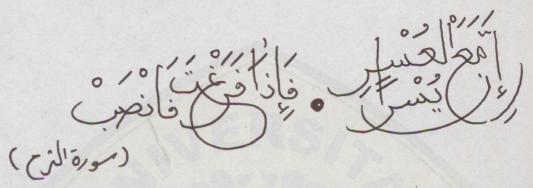
AKTIFITAS NITRAT REDUKTASE TIGA VARIETAS PADI (Oryza sativa L) PADA PERLAKUAN CEKAMAN ALUMUNIUM

KARYA ILMIAH TERTULIS (SKRIPSI)

FAKULTAS PERTANIAN UNIVERSITAS JEMBER April, 2000


DOSEN PEMBIMBING:

Dosen Pembimbing Utama : Ir.Denna Eriani Munandar, MP

Dosen Pembimbing Anggota I: Ir.Setiyono,MP

Dosen Pembimbing Anggota II: Ir.Supardji

MOTTO :

Sesungguhnya bersama dengan kesulitan akan datang kemudahan. Maka apabila kamu telah selesai (dari suatu urusan) maka kerjakanlah dengan sungguh-sungguh (urusan) yang lain

(QS. Al Insyirah: 5 - 7).

Karya Ilmiah Terfulis ini kupersembahkan:

Ayahanda "Roor Faham S." dan Ibunda "Muinah" tercinta, tersayang dan terkasih yang senantiasa memberi motivasi dan do'a tuk kesuksesan Ananda.

Kakakku "Arif Rahman", "Qomaruddin", "Waria Ulfah" dan Adikku "Didik Rudiyanto", "Adi Candra" serta Si kecil "Siti Afifah" tersayang.

Teman-temanku yang kubanggakan : Yeye, De, Dev, Tam, Lin, Rjok, Rdrong, Di, Jun, Jab, Rdo, Cay, Lut, Gus, Ror, Xie, Rest, Kir, Wo, Gis, Ken, Ris, IIIbar, Sus, Ris, Ri, It, Hami, Hik, Rin, dan Ta.

"Arie Fien" yang membangunkan aku dari tidur panjangku, memotivasi tuk slalu optimis dan do'a "thank to you".

Art Galery 77A members: Anakku Winni, Keponakanku Erna +Lis Pro-V kidd, Rung, Ring, Irma, Diana, Lis Bondetor, Entong dan new members.

Mbak dan Sobatku "Lutfiyah" dan "R-Sad".

Almamaterku tercinta.

Diterima Oleh:

Fakultas Pertanian Universitas Jember

Sebagai Karya Ilmiah Tertulis (Skripsi)

Dipertahankan pada:

Hari

: Sabtu

Tanggal: 14 Oktober 2000

Tempat : Fakultas Pertanian Universitas Jember

Tim Penguji

Ketua,

Ir. Denna Eriani Munandar, MP

NIP. 131 759 541

Anggota I,

Ir. Setiyono, MP

NIP. 131,696 266

Anggota II,

Ir.Supardji

NIP. 130 890 067

Jengesahkan

ekan

TASIFE Arie Mudjiharjati, MS

NIP. 130 609 808

KATA PENGANTAR

Syukur Alhamdulillah penulis panjatkan kehadirot Allah SWT, atas segala rahmat dan hidayah-Nya sehingga penulisan Karya Ilmiah Tertulis berjudul "Aktivitas Nitrat Reduktase Tiga Varietas Padi (Oryza sativa L.) pada Perlakuan Cekaman Alumunium" ini dapat diselesaikan.

Penulisan Karya Ilmiah Tertulis ini dimaksudkan guna memenuhi salah satu syarat untuk menyelesaikan pendidikan program sarjana Jurusan Agronomi Fakultas Pertanian Universitas Jember.

Selesainya Karya Ilmiah Tertulis ini tidak terlepas dari berbagai pihak yang telah memberikan bantuan, dorongan dan saran kepada penulis, untuk itu penulis menyampaikan ucapan terima kasih yang sebesar-besarnya kepada yang terhormat :

- 1. Ir. Arie Mudjiharjati, MS, selaku Dekan Fakultas Pertanian Universitas Jember.
- 2. Dr.Ir.M.Setyo Poerwoko,MS, selaku Ketua Jurusan Agronomi Fakultas Pertanian Universitas Jember.
- 3. Ir.Denna Eriani Munandar,MP, selaku Dosen Pembimbing Utama yang telah memberikan bimbingan dan pengarahan selama penyelesaian skripsi ini.
- 4. Ir.Setiyono,MP, selaku Dosen Pembimbing Anggota I yang telah memberikan bimbingan dan pengarahan selama penyelesaian skripsi ini.
- 5. Ir.Supardji, selaku Dosen Pembimbing Anggota II yang telah memberikan bimbingan dan pengarahan selama penyelesaian skripsi ini.
- 6. Dr.Ir.Bambang Sugiharto, M.Agr.Se, selaku Ketua Lab. Biologi Molekuler yang telah memberikan ijin untuk pelaksanaan penelitian.
- 7. Ir.Tri Handoyo, selaku Pembimbing Laboratorium selama pelaksanaan penelitian.
- 8. Ir.Boedi Santoso,MP, atas dorongan dan semangat yang telah diberikan untuk melaksanakan penelitian dan menyelesaikan skripsi ini.
- 9. Rekan-rekan Agronomi dan semua pihak yang telah membantu penyusunan dan penyelesaian skripsi ini.

Penulis menyadari sepenuhnya tulisan ini jauh dari sempurna, oleh karenanya kritik dan saran yang membangun sangat diharapkan demi kesempurnaan penulisan ini. Mudah-mudahan dapat bermanfaat bagi penulis maupun pembaca serta perkembangan ilmu pertanian di masa mendatang.

Jember, September 2000

Penulis

DAFTAR ISI

		alaman
KATA	A PENGANTAR	v
DAFT	TAR ISI	vii
DAFT	TAR TABEL	viii
DAFT	TAR GAMBAR	ix
RING	KASAN	
	ENDAHULUAN	. 1
1	.1 Latar Belakang Permasalahan	1
	.2 Intisari Permasalahan	
	.3 Tujuan Penelitian	
	.4 Kegunaan Penelitian	
	.5 Hepotesa	
II. T	TNJAUAN PUSTAKA	4
2	.1 Pertumbuhan dan Perkembangan Tanaman Padi	4
2	.2 Mekanisme Keracunan Alumunium dan Peranan Enzim Nirtrat Reduktas	e 4
	METODE PENELITIAN	
	.1 Tempat dan Waktu Penelitian	
	2 Alat dan Bahan Penelitian	
	3.2.1 Alat Penelitian	8
	3.2.2 Bahan Penelitian	8
3	.3 Metode Penelitian	
3	.4 Pelaksanaan Penelitian	10
	3.4.1 Perkecambahan Benih	10
	3.4.2 Pemindahan Kecambah ke Bak Plastik	10
	3.4.3 Pengukuran Aktivitas Enzim Nitrat Reduktase	
	3.4.4 Penentuan Kandungan N Jaringan Tanaman	
2	3.4.5 Penentuan Kandungan P Jaringan Tanaman	11
IV I	.5 Parameter PengamatanIASIL DAN PEMBAHASAN	
	.1 Aktivitas Nitrat Reduktase (ANR) Daun Padi	
	.2 Aktivitas Nitrat Reduktase (ANR) Akar Padi	
4	.3 Kandungan N pada Jaringan Daun dan Akar Padi Umur 16 Hari	17
4	.4 Kandungan P pada Jaringan Daun dan Akar Padi Umur 16 Hari	20
	.5 Berat Kering Daun dan Akar Padi Umur 16 Hari	
	ESIMPULAN	
5	.1 Kesimpulan	27
DAF	.2 Saran	27
DAF	TAR PUSTAKA	28
LAV	PIRAN	

