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Abstract. Variations on antimagic labelings, including vertex antimagic, edge antimagic
and (a,d) antimagic have been studied since antimagic labelings were developed in 1990.
Face antimagic labelings are a relatively recent innovation. In this paper we survey
results in face antimagic labelings and provide a summary of current conjectures and

open problems.

1. INTRODUCTION

All graphs, G = G(V, E, F) considered in this paper are simple, finite, undi-
rected and planar. In all cases, a labeling will refer to a mapping from some
combination of vertices, edges and faces into the positive integers.

Let |[V| = v, |E| = e and |F| = f. Assume that a,b,c € {0,1}. A labeling
of type (a,b,c) assigns labels from the set {1,2,3,...,av + be + ¢f} to the vertices,
edges and faces of G in such a way that each vertex receives a labels, each edge
receives b labels, and each face receives ¢ labels and each number is used exactly
once as a label.

Labelings of types (1,0, 0), (0,1,0) and (0,0, 1) are also called vertez, edge and
face labelings, respectively. Labelings of type (1,1, 0) are traditionally referred to as
total labelings. A (1,1, 1) labeling is a bijection from the set {1,2,...,v+e+ f} into
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the vertices, the edges and the faces of G = (V, E, F'). This labeling is sometimes
referred to as supertotal.

The weight of a face under a labeling is the sum of labels (if present) carried
by that face and the edges and vertices surrounding it.

Definition 1.1. [21]: A labeling of type (a, b, ¢) is said to be face-magic if for every
number s, all s-sided faces have the same weight.

Definition 1.2. [19]: A labeling of type (a,b,c) of plane graph G is called d-
antimagic if for every number s the set of s-sided face weights is Wy={as,as +
d,as +2d,...,as + (fs — 1)d} for some integers as and d, where fs is the number of
s-sided faces.

Note that in the two definitions above we allow different sets W for different s.
If s is the same for each face, then there is just one arithmetic sequence comprising
the set of face weights and we may speak of a graph being (a, d)-face antimagic.
Many common types of plane graphs have “almost” all faces the same, for example,
the prism which consists of all-but-two 4-sided faces; or the antiprism which consists
of all-but-two 3-sided faces. Such graphs are easily modified so that they contain
all the same faces and so that we can consider (a,d)-face antimagic labeling on
them. This is the topic of Section 2 of this paper, while in Section 3 we consider
the more general d-antimagic labeling on various graphs with faces of more than
one size.

For the following let I = {1,2,...,n} and J = {1,2,...,m} be index sets.

2. (a,d)-FACE ANTIMAGIC EDGE LABELING

2.1. The Plane Graph D]' Based on m-prism D"

The m-prism D], n > 3, m > 1, is a trivalent graph of a convex polytope

which can be defined as the Cartesian product of a path on m + 1 vertices with a
cycle on n vertices (P41 X C,,), embedded in the plane.

Let us denote the vertex set of m-prism D by V(D™) = {z;;:i € I and j €
JU{m + 1}} and the edge set by E(D7) = {zjzji+1 :i € T and j € JU {m +
1}}U{zjizjs1, i € T and j € J}. We make the convention that z; 41 = ;1
and ;42 = xj, for j € JU{m +1}.

The face set F/(DI?*) contains nm 4-sided faces, an internal n-sided face and an
external n-sided face. We will create a new graph from D]* by adding two vertices
and appropriate edges to obtain a plane graph D) which contains 4-sided faces
only: We insert exactly one vertex y (respectively, z) into the internal (respectively,
external) n-sided face of D"

Suppose that n is even, n > 4, and consider the graph D) with vertex set
V(D) = V(D) Ud{y, 2} and

(i) if m is odd, the edge set E(D)') = E(D}) U{z12k—1y : k=1,2,...,5} U
{Tmi12kz: k=1,2,..., %} ;and
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(ii) if m is even, the edge set E(D;') = E(D}}) U{x1 2k 1y : k=1,2,...,8}U
{xm+1,2k712 k= ]., 2, e %}

Then D', n > 4, m > 1, is the plane graph of the convex polytope on
[V(D")| = n(m + 1) + 2 vertices, |E(D)| = 2n(m + 1) edges and consisting of
|F(D)] = n(m + 1) 4-sided faces. See Fig. 1.

