43, pp. 906-915, 2000. 

[7] X. Chen, D. Zhang, and X. Zhu, "Application of a self-enhancing 

classification method to electromyography pattern recognition for 
multifunctional prosthesis control," Journal of neuroengineering and 

rehabilitation, vol. 10, p. 44, 2013. 

[8] J. W. Sensinger, B. A. Lock, and T. A. Kuiken, "Adaptive pattern 
recognition of myoelectric signals: exploration of conceptual 

framework and practical algorithms," Neural Systems and 

Rehabilitation Engineering, IEEE Transactions on, vol. 17, pp. 270-
278, 2009. 

[9] A. Gijsberts, R. Bohra, D. S. González, A. Werner, M. Nowak, B. 

Caputo, et al., "Stable myoelectric control of a hand prosthesis using 
non-linear incremental learning," Frontiers in neurorobotics, vol. 8, 

2014. 

[10] K. Anam and A. Al-Jumaily, "A robust myoelectric pattern 
recognition using online sequential extreme learning machine for 

finger movement classification," in Engineering in Medicine and 

Biology Society (EMBC), 2015 37th Annual International Conference 
of the IEEE, 2015, pp. 7266-7269. 

[11] R. N. Khushaba, S. Kodagoda, S. Lal, and G. Dissanayake, "Driver 

Drowsiness Classification Using Fuzzy Wavelet-Packet-Based 
Feature-Extraction Algorithm," Biomedical Engineering, IEEE 

Transactions on, vol. 58, pp. 121-131, 2011. 

[12] K. Anam and A. Al-Jumaily, "A novel extreme learning machine for 
dimensionality reduction on finger movement classification using 

sEMG," in Neural Engineering (NER), 2015 7th International 
IEEE/EMBS Conference on, 2015, pp. 824-827. 

 

TABLE II. THE ACCURACY OF THE SYSTEM WHEN DATA WAS ADDED 

GRADUALLY 
Position OS-ELM AOS-ELM ELM SVM LDA kNN 

1 93.55 95.42 96.41 96.56 96.10 96.50 

1+2 90.11 90.72 92.89 92.49 91.56 92.88 

1+2+3 87.11 87.48 91.08 90.92 89.96 91.24 

1+2+3+4 86.17 86.27 90.13 89.98 89.04 90.37 

1+2+3+4+5 86.07 86.13 90.08 89.97 88.93 90.44 

 

  
Fig. 5. The accuracy of OS-ELM and AOS-ELM when data was added 

gradually 
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