DAFTAR TABEL

Nome	or	Halaman
1.	Aktivitas Nitrat Reduktase Daun Padi Umur 8 Hari Perlakuan	
	Konsentrasi Al	13
2	Aktivitas Nitrat Reduktase Daun Padi Umur 8 Hari Perlakuan	
	Varietas	13
3	Aktivitas Nitrat Reduktase Daun Padi Umur 16 Hari Perlakuan	
	Konsentrasi Al	14
4	Aktivitas Nitrat Reduktase Daun Padi Umur 16 Hari Perlakuan	
	Varietas	14
5	Aktivitas Nitrat Reduktase Akar Padi Umur 16 Hari Perlakuan	
	Konsentrasi Al	16
6	Aktivitas Nitrat Reduktase Akar Padi Umur 16 Hari Perlakuan	
	Varietas	16
7	Pengaruh Interaksi Perlakuan Varietas Padi dan Konsentrasi Al	
	terhadap Kandungan N Daun Padi Umur 16 Hari	17
8	Pengaruh Interaksi Perlakuan Varietas Padi dan Konsentrasi Al	
0.	terhadap Kandungan N Akar Padi Umur 16 Hari	18
9	Pengaruh Interaksi Perlakuan Varietas Padi dan Konsentrasi Al	
	terhadap kandungan P Daun Padi Umur 16 Hari	20
10	Pengaruh Interaksi Perlakuan Varietas Padi dan Konsentrasi Al	
10.	terhadap Kandungan P Akar Padi Umur 16 Hari	22
11	Pengaruh Interaksi Perlakuan Varietas Padi dan Konsentrasi Al	
11.	terhadap Berat Kering Daun Padi Umur 16 Hari	22
12.	- 1 'D 11 W - 1 - D - J den V oncontroct Al	
12.	terhadap Berat Kering Akar Padi Umur 16 Hari	23
13.	- I to 11 VI ' D- J: Jan V annontract Al	
13.	terhadap Berat Kering Total Padi Umur 16 Hari	23
	tornadip Dorat Ixoning Total Tale	

DAFTAR GAMBAR

No	omor	Halamar
1.	Hubungan antara aktivitas spesifik nitrat reduktase daun varietas Grogol umur 16 hari dengan berat kering pada media tanam yang tercekam Al	
2.	Hubungan antara aktivitas spesifik nitrat reduktase daun varietas IR-64 umur 16 hari dengan berat kering pada media tanam yang	
3.	Hubungan antara aktivitas spesifik nitrat reduktase daun varietas Bengawansolo umur 16 hari dengan berat kering pada media tanam yang tercekam Al	
4.	Hubungan antara aktivitas spesifik nitrat reduktase akar varietas Grogol umur 16 hari dengan berat kering pada media tanam yang tercekam Al	
5.	Hubungan antara aktivitas spesifik nitrat reduktase akar varietas IR-64 umur 16 hari dengan berat kering pada media tanam yang tercekam Al	
6.	Hubungan antara aktivitas spesifik nitrat reduktase akar varietas Bengawansolo umur 1 hari dengan berat kering pada media tanam	
	yang tercekam Al	26

DAFTAR LAMPIRAN

	Halaman
Nomor Patalatasa (mmol/mg TPT/menit)	
Nomor 1. Data Aktivitas Spesifik Nitrat Reduktase (mmol/mg TPT/menit)	31
Daun Padi Umur 8 Hari	
2. Data Aktivitas Spesifik Nitrat Reduktase (minoring Transcription Daun Padi Umur 16 Hari	
the contract Podultage Initiality In Italying	
3. Data Aktivitas Spesifik Nitrat Reduktase (Illinois 16 Hari	37
1 17 (0/) In min man 101111 101111 1111111 1111111 1111111 111111	
4 (0/) laws cost 10110 P2(11 1111111 10 10111	
to Date Denst Varing (ar) Total Padi Umur 10 Hall	
	52
16 Hari	

RINGKASAN

Aktivitas Nitrat Reduktase Tiga Varietas Padi (Oryza sativa L.) pada Perlakuan Cekaman Alumunium¹

Oleh: Titin Yuliana² 9515101080

Penelitian dilaksanakan di Laboratorium Pemuliaan Tanaman Jurusan Agronomi Fakultas Pertanian dan di Laboratorium Pusat Penelitian Biologi Molekuler Universitas Jember, mulai bulan Juli 1999 sampai Februari 2000.

Tujuan penelitian adalah untuk mengetahui aktivitas nitrat reduktase tiga ketahanan alumunium (Al) varietas padi (tahan, moderat dan peka) pada media cekaman alumunium.

Penelitian ini dilaksanakan berdasarkan Rancangan Acak Lengkap (RAL) disusun secara faktorial yang terdiri dari dua faktor perlakuan yaitu faktor konsentrasi Al (terdiri dari tiga taraf yaitu 0 ppm, 30 ppm dan 60 ppm) dan faktor varietas padi (terdiri dari tiga taraf yaitu varietas Grogol/ tahan, IR-64/ moderat dan Bengawan Solo/peka). Parameter yang diamati meliputi aktivitas nitrat reduktase daun dan akar umur 16 hari, kandungan N jaringan daun dan akar padi umur 16 hari, kandungan P jaringan daun dan akar padi umur 16 hari dan berat kering daun dan akar padi umur 16 hari.

Hasil penelitian menunjukkan bahwa faktor konsentrasi Al memberikan pengaruh yang berbeda nyata terhadap parameter aktivitas nitrat reduktase daun padi umur 8 dan 16 hari dan berbeda tidak nyata terhadap parameter aktivitas nitrat reduktase akar padi umur 16 hari. Faktor varietas padi memberikan pengaruh yang berbeda nyata terhadap parameter aktivitas ntrat reduktase daun padi umur 8 dan 16 hari dan berbeda tidak nyata terhadap parameter aktivitas nitrat reduktase akar padi umur 16 hari. Sedangkan interaksi antara konsentrasi Al dan Varietas padi memberikan pengaruh yang berbeda tidak nyata terhadap parameter aktivitas nitrat reduktase daun dan akar padi baik pada umur 8 hari maupun 16 hari. Hasil penelitian ini menunjukkan bahwa varietas Grogol (tahan) adalah varietas yang mempunyai aktivitas nitrat reduktase paling tinggi dibandingkan IR-64 (moderat) dan Bengawan Solo (peka).

Jurusan Agronomi Fakultas Pertanian Universitas Jember, September 2000.

² Mahasiswa Jurusan Agronomi Fakultas Pertanian Universitas Jember.

¹ Judul Karya Tulis Ilmiah (Skripsi) pada Fakultas Pertanian Universitas Jember di bawah bimbingan Ir.Denna Eriani Munandar, MP (DPU) dan Ir.Setiyono, MP (DPA).

I. PENDAHULUAN

1.1 Latar Belakang Permasalahan

Salah satu dampak pembangunan yang kurang menguntungkan adalah berkurangnya luas areal lahan pertanian. Pengurangan luas areal tersebut selalu dirasakan walaupun telah dilakukan perluasan areal lahan pertanian, misalnya tepian pantai,sungai, dan pembukaan lahan rawa di pulau Jawa maupun luar Jawa. Hal ini disebabkan karena terdesak oleh sektor non pertanian seperti permukiman, perindustrian, jalan dan lain-lain (Soemartono, 1994).