Figure 1: The plane graph D]".

The following theorems provide the necessary conditions for the graph D}
to bear an (a, d)-face antimagic edge labeling.

Theorem 2.1. [12]: If DI has (a,d)-face antimagic edge labeling then either
d=2anda=3n(m+1)+3, ord=4anda=2n(m+1)+4, ord =06 and
a=n(m+1)+5.

For m = 1 the following results are known:

Theorem 2.2. [7]: Forn > 4,n =0 (mod 2), the plane graph D} has a (6n+3,2)-
face antimagic edge labeling.
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Theorem 2.3. [7]: If n is even, n > 4, then the plane graph D) has a (4n + 4,4)-
face antimagic edge labeling.

For m = 2 in [14] it is proved

Theorem 2.4. [1/]: Forn > 4, n = 0 (mod 2), the convex polytope D2 has a
(9n + 3,2)-face antimagic edge labeling.

Theorem 2.5. [1/]: If n is even, n > 4, then the convex polytope D2 has a
(6n + 4,4)-face antimagic edge labeling.

and conjectured

Conjecture 2.6. For n > 4, n = 0 (mod 2), the convexr polytope D2 has a
(3n + 5,6)-face antimagic edge labeling.
If m > 3, then we have

Theorem 2.7. [12]: If n =0 (mod 2), n >4 and m =1 (mod 2), m > 3, or if
n =2 (mod 4), n > 6 and m = 0 (mod 2), m > 4, then the graph of the convex
polytope D has (3n(m + 1) + 3, 2)-face antimagic edge labeling.

Theorem 2.8. [12]: Ifn is even, n > 4, and m is odd, m > 3, or if n = 2 (mod 4),
n > 6, and m is even, m > 4, then the plane graph D™ has (2n(m + 1) + 4,4)-face
antimagic edge labeling.

Although such labelings have yet to be found, we believe, as indicated in
the following conjectures, that labeling schema exist conforming to the necessary
conditions described in the previous three theorems.

Conjecture 2.9. There are (3n(m + 1) + 3,2)-face antimagic edge labeling and
(2n(m + 1) + 4,4)-face antimagic edge labelings for the plane graph DI for n =
0 (mod 4), n >4, and m =0 (mod 2), m > 4.

Then to completely characterize the graphs of DI supporting a (a,d)-face
antimagic edge labeling, it only remains to consider the case of (n(m + 1) + 5,6)-
face antimagic labeling. This prompts us to propose the following conjecture.

Conjecture 2.10. If n is even, n > 4, m > 1, then the plane graph D)’ has a
(n(m + 1) 4+ 5,6)-face antimagic edge labeling.

2.2. The Plane Graph A’ Obtained From a m-Antiprism A,

The antiprism A,, n > 3, is a regular graph of degree r = 4 also known as
an Archimedean convex polytope. For n = 3, A,, is the octahedron.

For n > 3 and m > 1, we denote by A" the plane graph of a convex polytope,
which is obtained as a combination of m antiprisms A,,. Let us denote the vertex
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set of A7 by V(A7) ={y;; : 4 € [ and j € JU{m + 1}} and the edge set by
E(A™) = {yj,iyj,i+1 i €lTand j e JU{m+1}} U {yj,iyj+1,i 1€l and j €
JYU {yjit1yj+1,5 6 € Tand j € J, jodd}U{y;,iyjt1,i+1 : ¢ € T and j € J, j even}.
We make the convention that y; ,4+1 = y;1 for j € JU{m + 1}.

The face set F(A") contains 2mn 3-sided faces, an internal n-sided face and
an external n-sided face. We shall modify A" to obtain a graph A" containing
only 3-sided faces: We insert exactly one vertex z (z) into the internal (external)
n-sided face of A™ and connect the vertex z (z) with the vertices y1,; (Ym+1,i)s
i € I. Thus, we obtain the plane graph A", consisting of 3-sided faces with the
vertex set V(A™) = V(A™) U {z, z} and the edge set E(A") = E(A™)U {zy1; :
i € IYU {ym+1,2 1 i € I} where [V(A?)| = (m+ 1)n+ 2, |[E(AT)| = 3n(m + 1)
and |F(A™)] = 2n(m + 1). See Fig. 2.