Perubahan lahan pertanian menjadi lahan non pertanian (seperti perumahan, perindustrian dan lain-lain) mencapai lebih dari satu juta hektar pada 15 tahun terakhir ini, akibatnya lahan pertanian menjadi semakin sempit terutama lahan pertanian yang subur (Jaya, 1998). Usaha peningkatan produksi padi dapat dilakukan dengan perluasan areal pertanian, tetapi dengan semakin sempitnya areal lahan pertanian yang subur maka perluasan lebih diarahkan pada lahan marginal yang terutama terdapat di luar Jawa. Salah satunya dapat diusahakan pada lahan rawa yang dewasa ini diperkirakan terdapat 33,4 juta hektar. Sekitar 9 juta hektar dari lahan ini tersebar di pulau Sumatera, Kalimantan, Sulawesi dan Irian Jaya yang mempunyai potensi untuk pengembangan pertanian (Marni dkk., 1998 dan Hamsyah dkk., 1993).

Persediaan lahan basah yang berupa rawa pasang surut dan rawa non pasang surut (lebak) meliputi luas berturut-turut sekitar 24.7 juta ha dan 14.7 juta ha. Dari sekian luas tersebut, masih tersedia sekitar 5.6 juta ha yang berpotensi untuk dapat dikembangkan menjadi areal pertanian (Rusdi, 1989 *dalam* Soemartono, 1994). Masalah fisik dan kimiawi yang dijumpai pada lahan rawa tersebut antara lain adalah kemasaman, gambut tebal dan mentah, keracunan zat besi dan atau mineral lain, intrusi garam, genangan atau kelebihan air (pada periode tertentu).

Pada lahan masam, mineral yang banyak dijumpai adalah logam aluminium, yang dalam jumlah berlebihan akan bersifat meracun bagi tanaman sehingga dapat mempengaruhi pertumbuhan akar, bahkan dapat menyebabkan pertumbuhan tanaman

menjadi jelek dan mati (Ridwan dan Aswir, 1998; Minella dan Sorells, 1992 dan Radjagukguk, 1983).

Tanaman yang tumbuh pada lahan marginal terutama tanah masam yang mengandung beberapa logam berat (misalnya Al) yang beracun bagi tanaman menyebabkan tanaman kekurangan unsur hara tertentu yang dibutuhkan karena unsur hara yang ada diikat oleh ion alumunium yang bersifat aktif pada kondisi masam dan tercekam alumunium. Tanaman yang toleran terhadap kelebihan alumunium mampu (1) mengurangi kelebihan serapan alumunium oleh akar, atau (2) mempunyai berbagai cara untuk menetralkan pengaruh racun alumunium setelah diserap tanaman, salah satunya:

- a. Kemampuan tanaman merubah pH di daerah perakaran (rizosfir). Kelarutan Al sangat tergantung pada perubahan pH rizosfir. Mekanisme perubahan pH rizosfir dapat terjadi karena: (1) adanya perbedaan serapan kation dan anion oleh akar tanaman dimana bila kation yang lebih banyak diserap maka pH rizosfir akan menurun, sebaliknya pH rizosfir akan meningkat bila serapan anion berlebihan; atau (2) terjadinya hidrolisis/ polimerisasi Al menjadi bentuk-bentuk yang tidak toksik bagi tanaman.
- b. Kemampuan tanaman memilih dalam menyerap nitrat-amonium. Penyerapan nitrat yang berlebihan akan menyebabkan pH rizosfir meningkat sehingga kelarutan Al rendah (Galvez dan Clark, 1991).

Hasil penelitian Yang et al. (1980) terhadap 24 genotipe padi menunjukkan adanya perbedaan aktivitas nitrat reduktase daun bibit padi yang pengukurannya dilakukan sejak hari pertama sampai hari ke-19. Selain itu, terdapat beberapa keuntungan menggunakan parameter enzim nitrat reduktas sebagai parameter asimilasi nitrat untuk pertumbuhan dan kemampuan daya hasil tanaman, diantaranya: NR merupakan enzim pertama dalam jalur reduksi nitrat dan sekaligus mengendalikan kecepatan asimilasi nitrat dan NR juga mudah diinduksi aktivitasnya oleh substratnya yakni nitrat (Srivastava, 1980). Menurut Gardner et al. (1991), asimilasi nitrat menjadi molekul organik tergantung dari reduksi nitrat oleh enzim NR di dalam jaringan tanaman. Oleh sebab itu diduga ada perbedaan aktivitas nitrat reduktase pada berbagai

cekaman Al terhadap tiga varietas padi yang berbeda dan karenanya perlu dilakukan penelitian mengenai aktivitas nitrat reduktase pada beberapa varietas padi yang dihubungkan dengan media tanam yang tercekam Alumunium.

1.2 Intisari Permasalahan

Enzim Nitrat Reduktase (NR) merupakan faktor pembatas utama dalam proses berlangsungnya metabolisme nitrat (Warner dan Kleinkofs, 1992) sehingga mempunyai potensi untuk digunakan sebagai parameter asimilasi nitrat untuk pertumbuhan tanaman.

Pada tanaman padi yang tahan terhadap alumunium diduga mempunyai aktivitas nitrat reduktase yang lebih tinggi daripada tanaman yang peka. Oleh karena itu perlu dilakukan analisa terhadap aktivitas nitrat reduktase pada tanaman padi dengan cekaman alumunium.

1.3 Tujuan Penelitian

Penelitian ini bertujuan untuk mengetahui aktivitas nitrat reduktase tiga katagori ketahanan Alumunium (Al) varietas padi (tahan, moderat dan peka)pada berbagai media cekaman alumunium.

1.4 Kegunaan Penelitian

Hasil penelitian ini diharapkan dapat memberi informasi tentang aktivitas nitrat reduktase pada varietas padi yang tercekam alumunium.

1.5 Hipotesa

Terdapat perbedaan aktivitas nitrat reduktase tiga varietas padi yang mewakili tiga ketahanan Al (tahan, moderat dan peka) pada media tanam dengan konsentrasi Al yang berbeda yaitu pada varietas yang tahan terhadap Al mempunyai aktivitas nitrat reduktase yang paling tinggi diikuti varietas moderat dan yang paling rendah adalah varietas yang peka terhadap cekaman Al.

II. TINJAUAN PUSTAKA

2.1 Pertumbuhan dan Perkembangan Tanaman Padi

Tanaman padi adalah tanaman yang tergolong tanaman air. Sebagai tanaman air bukan berarti bahwa tanaman padi itu hanya bisa tumbuh diatas tanah yang terus menerus digenangi air, baik penggenangan itu terjadi secara alamiah, seperti pada tanah rawa, maupun penggenangan itu disengaja seperti pada tanah-tanah sawah. Tapi tanaman padi juga dapat tumbuh di tanah daratan atau tanah kering (Siregar, 1981).

Organ tanaman padi terdiri dari dua kelompok yakni organ vegetatif dan organ generatif (reproduktif). Bagian vegetatif meliputi akar, batang dan daun sedangkan bagian generatif terdiri dari malai, gabah dan bunga. Pertumbuhan tanaman padi dibagi menjadi tiga bagian, yaitu:

- Fase vegetatif, dimulai dari saat berkecambah sampai dengan inisiasi primordia malai. Fase ini ditandai dengan pembentukan anakan yang maksimal, bertambah tingginya tanaman, dan daun tumbuh secara teratur.
- 2. Fase reproduktif, dimulai dari inisiasi primordia malai sampai berbunga. Fase ini ditandai dengan memanjangnya ruas batang, berkurangnya jumlah anakan, munculnya daun bendera, bunting dan pembungaan. Pembungaan sendiri adalah stadia keluarnya malai sedangkan antesis mulai bila benang sari bunga paling ujung pada tiap cabang malai telah keluar.
- 3. Fase pemasakan, dimulai dari berbunga sampai masak panen. Fase pemasakan ini terdiri dari masak susu, masak tepung, menguning dan masak panen. Fase pemasakan juga ditandai dengan menuanya daun dan pertumbuhan biji/ gabah, yaitu bertambahnya ukuran biji, berat, dan perubahan warna (Taslim dkk, 1989).

2.2. Mekanisme Keracunan Alumunium dan Peranan Enzim Nitrat Reduktase

Alumunium merupakan logam yang dapat berinteraksi dengan senyawa organik dan anorganik tanah pada pH kurang dari 5,5 (Soemartono,1994). Apabila suatu tanaman keracunan Alumunium, gejala awal yang tampak adalah terhambatnya pertumbuhan akar, hal itu menjadikan akar tersebut tidak efektif dalam menyerap unsur

hara dan air. Menurut Marschner (1986) penurunan kemasaman dari pH 7,00 sampai di bawah pH 5,00 dan adanya logam berat Alumunium menyebabkan beberapa unsur hara menjadi terhambat penyerapannya oleh akar tanaman, karena Al merupakan kation yang bersifat aktif dan mampu berikatan dengan anion.

Pada tanaman yang tahan terhadap cekaman Al, tanaman tersebut mampu mengeluarkan senyawa organik melalui akar, yaitu asam malat, asam sitrat dan asam suksinat yang mampu menchelat atau menyelimuti Al menjadi suatu senyawa yang tidak beracun bagi tanaman. Berdasarkan penelitian Delhaize et al. (1993) pada tanaman gandum (*Triticum aestivum* L.) yang peka terhadap keracunan Alumunium apabila ditumbuhkan pada media atau larutan yang mengandung Alumunium, kemudian ditambahkan salah satu asam-asam organik, maka tanaman yang semula peka terhadap keracunan Al menjadi tahan terhadap Al, namun bersifat sementara sampai jumlah asam organik berkurang, maka tanaman tersebut menjadi peka kembali.

Batas kritis keracunan Alumunium untuk tanaman padi menurut Nasution (1992) dalam larutan hara bervariasi mulai dari 1 ppm sampai 100 ppm. Keragaman tersebut tergantung pada varietas yang digunakan dan total konsentrasi Alumunium yang diperlukan. Apabila konsentrasi Alumunium rendah maka batas keracunan Alumunium juga rendah, demikian pula sebaliknya. Pada beberapa kultivar padi gogo dengan konsentrasi Alumunium dalam media larutan hara Yoshida ternyata terdapat variasi tanggapan yang berbeda. Berdasarkan analisis relatif total panjang akar (cm) dan panjang daun (cm) maka kultivar padi gogo Hawarabunar, Azusena dan IAC-3 menunjukkan genotipe yang tahan terhadap cekaman Alumunium sampai 60 ppm sedangkan varietas GH 332 dan Ranau ketahanannya moderat, dan varietas IR-36 menunjukkan genotipe dengan ketahanan peka. Oleh karena itu Nasution (1992) menganjurkan bahwa jumlah konsentrasi Alumunium sampai 60 ppm sudah dapat digunakan untuk membedakan ketahanan tanaman padi terhadap cekaman Alumunium.

Menurut Salisbury dan Ross (1995) terdapat saling ketergantungan antara aktivitas akar dan tajuk. Asimilasi nitrat menjadi molekul organik itu sendiri tergantung dari reduksi nitrat oleh enzim NR di dalam jaringan tanaman (Gardner et al., 1991). Akar beberapa tumbuhan dapat mensintesis semua nitrogen organik yang diperlukan

dari nitrat (NO₃⁻), sedangkan akar tumbuhan lainnya bergantung pada tajuk untuk memenuhi kebutuhan nitrogen organiknya. Bukti tentang hal ini berasal dari dua macam kajian. Kajian pertama, tumbuhan dibiarkan menyerap NO₃⁻, kemudian batangnya dipotong dan cairan xilemnya ditampung dan dianalisis untuk melihat apakah mengandung NO₃⁻. Pada kajian kedua, aktivitas nitrat reduktase di akar dan di tajuk (terutama daun) dibandingkan. Asumsi yang digunakan adalah bahwa sebagian besar reduksi NO₃⁻ terjadi di tempat (akar atau tajuk) berlangsungnya sebagian besar aktivitas nitrat reduktase. Reduksi nitrat terjadi dalam dua reaksi yang berbeda yang dikatalisis oleh enzim yang berlainan. Reaksi pertama dikatalisis oleh nitrat reduktase (NR), reaksi ini terjadi dalam sitosol diluar setiap organela. Enzim ini mengangkut 2 elektron dari NADH atau NADPH pada proses fotosintesis. Hasilnya berupa nitrit (NO₂⁻), NAD⁺ (atau NADP⁺) dan H₂O:

$$NO_3^- + NADH + H^+ NR NO_2^- + NAD + H_2 O$$

Reaksi kedua adalah pengubahan nitrit menjadi NH₄⁺. Nitrit yang ada di sitosol akibat kerja nitrat reduktase diangkut ke dalam kloroplas di daun atau ke dalam proplastid di akar tempat reduksi selanjutnya menjadi NH₄⁺ berlangsung, yang dikatalisis oleh nitrit reduktase. Di daun reduksi NO₂⁻ menjadi NH₄⁺ memerlukan enam elektron yang diambil dari H₂ O pada sistem pengangkutan elektron non siklik kloroplas. Reaksinya adalah sebagai berikut:

$$NO_2^+ 3H_2 O + 2H^+ + 6H^+ + cahaya - NiR > NH_4^+ + 1,5O_2 + 2H_2 O$$
 (Salisbury and Ross, 1995).

Asam malat, asam suksinat dan asam sitrat dalam keadaan dicekam atau tidak dicekam Alumunium akan dikeluarkan tanaman, baik pada tanaman peka maupun tahan. Hal ini berdasarkan penelitian (Raven, 1988 <u>dalam</u> Salisbury and Ross, 1995) bahwa pada proses reduksi NO₃ menjadi NH₄ digunakan H lebih banyak daripada elektron. Penggunaan H ini meningkatkan pH sel. Penetralan pH dapat terjadi ketika NH₄ berubah menjadi protein. Pada batang dan daun, penggantian ion H terjadi oleh

produksi asam malat dan asam lainnya dari gula atau pati. Sebagian anion malat yang dihasilkan selama proses penetralan akan diangkut kembali lewat floem ke akar.

Reduksi nitrat dikatalisis oleh Nitrat Reduktase (NR), dimana aktivitas NR sendiri dipengaruhi oleh beberapa faktor diantaranya laju sintesis dan laju perombakan oleh enzim penghancur protein. Selain itu tingkat NO₃ yang tinggi di sitosol juga meningkatkan aktivitas NR. Aktivitas NR sendiri sering mempengaruhi laju sintesis protein dalam tumbuhan yang menyerap NO₃ sebagai sumber nitrogen utama (Salisbury and Ross, 1995).

produksi asam malat dan asam lainnya dari gula atau pati. Sebagian anion malat yang dihasilkan selama proses penetralan akan diangkut kembali lewat floem ke akar.

Reduksi nitrat dikatalisis oleh Nitrat Reduktase (NR), dimana aktivitas NR sendiri dipengaruhi oleh beberapa faktor diantaranya laju sintesis dan laju perombakan oleh enzim penghancur protein. Selain itu tingkat NO₃ yang tinggi di sitosol juga meningkatkan aktivitas NR. Aktivitas NR sendiri sering mempengaruhi laju sintesis protein dalam tumbuhan yang menyerap NO₃ sebagai sumber nitrogen utama (Salisbury and Ross, 1995).