Figure 2: The plane graph A7".

Necessary conditions for A™ to support a (a,d)-face antimagic edge labeling
are given in [15] and summarised below.
If A7 is (a,d)-face antimagic, then

(i) for n even, n > 4 and m > 1, or for n odd, n > 3 and m odd, m > 1, d
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is odd, and we have exactly two possibilities: (a,d) = (M + 2, 1) and
(a,d) = (2550 1 3,3).

(ii) for n odd, n > 3 and m even, m > 2, d is even, and we have exactly two
possibilities: (a,d) = (W?) and (a,d) = (W‘l) .

If m =1 then in [9] is shown:

Theorem 2.11. [9]: For n > 3, the plane graph AL has (Tn + 2,1)-face antimagic
edge labeling.

For m = 2 it was proved:

Theorem 2.12. [6]: If n is even, n > 4, then the graph of the convex polytope A2
has a (217” + 2, 1) -face antimagic edge labeling.

The paper [6] proposes the following two conjectures:

Conjecture 2.13. For n = 0 (mod 2),n > 4, the conver polytope A% has a
(97" + 3, 3) -face antimagic edge labeling.

Conjecture 2.14. If n is odd, n > 3, then the convexr polytope A2 bears a
(%,2) -face antimagic edge labeling and a (3”;7,4) -face antimagic edge label-
ing.

For m > 3 in [15] are proved the following results

Theorem 2.15. [15]: If m is odd, m > 3, n > 3, then the plane graph A7 has
(w + 2, 1) -face antimagic edge labeling.

Theorem 2.16. [15]: If n and m are even, n > 4, m > 4, then the graph of the
convex polytope A7 has (w + 2,1)-face antimagic edge labeling.

In addition to the labeling schema given in the previous two theorems, we
offer the following conjectures.

Conjecture 2.17. If n is odd, n > 3, and m is even, m > 2, then the plane
graph A" has (w, 2) -face antimagic edge labeling and (WA) -face

antimagic edge labeling.

Conjecture 2.18. Ifn is even, n >4, and m > 1, or if n is odd, n > 3, and m
is odd, m > 1, then the graph of the convez polytope A" has (w + 3, 3) -face
antimagic edge labeling.
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Open Poblem 2.19. Investigate (a,d)-face antimagic edge labelings for other
reqular polytopes.

3. d-ANTIMAGIC TYPE (1,1,1) LABELINGS

3.1. The Prism D,

The prism D, n > 3, is a cubic graph which can be defined as the cartesian
product of a path on two vertices with a cycle on n vertices (P> x C},), embedded
in the plane. See Fig. 3.

Y1

Figure 3: The prism D,,.

It was proved in [16] that for n > 3, the prism D, is 1-antimagic of type
(1,1,1) and for n = 3 (mod 4) and d = 2,3,4,6 there exist d-antimagic labelings
of type (1,1,1). Subsequently in [19] it is proved that

Theorem 3.1. [19]: For n > 3,n # 4, the prism D,, has a 3-antimagic labeling of
type (1,1,1).

Theorem 3.2. [2/]: Forn > 3 and d € {2,4,5,6}, the prism D, has a d-antimagic
labeling of type (1,1,1).

Theorem 3.3. [26]: For n > 5, the prism Dy has a d-antimagic labeling of type
(1,1,1) for d € {7,8,9,10}.

Theorem 3.4. [26]: For n > 6 the prism D,, has a 15-antimagic labeling of type
(1,1,1). For n > 7 the prism D,, has a 18-antimagic labeling of type (1,1,1).

Theorem 3.5. [26]: For n > 7, n odd, the prism Dy, has a 12-antimagic labeling
of type (1,1,1).
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Theorem 3.6. [26]: Forn > 7, n odd, and d € {14,17,20}, the prism D,, has a
d-antimagic labeling of type (1,1,1).

Theorem 3.7. [26]: For n > 9, n odd, and d € {16,26}, the prism D,, has a
d-antimagic labeling of type (1,1,1).