III. METODE PENELITIAN

3.1 Tempat dan Waktu Penelitian

Penelitian dilaksanakan di Laboratorium Pemuliaan Tanaman Jurusan Agronomi Fakultas Pertanian Universitas Jember dan Laboratorium .Pusat Penelitian Biologi Molekuler Universitas Jember. Penelitian dilakukan mulai bulan Juli 1999 sampai Februari 2000.

3.2 Alat dan Bahan Penelitian

3.2.1 Alat Penelitian

Alat yang digunakan dalam penelitian meliputi : bak plastik berlubang, kertas merang, petridish, erlenmeyer, gelas ukur 1000 cc dan 100 cc, pH meter, pipet, pinset, timbangan analitis, spatula, aerator, selang plastik, kertas milimeter, alat titrasi, spektrofotometer, tabung reaksi, kuvet dan lain-lain.

3.2.2 Bahan Penelitian

Bahan yang diperlukan adalah benih padi varietas Grogol, IR-64, Bengawan Solo. Bahan kimia untuk titrasi adalah 0.5 ml 1% sulfanilamida dalam 1.5 N HCl, 0.5 ml 0,02 % N-Napthalinediamidedichloride dalam 0,1N HCL, buffer ekstraksi berupa sodium fosfat yang terdiri atas 50 mM Na Phosphate, 1 mM EDTA, 10 mM MgSO₄, 5 mM β-ME, 0.5 mM PMSF, dan bahan untuk pengukuran aktivitas NR adalah buffer 0.1 M K-Phosphate, KNO₃ 0.1 M, NADH dan NaNO₃ (20 nmol/L).

Bahan lain yang diperlukan dalam penelitian ini adalah NaOH 1N, HCl 1N, aqudest, larutan Yoshida dengan komposisi sebagai berikut: NH₄NO₃ 22.868 gr, NaH₂O₄.H₂O 1.78 gr, KCl 15.253 gr, CaCl₂ 11.098 gr, MgSO₄.H₂O 40.542 gr, ZnSO₄.5H₂O 3.772 gr, (NH₄).6Mo₇O₂₄.4H₂ 0.608 mg, MnSO₄.4H₂O 2.006 mg, H₃BO₃ 1.1439 mg, CuSO₄ 0.0255 mg dan masing-masing senyawa tersebut dilarutkan dalam 1 liter aquadest, AlCl₃ konsentrasi 30 ppm dan 60 ppm.

3.3 Metode Penelitian

Penelitian yang dilakukan menggunakan Rancangan Acak Lengkap (RAL) disusun secara faktorial (3 x 3) yang terdiri atas dua faktor dengan dua ulangan.

Adapun macam perlakuan adalah sebagai berikut :

1. Faktor konsentrasi alumunium, terdiri atas tiga taraf yaitu :

 $A_1 = 0 ppm$

 $A_2 = 30 \text{ ppm}$

 $A_3 = 60 \text{ ppm}$

2. Faktor varietas padi yang mewakili katagori ketahanan (Darpining dkk., 1999), terdiri atas tiga macam yaitu:

B₁ = Varietas Grogol (Tahan)

B₂ = Varietas IR-64 (Moderat)

B₃ = Varietas Bengawan solo (Peka)

Model matematika rancangan penelitian yang digunakan menurut Yitnosumarto (1991) adalah sebagai berikut :

Yijk =
$$\mu + (A)i + (B)j + BjAi + \theta ijk$$

Dimana :

Yijk = nilai pengamatan untuk faktor konsentrasi alumunium pada taraf ke-i, faktor varietas padi taraf ke-j dan ulangan ke-k

μ = nilai tengah umum

Ai = pengaruh faktor konsentrasi alumunium (faktor A) pada taraf ke-i

Bj = pengaruh faktor varietas padi (faktor B) pada taraf ke-j

BjAi = pengaruh tanggapan dari faktor varietas ke-j dengan faktor cekaman alumunium pada taraf ke-i

θijk = galat percobaan untuk faktor A taraf ke-i dan faktor B taraf ke-j pada ulangan ke-k

Hasil penelitian dianalisa dengan menggunakan sidik ragam. Apabila terdapat pengaruh nyata, maka untuk membedakan nilai tengah antar perlakuan digunakan uji jarak berganda Duncan taraf 5%.

3.4 Pelaksanaan Penelitian

3.4.1 Perkecambahan Benih

Benih padi dimasukkan dalam air untuk memperoleh benih padi yang baik dan seragam. Benih yang digunakan adalah benih yang tenggelam. Benih padi ini kemudian dikecambahkan selama 6 hari dalam petridish yang telah dilapisi kertas merang basah.

3.4.2 Pemindahan Kecambah ke Bak Plastik

Kecambah yang berumur 6 hari dipindahkan dalam bak plastik berlubang yang dibawahnya terdapat bak plastik berisi 7 liter larutan Yoshida. Varietas yang ditanam mewakili kategori ketahanan, yaitu Grogol (tahan), IR-64 (moderat) dan Bengawan Solo (peka) dan pH media dibuat sama yaitu 4.5. Jadi, ada tiga bak, tiap satu bak berisi tiga varietas sebanyak 180 kecambah. Larutan Yoshida diberi perlakuan tanpa aluminium (0 ppm), dan dicekam aluminium dengan konsentrasi aluminium 30 ppm dan 60 ppm dari Al₂(SO₄)₃18H₂O.

3.4.3 Pengukuran Aktivitas Enzim Nitrat Reduktase

Pengukuran aktivitas enzim nitrat reduktase yaitu dengan cara mencampurkan ekstrak daun (sampel) 0,2 ml yang ditambah dengan larutan penguji yang terdiri dari 0,25ml 0,1M K phosphat buffer pH 7,5 , 0,1ml 0,1M KNO3, 0,1ml NADH 5mM dan 0,35 aquadest sehingga total volume adalah 1ml. Campuran tersebut divortek dan diinkubasikan pada suhu 32°C selama 0, 10 dan 20 menit. Setelah inkubasi, aktivitas enzim dihentikan dengan menambahkan 0,5ml 1% Sulfanilamida dalam 1,5 N HCl dan 0,5ml 0,02% N-Napthylethylenediaminedichloride. Perubahan warna ditunggu selama 30 menit, setelah itu diukur aktivitas enzimnya dengan melihat besarnya nitrit yang terbentuk dengan menggunakan spektrofotometer pada panjang gelombang 540 nm.

Besarnya aktivitas nitrat reduktase dihitung dengan membandingkan standart nitrit 20 nmol dengan interval 0 ml, 0.05 ml, 0.1 ml, 0.15 ml, 0.2 ml.

3.4.4 Penentuan Kandungan N Jaringan Tanaman

Penentuan kandungan N jaringan tanaman menggunakan metode Kjeldhal yaitu dengan cara memipet 50 ml cairan destruksi (asam sulfat 0.05 N) pekat ke dalam labu didih, ditambah 1 sendok batu didih, diencerkan dengan air suling sampai 100 ml, lalu ditambah 15 NaOH 30% dan dihubungkan dengan alat pendingin. Disuling selama 10 menit setelah tetesan pertama jatuh. Sulingan ditampung dalam erlenmeyer 100 ml yang berisi 20 ml asam borat 1% dan 3 tetes penunjuk campuran (hijau bromo kresol dan merah metyl yang dilarutkan dalam etylalkohol 95%). Amoniak yang tersuling dititar dengan 0.05 N H₂SO₄ sampai pada perubahan warna dari hijau ke merah. Cara menghitung kandungan N dengan menggunakan rumus:

N(%) = ml contoh - ml blanko x berat setara x 5 x 100 x faktor koreksi Miligram contoh

3.4.5 Penentuan Kandungan P Jaringan Tanaman

Penentuan kandungan P jaringan tanaman menggunakan metode kolorimetri yaitu dengan cara memipet 5 ml cairan destruksi (asam sulfat 0.15 N) encer ke dalam erlenmeyer 50 ml. Untuk penetapan deret standart P, dimana standart P ini diperoleh dengan cara menimbang 2.1952 gr KH₂PO₄ kering oven (105°C selama 2 jam) dan diencerkan dengan air suling sampai 1000 ml. Larutan standart itu dipipet masingmasing 5 ml standart P ke dalam erlenmeyer 50 ml. Ditambah 20 ml pereaksi campuran P dan dikocok. Setelah 15 menit diukur dengan spektrofotometer dengan filter 693 nm. Cara menghitung kandungan P dengan menggunakan rumus :

 $P(\%) = ppm kurva \times 0.1 \times faktor koreksi$

3.5 Parameter Pengamatan

Parameter diamati dengan mengambil tanaman dari masing-masing varietas yang berumur 8 dan 16 hari setelah perlakuan, sebagai berikut :

- 1. Aktivitas nitrat reduktase di daun umur 8 hari.
- 2. Aktivitas nitrat reduktaser di daun umur 16 hari.
- 3. Aktivitas nitrat reduktase di akar umur 16 hari.
- 4. Kandungan N jaringan daun dan akar padi umur 16 hari.
- 5. Kandungan P jaringan daun dan akar padi umur 16 hari.
- 6. Berat kering daun dan akar padi umur 16 hari

IV. HASIL DAN PEMBAHASAN

4.1 Aktivitas Nitrat Reduktase (ANR) Daun Padi

Pada analisa varian (lampiran 1), rata-rata aktivitas nitrat reduktase daun padi umur 8 hari menunjukkan bahwa perlakuan konsentrasi alumunium (A) dan perlakuan varietas (B) berbeda sangat nyata, tetapi interaksi antara konsentrasi alumunium dan varietas (AB) tidak menunjukkan beda nyata.

Bardasarkan uji Duncan taraf 5% pada perlakuan konsentrasi alumunium (tabel 1) diketahui bahwa konsentrasi 30 ppm Al memberikan nilai aktivitas nitrat reduktase (NR) yang paling tinggi dibandingkan dengan konsentrasi 0 ppm Al dan 60 ppm Al.

Tabel 1. Aktivitas nitrat reduktase daun padi umur 8 hari pada perlakuan konsentrasi Al

Konsentrasi Alumunium	Aktivitas NR (µmol/µgTPT/menit)
0 ppm	1.329 b
30 ppm	1.792 a
60 ppm	0.938 b

Keterangan: Angka yang diikuti huuf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Uji Duncan taraf 5% (tabel 2) pada perlakuan varietas, menunjukkan bahwa varietas Grogol berbeda nyata dengan varietas IR-64 dan Bengawan Solo sedangkan antara varietas IR-64 dan varietas Bengawan Solo berbeda tidak nyata. Pada perlakuan varietas ini, varietas Grogol mempunyai aktivitas NR yang paling tinggi dibandingkan dengan varietas IR-64 dan Bengawan Solo.

Tabel 2. Aktivitas nitrat reduktase daun padi umur 8 hari pada perlakuan varietas

Varietas Padi	Aktivitas NR (µmol/µgTPT/menit)
Grogol	2.278 a
IR-64	0.941 h
B.Solo	0.840 b

Keterangan: Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Parameter aktivitas nitrat reduktase daun padi umur 16 hari dalam analisa varian (lampiran 2) menunjukkan bahwa pada perlakuan konsentrasi alumunium (A) dan perlakuan varietas (B) berbeda sangat nyata tetapi pada interaksi perlakuan konsentrasi alumunium dan varietas padi (AB) menunjukkan berbeda tidak nyata.

Uji jarak berganda Duncan taraf 5% terhadap pengaruh perlakuan konsentrasi alumunium (tabel 3) menunjukkan bahwa perlakuan konsentrasi 30 ppm Al mempunyai aktivitas nitrat reduktase yang paling tinggi dibandingkan dengan konsentrasi 0 ppm dan 60 ppm Al.

Tabel 3. Aktivitas nitrat reduktase daun padi umur 16 hari perlakuan konsentrasi Al

Ronschilasi Alumunium	Aktivitas NR (µmol/µgTPT/menit
0 ppm	0.799 b
30 ppm	0.919 a
60 ppm	0.672 b

Keterangan: Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Hasil uji jarak berganda Duncan pada taraf 5% terhadap pengaruh perlakuan varietas dapat dilihat pada tabel 4. Pada perlakuan varietas Grogol menunjukkan berbeda nyata dengan varietas IR-64 dan Bengawan Solo, sedangkan antara varietas IR-64 dan varietas Bengawan Solo tidak menunjukkan beda nyata. Aktivitas nitrat reduktase yang paling tinggi pada perlakuan varietas ini adalah varietas Grogol, diikuti dengan varietas IR-64 dan yang paling rendah adalah varietas Bengawan Solo.

Tabel 4. Aktivitas nitrat reduktase daun padi umur 16 hari pada perlakuan varietas

Varietas Padi	Altivita ND (
Grogol	Aktivitas NR (μmol/μgTPT/menit)
IR-64	1.668 a
	0.396 b
B.Solo	0.326 b
on · Analaa 1'11 .	

Keterangan: Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Pengaruh perlakuan varietas pada hasil uji jarak berganda Duncan taraf 5% (tabel 2 dan tabel 4) menunjukkan bahwa varietas Grogol mempunyai aktivitas NR yang

Parameter aktivitas nitrat reduktase daun padi umur 16 hari dalam analisa varian (lampiran 2) menunjukkan bahwa pada perlakuan konsentrasi alumunium (A) dan perlakuan varietas (B) berbeda sangat nyata tetapi pada interaksi perlakuan konsentrasi alumunium dan varietas padi (AB) menunjukkan berbeda tidak nyata.

Uji jarak berganda Duncan taraf 5% terhadap pengaruh perlakuan konsentrasi alumunium (tabel 3) menunjukkan bahwa perlakuan konsentrasi 30 ppm Al mempunyai aktivitas nitrat reduktase yang paling tinggi dibandingkan dengan konsentrasi 0 ppm dan 60 ppm Al.

Tabel 3. Aktivitas nitrat reduktase daun padi umur 16 hari perlakuan konsentrasi Al

Konsentrasi Alumunium	Aktivitas NR (µmol/µgTPT/menit
0 ppm	0.799 b
30 ppm	0.919 a
60 ppm	0.672 b

Keterangan: Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Hasil uji jarak berganda Duncan pada taraf 5% terhadap pengaruh perlakuan varietas dapat dilihat pada tabel 4. Pada perlakuan varietas Grogol menunjukkan berbeda nyata dengan varietas IR-64 dan Bengawan Solo, sedangkan antara varietas IR-64 dan varietas Bengawan Solo tidak menunjukkan beda nyata. Aktivitas nitrat reduktase yang paling tinggi pada perlakuan varietas ini adalah varietas Grogol, diikuti dengan varietas IR-64 dan yang paling rendah adalah varietas Bengawan Solo.