Theorem 3.8. [26]: For n > 7, n odd, and d € {21,24,27,30,36}, the prism D,
has a d-antimagic labeling of type (1,1,1).

These theorems may not be a complete characterisation of d-antimagic label-
ings of type (1,1,1) for D, and so we propose the following open problem.

Open Problem 3.9. Find other possible values of the parameter d and the corre-
sponding d-antimagic labeling of type (1,1,1) for prisms D,,.

3.2. The Antiprism A4,

Recall that the antiprism A,, n > 3, is a 4-regular graph and, for n = 3, it is
the octahedron. Antiprism A,, n > 3, consists of an outer n-cycle y; ys ... yn, an
inner n-cycle x; xy ... x,, and a set of n spokes x;y; and x;41y;, i = 1,2, ...,n with
indices taken modulo n. |V(A4,)| = 2n, |[E(An)| = 4n, |F(A,)| = 2n+2. We define
the 3-sided face fi ; as the face bounded by the edges z;11Yi+1, Ti+1Yi, Yilit1, and
we define the 3-sided face fp; as the face bounded by the edges z;y;, z;z;4+1 and
YiZ;r1. We denote the inner face by z,,; and the outer face by z, 2 (see Figure 4).

Zh2

Figure 4: The antiprism A,,.

Theorem 3.10. [19]: For n > 4, the antiprism A,, has a d-antimagic labeling of
type (1,1,1) for d € {1,2,4}.

Theorem 3.11. [25]: For n > 5, the antiprism A, has a 3-antimagic and 6-
antimagic labeling of type (1,1,1).
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Theorem 3.12. [25]: For n > 3, the antiprism A, has a 5-antimagic labeling of
type (1,1,1).

Theorem 3.13. [22]: For n > 3, the antiprism A, has a T-antimagic labeling of
type (1,1,1).

Theorem 3.14. [22]: For n > 11, the antiprism A,, has a 12-antimagic labeling
of type (1,1,1).

As in the previous subsection, we note that these theorems may not be a
complete characterisation of d-antimagic labelings of type (1,1,1) for A4,,, and so,
in a similar vein, we propose the following open problem.

Open Problem 3.15. Find other possible values of the parameter d and the
corresponding d-antimagic labeling of type (1,1,1) for antiprisms A,,.

3.3. The Pumpkin Graph P!

Let a and b be integers, a > 3 and b > 2. Let y1, y2,...,y, be fixed vertices,
we connect the vertices y; and y;+1 by means of b internally disjoint paths p! of
lengthi+1each,1<i<a-1,1<75<b. Lety;,zij1,Tij2,.-.,Tiji, Yi+1 be the
vertices of path pz . The resulting graph embedded in the plane is denoted by P?
(pumpkin graph), where V (P?) = {y; : 1 <i <a} U?;ll U§:1{$i,j,k 1<k <}
and E(PY) = Uiz {yiwija + 1 < j < 0UUL Ulm {mijumijin 0 1 < k <
i — 1} JUS (@i j,iyi1 : 1 < j < b}. Fig. 5 gives an example of P}.

The face set F(P’) contains b — 1 (2i+2)-sided faces, 1 <i < a — 1, and one
external infinite face. Let v = |[V(P?)| = M +a, e = |E(P)| = w
and f = |F(P))|=(a—1)(b—1) + 1.

Figure 5: The pumpkin graph P}.

Kathiresan and Ganesan [20] have proved

Theorem 3.16. [20]: For a > 3,b > 2, and d € {0,1,2,3,4,6}, the plane graph
P! has a d-antimagic labeling of type (1,1,1).

The vertex labelings and edge labelings defined by Kathiresan and Ganesan
([20]) can be used to proving
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Theorem 3.17. Fora >3,b0> 2, andd € {a,a—2,a+1,a—3,a+4,|a— 6|}, the
plane graph P? has a d-antimagic labeling of type (1,1,1).

The existence of d-antimagic labeling of type (1,1,1) for P* for many other
values of parameter d can be found in [23].

Theorem 3.18. [238]: For a > 3,b > 2, and d € {5,7,|a — 7|,a + 5}, the plane
graph P? has a d-antimagic labeling of type (1,1,1).