Tabel 4. Aktivitas nitrat reduktase daun padi umur 16 hari pada perlakuan varietas

Aktivitas NP (
Aktivitas NR (μmol/μgTPT/menit)
1.668 a
0.396 в
0.326 b

Keterangan: Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Pengaruh perlakuan varietas pada hasil uji jarak berganda Duncan taraf 5% (tabel 2 dan tabel 4) menunjukkan bahwa varietas Grogol mempunyai aktivitas NR yang

paling tinggi dibandingkan dengan varietas IR-64 dan varietas Bengawan Solo. Varietas Grogol merupakan varietas yang tahan terhadap cekaman alumunium dibandingkan dengan varietas IR-64 dan varietas Bengawan Solo. Hal ini diperkuat dengan hasil penelitian Darpining dkk. (1999) bahwa varietas Grogol (tahan) mempunyai berat brangkasan segar dan brangkasan kering lebih besar daripada varietas IR-64 dan Bengawan solo. Selain itu diduga bahwa pada tanaman yang tahan terhadap alumunium (Grogol) mempunyai berbagai cara untuk menetralkan pengaruh racun alumunium setelah diserap. Menurut Haynes (1990) dalam Anwar dkk (1996) bahwa tanaman yang tahan mampu menetralkan pengaruh racun alumunium dengan cara merubah pH rizosfir (daerah perakaran) mendekati pH netral (pH 6.5 – 7.5). Kelarutan alumunium sangat tergantung pada perubahan pH rizosfir. Mekanisme perubahan pH sendiri terjadi karena (1) perbedaan serapan kation dan anion oleh akar tanaman, (2) terjadinya hidrolisis/polimerisasi alumunium menjadi bentuk-bentuk yang tidak toksik bagi tanaman (Marschner, 1991 dalam Anwar dkk., 1996).

Hasil uji jarak berganda Duncan taraf 5% terhadap pengaruh perlakuan konsentrasi alumunium (tabel 1 dan tabel 3) menunjukkan bahwa konsentrasi 30 ppm Al mempunyai aktivitas NR yang paling tinggi dibandingkan dengan 0 ppm dan 60 ppm Al. Konsentrasi alumunium yang tinggi menyebabkan pelukaan dan kerusakan pada jaringan tanaman. Alumunium dalam bentuk Al₃⁺ yang aktif pada pH asam mampu mengikat ion dalam bentuk anion, seperti nitrat (NO₃⁻) dan menghambat kation masuk ke dalam tubuh tanaman sehingga dengan keberadaan ion Al yang mampu menghambat kation masuk dalam tubuh tanaman menyebabkan unsur hara nitrat lebih mudah masuk (Huang dan Grunes, 1992).

Pada media 0 ppm Al aktivitas NR lebih rendah daripada media 30 ppm Al diduga karena pada 0 ppm tanaman lebih banyak menyerap amonium daripada nitrat sedangkan amonium berdasarkan penelitian Sugiharto (1996) dapat menekan aktivitas NR. Pada media 30 ppm Al aktivitas NR lebih tinggi daripada aktivitas NR pada media 60 ppm Al karena pada media tersebut konsentrasi alumunium sangat tinggi dan aktif sehingga alumunium yang diserap oleh tanaman dalam jumlah yang besar bersifat toksik

(meracun) bagi tanaman dan diduga hal itu dapat menurunkan aktivitas NR.. Baik NO₃ maupun NH₄⁺ dalam tanaman disintesa menjadi asam-asam amino dan selanjutnya disintesa menjadi protein. Dengan demikian, diasumsikan bahwa tingginya aktivitas NR pada media yang tercekam Al 30 ppm disebabkan karena banyaknya tanaman dalam menyerap N bentuk nitrat (NO₃) dan kemampuannya dalam memanfaatkan unsur tersebut.

4.2 Aktivitas Nitrat Reduktase (ANR) Akar Padi

Parameter aktivitas nitrat reduktase akar padi pada umur 16 hari dalam analisa varian (lampiran 3) menunjukkan berbeda tidak nyata pada perlakuan baik perlakuan konsentrasi alumunium (A), perlakuan varietas (B) maupun pada interaksi perlakuan varietas dengan konsentrasi alumunium (AB).

Tabel 5. Aktivitas nitrat reduktase akar padi umur 16 hari perlakuan konsentrasi Al

0	Aktivitas NR (µmol/µgTPT/menit
0 ppm 30 ppm	0.5335 a
60 ppm	0.6038 a
an : Angka yang diikuti buruf	0.4932 a

Keterangan: Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Tabel 6. Aktivitas nitrat reduktase akar padi umur 16 hari pada perlakuan varietas

Varietas Padi	Aktivita NB
Grogol	AKTIVITAS NR (µmol/µgTPT/menit)
IR-64	0.6267 a
B.Solo	0.4973 a
an : Angka yang diibuti l	0.5077 a

Keterangan: Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Hasil analisa varian aktivitas NR padi umur 16 hari menunjukkan hasil yang berbeda tidak nyata baik pada perlakuan alumunium, perlakuan varietas maupun interaksi kedua perlakuan, hal ini diduga karena reduksi nitrat lebih banyak terjadi pada jaringan daun meskipun pada jaringan akar juga terjadi (Robin et al., 1989 dalam

Sugiharto, 1996). Tetapi dari hasil penelitian beberapa peneliti mengatakan bahwa aktivitas nitrat reduktase lebih banyak terjadi pada jaringan daun. Seperti diungkapkan oleh Anderson dan Beardall (1991) bahwa pada beberapa jenis tanaman pangan 70-80% senyawa nitrogen yang terbawa ke daun akan direduksi dan diasimilasi menjadi glutamin. Warner dan Huffaker (1989) juga mengungkapkan bahwa selama ada sinar 80% reduksi nitrat terjadi dalam jaringan daun.

4.3 Kandungan N pada Jaringan Daun dan Akar Padi Umur 16 Hari

Pada analisa varian (lampiran 4), rata-rata kandungan N pada jaringan daun padi menunjukkan berbeda sangat nyata pada ragam perlakuan, baik perlakuan konsentrasi alumunium (A), perlakuan varietas (B) maupun interaksi perlakuan konsentrasi alumunium dan varietas padi (AB).

Hasil uji jarak berganda Duncan pada taraf 5% terhadap pengaruh interaksi perlakuan varietas padi dan konsentrasi Al terhadap kandungan N daun dapat dilihat pada tabel 7. Hampir semua kombinasi perlakuan berbeda nyata.

Tabel 7. Pengaruh interaksi perlakuan varietas padi dan konsentrasi alumunium terhadap kandungan N daun padi umur 16 hari

Varietas	Kandungan N (%) jaringan daun pada	a konsentrasi alumunium
Padi	0 ppm	30 ppm	60 ppm
Grogol	6.225 h	12.465 a	8.755 g
IR-64	9.635 d	10.320 b	9.805 c
B.Solo	9.450 e	8.925 f	10.330 b

Keterangan : Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Analisa varian kandungan N pada jaringan akar (lampiran 5) menunjukkan berbeda sangat nyata, baik pada perlakuan konsentrasi alumunium (A), perlakuan varietas (B), maupun pada interaksi perlakuan konsentrasi alumunium dengan varietas padi (AB).

Tabel 8. Pengaruh interaksi perlakuan varietas padi dan konsentrasi alumunium terhadap kandungan N akar padi umur 16 hari

Varietas	Kandungan N (%) jaringan akar pada	konsentrasi alumunium
Padi	0 ppm	30 ppm	60 ppm
Grogol	1.775 g	2.175 f	2.735 с
IR-64	3.155 b	3.325 a	3.145 b
B.Solo	2.805 c	2.615 d	2.275 e

Keterangan : Angka yang diikuti huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan taraf 5%.