Theorem 3.19. [23]: For a > 3,b > 2, the plane graph P’ has |a — 4|-antimagic
and (a + 2)-antimagic labelings of type (1,1,1).

Theorem 3.20. [23]: Fora > 3,b> 2, and d € {2a —3,2a —1,a —1,3a — 3}, the
plane graph PP has a d-antimagic labeling of type (1,1,1).

Theorem 3.21. [23]: Fora > 3,b>2, andd € {a+ 3,2a+ 1,2a+ 3,3a + 1}, the
plane graph P? has a d-antimagic labeling of type (1,1,1).

Theorem 3.22. [28]: For a > 3,b > 2, and d € {4a — 1,4a — 3,5a — 3,3a — 1},
the plane graph P’ has a d-antimagic labeling of type (1,1,1).

Theorem 3.23. [23]: For a > 3,b > 2, and d € {6a — 5,6a — 7,7a — 7,5a — 5},
the plane graph P’ has a d-antimagic labeling of type (1,1,1).

Theorem 3.24. Find other possible values of the parameter d and the correspond-
ing d-antimagic labeling of type (1,1,1) for plane graphs P’ .

3.4. The Generalized Petersen Graph P(n,?2)

Let n, m be integers such that n > 3, 1 < m < n and n # 2m. For such
n, m, the generalized Petersen graph P(n,m) is defined by V(P (n,m)) = {z;, y; :
1 <i<n}and E(P(n,m)) = {yiVit1, TiTitm, T;y; : 1 < i < n} (subscripts are
to be read modulo n). The standard Petersen graph is the instance P(5,2). Fig.
6 shows graph P(10,2). By definition, P(n,m) is a 3-regular graph which has 2n
vertices and 3n edges. Generalized Petersen graphs were first defined by Watkins
[27]. Note that P(n,my) & P(n,mz) if my + m2 = n or myms = £1 (mod n).

Ifm=1andn >3 orm =2 and n is even, n > 6, then the generalized
Petersen graph P(n,m) is plane. Note that P(n,1) is the prism D,,.

Necessary conditions for P(n,2) to possess a d-antimagic labeling of type
(1,1,1) are given in [11] and listed below.

Theorem 3.25. [11]: For every generalized Petersen graph P(n,2), n > 6, there
s no d-antimagic vertex labeling with d > 10.

Theorem 3.26. [11]: For every graph P(n,2), n > 6, there is no d-antimagic edge
labeling with d > 15.
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X10 X,

X

Figure 6: The generalised Petersen graph P(10,2).

Theorem 3.27. [11]: Let P(n,2), n > 6, be a generalized Petersen graph which ad-
mits dy -antimagic vertex labeling A1, ds-antimagic edge labeling Ao and 1-antimagic
face labeling A3, dy > 0, do > 0. If the labelings A1, v+ Ay and v + e + A3 combine
to a d-antimagic labeling of type (1,1,1) then the parameter d < 24.

Theorem 3.28. [11]: If n is even, n > 6, then the generalized Petersen graph
P(n,2) has an 1-antimagic labeling of type (1,1,1).

Theorem 3.29. [11]: If n = 2 (mod 4), n > 6, n # 10, then the generalized
Petersen graph P(n,2) has a 0-antimagic labeling of type (1,1,1).

Theorem 3.30. [11]: The graph of the dodecahedron has a 2-antimagic labeling of
type (1,1,1).

Theorem 3.31. [11]: If n = 2 (mod 4), n > 6, n # 10 and d € {2,3}, then the
generalized Petersen graph P(n,2) has a d-antimagic labeling of type (1,1,1).

Theorem 3.32. [11]: For n =0 (mod 4), n > 8 and d € {2,3}, the generalized
Petersen graph P(n,2) has a d-antimagic labeling of type (1,1,1).

Theorem 3.33. [11]: If n = 0 (mod 4), n > 8 and d € {6,9}, then the graph
P(n,2) has a d-antimagic labeling of type (1,1,1).

The last theorem states that P(n,2) has 6-antimagic and 9-antimagic label-
ings of type (1,1,1) when n = 0 (mod 4) but does not mention the case when n = 2
(mod 4). We conjecture
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Theorem 3.34. There is a d-antimagic labeling of type (1,1,1) for the generalized
Petersen graph P(n,2) for n =2 (mod 4), n > 6 and d € {6,9}.

We conclude this subsection with the following

Theorem 3.35. Find other possible values of the parameter d and the correspond-
ing d-antimagic labeling of type (1,1,1) for the generalized Petersen graph P(n,2)

3.5. The Honeycomb H]"

For n > 1, m > 1 we denote by H™ (honeycomb) the hexagonal plane map
with m rows and n columns of hexagons (see Figure 7 for n odd). The face set
F(H™) contains mn 6-sided faces and one external infinite face.

[V(H™)| = 2mn + 2(m +n), |[E(H™)| = |V(H™)| + mn — 1.

Xl,m+1 yl,m+1
Yom+1
Xl,m
yO,m
'\ / Xom '
\ /

,y1’3 Xh+1,3
Yos S )
X141,
Yo,2 ----
Xqe1,1

Y21

Figure 7: The honeycomb H)".

Magic (that is, O-antimagic) type (1,1,1) labelings for honeycomb are given
in [4]. It was proved in [10] that if n is even, n > 2 and m > 1, then the plane map
H™ supports 2-antimagic and 4-antimagic labelings of type (1,1, 1).

Theorem 3.36. [8]: If n is odd, n > 1, m > 1, mn > 1 and d € {1,3}, then the
hezxagonal plane map H]" has a d-antimagic supertotal labeling.
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Theorem 3.37. [8]: Ifn is odd, n > 1, m > 1, mn > 1 and d € {2,4}, then the
plane map H* has a d-antimagic supertotal labeling.

Open Problem 3.38. Find other possible values of the parameter d and the
corresponding d-antimagic supertotal labelings for the hexagonal plane map H]".

3.6. The Grid G}

For n > 1 and m > 1, let GJ* be the grid graph which can be defined as the
Cartesian product Pp, 1 X P41 of a path on m + 1 vertices with a path on n +1
vertices embedded in the plane and labeled as in Figure 8.

X11 X1,2 X13 Xin X1+l

10— 0 -""------ Xo n+1

Xm+1,1 Xm+1,2 Xm+1,3 Xm+1n Xm+1n+1
Figure 8: The grid G}

Magic (i-e., 0-antimagic) labelings of type (1,1,1) for grid graphs are given
in [5].

Necessary conditions for grids to bear d-antimagic labelings of types (1,0, 0)
and (0, 1,0) as listed in [13] are given in the following propositions.

Theorem 3.39. For every grid graph G}, m,n > 7, there is no d-antimagic vertex
labeling with d > 5.

Theorem 3.40. For every grid graph G}, m,n > 7, there is no d-antimagic edge
labeling with d > 9.
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Applying previous two theorems, and the fact that under d-antimagic face
labeling F(G) — {1,2,3,...,|F(GI)|}, the parameter d is no more than 1, we
obtain

Theorem 3.41. Let G, m,n > 7, be a graph which admits d,-antimagic vertezx
labeling g1, da-antimagic edge labeling g and 1-antimagic face labeling g3, d; > 0,
dy > 0. If the labelings g1, v + g2 and v + e + g3 combine to a d-antimagic labeling

of type (1,1,1) then the parameter d < 13.

Theorem 3.42. [13]: Form > 1, n > 1 and n + m # 2, the grid graph G has a
1-antimagic labeling and 3-antimagic labeling of type (1,1,1).

Theorem 3.43. [13]: Form > 1, n > 1 and n + m # 2, the grid graph G* has a
4-antimagic labeling of type (1,1,1).

Theorem 3.44. [13]: For m > 1, n > 1 and n+ m # 2, the graph G} has a
2-antimagic labeling and 6-antimagic labeling of type (1,1,1).

The last three theorems above give results for d = 1,2,3,4 and 6 which lead
us to propose

Theorem 3.45. There is a 5-antimagic labeling of type (1,1,1) for the plane graph
G and forallm >1,n>1, m+n#2.

From the necessary conditions we have a bound for the feasible values of the
parameter d < 13. Therefore we formulate the following open problem.

Theorem 3.46. Find other possible values of the parameter d and corresponding
d-antimagic labelings of type (1,1,1) for GI'.

3.7. The Mébius Grid M)

For n > 1 and m > 1, let P,411 x P, be the Cartesian product of a path
P,+1 on n + 1 vertices with a path P, on m vertices embedded in the plane.
Let vertices x;j, i € TU{n + 1} and j € J of P,41 X P, be labeled so that
Ti1 Ti2 Ti3 ... Tim—2 Tim—1 Tim are vertices of the path P, (i), i € U {n+ 1}
and 1 j Tz j T3 ... Tn_1,j Tn,j Tnt1,; are vertices of the path P,y1(j), j € J.

Now, for n > 1, m > 1, we denote by M (Mé&bius grid) the graph with
V(M;ln) = V(Pn+1 Xpm) = {mi,j 11 € IU{TL+1}, ] € J} and E(M:Ln) = {$i7]’$i7]’+1 :
ielTU {n + ].}, jeJ— {m}} U {Z‘i7jl‘i+1,j 1 e€1,5€ J} U {mi’mxn+27i71 11 €
Tu{n+1}}.

If we consider the Mobius grid M, drawn in Euclidean space and not on the
Euclidean plane then the face set F(M™) is unambiguous and contains mn 4-sided
faces.
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We have proved [1] that if m is odd, m > 3 and n > 1, then the M6bius grid
M has a magic (0-antimagic) labeling of type (1,1,1).

Theorem 3.47. [17]: If m is odd, m > 3, n > 1 and d € {1,2,4}, then the Mébius
grid M]™ has a d-antimagic labeling of type (1,1,1).

We conclude with the following open problem.

Theorem 3.48. Find other possible values of the parameter d and corresponding
d-antimagic labelings of type (1,1,1) for M™.

3.8. The Special Class L}

Forn > 2,1 < m < 4, let L™ be the graph with the vertex set V(L") =
{z;j:1€Tand je€ JU{m+1}} and the edge set

ELY) ={zijxi1, 1€l —{n}and je JU{m+1}}

U{:L‘le‘i,jjq i€l and j € J}

U{ﬂ?i+17jﬂ?i7j+1 1 €1 — {TL},] € J and j is odd }

U{x; jTit1 41 :1 € I —{n},j € J and j is even },

embeded in the plane and labeled as in Figure 9 (if m = 4).

Figure 9: The graph L] for m = 4.

The face set F'(L™) contains |F(L™)| — 1 = 2(n — 1)m 3-sided faces and one
external infinite face. |V (L™)| = n(m + 1), |[E(L™)| = |[V(L™)| + |F(L™)| — 2.
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Magic (0-antimagic) labelings of type (1,1,1) of plane graphs L for n > 2,
m =1 are described in [2] and for n > 2, 2 < m < 3 are given in [3].

In [18] are found bounds for a feasible value d for the vertex labeling and the
edge labeling of L.

Theorem 3.49. [18]: For every plane graph L™, n > 2, m > 1, there is no
d-antimagic vertex labeling with d > 3.

Theorem 3.50. [18]: For every plane graph L7, n > 2, m > 1, there is no
d-antimagic edge labeling whenever d > 6.

Applying previous two theorems and the fact that under d-antimagic face
labeling F'(L7") — {1,2,...,|F(L)|} the parameter d is no more than 1, we obtain
Theorem 3.51. [18]: Let L™, n > 2, m > 1, be a plane graph which admits
dy -antimagic vertex labeling hi, dz-antimagic edge labeling ho and 1-antimagic face
labeling hs, di > 0, do > 0. If the labelings hy, |V(LI")| + he and |V(L)| +
|E(LT)|+hs combine into a d-antimagic labeling of type (1,1,1) then the parameter
d < 10.

In [18] it is shown how to construct d-antimagic labelings of L.

Theorem 3.52. [18]: Ifn >2,1<m <4
11

and d € {0,2}, then the plane graph
L™ has a d-antimagic labeling of type (1 .

)

Theorem 3.53. [18]: If n > 2, 1 < m < 4, then the plane graph L' has a
4-antimagic labeling of type (1,1,1).
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