Media tanam yang dibuat pada pH rendah (4.5) menyebabkan sebagian besar unsur hara yang dibutuhkan tanaman menjadi terhambat ketersediaannya. Berdasarkan penelitian Marschner (1986) bahwa rendahnya pH menyebabkan meningkatnya unsur hara dalam bentuk anion dan menekan unsur hara dalam bentuk kation.

Interaksi perlakuan antara varietas padi dan konsentrasi alumunium untuk parameter kandungan N daun pada media tanpa dicekam Al menunjukkan bahwa pada varietas IR-64 mempunyai kandungan N daun yang paling tinggi diikuti varietas Bengawan Solo dan varietas Grogol tetapi berdasarkan analisa aktivitas NR varietas Grogol adalah yang paling tinggi diikuti varietas IR-64 dan Bengawan Solo. Hal ini diduga karena varietas grogol yang termasuk katagori varietas tahan terhadap keracunan Al lebih mampu memenfaatkan unsur nitrogen (NO₃) yang diserap untuk proses metabolisme nitrat daripada varietas IR-64 dan Bengawan Solo yang tidak dapat atau kurang optimal dalam memanfaatkan unsur N (NO3) dalam tubuhnya disebabkan karena kondisi yang masam. Hal ini juga sesuai dengan penelitian Darpining dkk.(1999) bahwa tanaman padi varietas Grogol mempunyai berat brangkasan basah dan kering yang lebih tinggi daripada IR-64 dan Bengawan Solo. Sedangkan pada media yang tercekam 30 ppm Al, varietas Grogol mempunyai kandungan N yang paling tinggi diikuti varietas IR-64 dan Bengawan Solo. Tetapi pada media yang tercekam 60 ppm Al, varietas Grogol mempunyai kandungan N yang paling rendah, diikuti varietas IR-64 dan yang Paling tinggi kandungan N daunnya adalah varietas Bengawan Solo.

Kandungan N yang tinggi pada varietas Bengawansolo pada perlakuan 60 ppm Al tetapi aktivitas nitrat reduktase-nya paling rendah diduga adalah karena keberadaan ion alumunium dalam tubuh tanaman dalam jumlah yang besar sehingga bersifat toksik. Berdasarkan hasil penelitian Anwar dkk. (1996) bahwa tidak ditemukan pola khusus terhadap penyerapan nitrat dan amonium baik pada varietas yang tahan maupun yang peka. Dengan demikian diasumsikan bahwa rendahnya aktivitas nitrat reduktase pada varietas Bengawansolo yang termasuk katagori varietas peka terhadap keracunan Al adalah karena ketidakmampuan varietas ini (Bengawan Solo) untuk memanfaatkan nitrat yang diserap untuk proses metabolisme akibat keracunan alumunium. Konsentrasi Al 60 ppm pada media tanam menurut Nasution (1992) sudah dapat digunakan untuk membedakan ketahanan tanaman padi terhadap cekaman alumunium. Berdasarkan penelitian Darpining dkk (1998) yang menganalisa relatif total panjang akar dan panjang daun sehingga dapat dikelompokkan tanaman padi yang termasuk katagori tahan, moderat dan peka. Pengelompokan ini berdasarkan Nasution (1992), bahwa analisis relatif total panjang akar dan panjang daun dapat dikelompokkan menjadi 3, yaitu:

Untuk varietas IR-64 pada cekaman alumunium 60 ppm mempunyai kandungan N daun lebih rendah daripada varietas Bengawan Solo tetapi lebih tinggi daripada varietas Grogol sedangkan aktivitas nitrat reduktasenya lebih tinggi daripada varietas Bengawan Solo dan lebih rendah dari varietas Grogol. Data ini mendukung bahwa varietas IR-64 tergolong varietas moderat terhadap cekaman alumunium.

Hasil uji jarak berganda Duncan taraf 5% pada kandungan N jaringan akar pada pengaruh interaksi varietas padi dan konsentrasi alumunium menunjukkan bahwa angka hasil analisa (perhitungan) tidak stabil kadang naik dan kadang turun. Misalnya, pada saat padi tersebut ditanam pada media tanpa Al, kandungan N akar rendah kemudian

pada media 30 ppm Al kandungan N akarnya tinggi dan pada media 60 ppm Al kandungan N akarnya lebih tinggi atau pada saat padi tersebut ditanam pada media tanpa Al, kandungan N akarnya tinggi kemudian pada media 30 ppm Al kandungan N akarnya rendah dan pada media 60 ppm Al kandungan N akarnya tinggi lagi. Hal ini terjadi baik pada varietas Grogol, IR-64 maupun Bengawan Solo pada ketiga perlakuan (0 ppm, 30 ppm dan 60 ppm Al). Dikaitkan dengan aktivitas NR jaringan akar pada umur yang sama dimana hasil uji jarak berganda Duncan taraf 5% Aktivitas NR pada perlakuan konsentrasi Al dan perlakuan varietas padi berbeda tidak nyata, hal ini diduga akibat kandungan N pada jaringan akar yang tidak stabil.

4.4 Kandungan P Jaringan Daun dan Akar Padi Umur 16 Hari

Parameter kandungan P pada jaringan daun dan akar padi umur 16 hari dalam analisa varian menunjukkan berbeda sangat nyata, baik pada perlakuan konsentrasi alumunium (A), perlakuan varietas padi (B) maupun pada interaksi konsentrasi alumunium dengan varietas padi (lampiran 6 dan lampiran 7).

Pada media dengan pH rendah meningkatkan unsur hara dalam bentuk anion, dan menekan ketersediaan unsur hara dalam bentuk kation. Keadaan ini menyebabkan unsur hara P dalam bentuk phosphat (PO₄⁻) lebih banyak diserap oleh tanaman.

Tabel 9. Pengaruh interaksi perlakuan varietas padi dan konsentrasi alumunium terhadap kandungan P daun padi umur 16 hari

Kandungan P (%) jaringan daun pada konsentrasi Al Varietas Padi 0 ppm 30 ppm 60 ppm 0.535 0.510 0.425 b Grogol C 0.735 0.435 de IR-64 0.535 b a B. Solo 0.455 0.290 f 0.265 d

Keterangan: Angka yang diikuti huruf yang sama menunjukkian berbeda tidak nyata pada uji Duncan taraf 5%.

Hasil uji jarak berganda Duncan taraf 5% kandungan P daun dan akar terhadap pengaruh kombinasi perlakuan varietas padi dan konsentrasi alumunium (tabel 9 dan tabel 10), hampir semua interaksi perlakuan berbeda nyata, hanya sedikit yang berbeda tidak nyata.

Kandungan P jaringan daun pada perlakuan interaksi (tabel 9) pada media tanpa dicekam Al (0 ppm Al) lebih besar daripada media yang tercekam Al. Pada media tanpa cekaman, varietas IR-64 mempunyai kandungan P daun yangi paling tinggi, diikuti varietas Grogol dan Bengawan Solo, begitu pula pada media yang tercekam alumunium 30 ppm. Tetapi pada media yang dicekam Al 60 ppm menunjukkan bahwa varietas Grogol mempunyai nilai P daun yang paling tinggi, hal ini diasumsikan bahwa varietas ini adalah varietas yang paling mampu memanfaatkan unsur hara P. Keadaan ini ada hubungannya dengan pengaruh timbal balik antara pengambilan phospor dengan nitrogen (Dwijosaputro, 1988). Media tanam yang tercekam Al 60 ppm digunakan sebagai ukuran untuk melihat ketahanan varietas padi terhadap cekaman Al karena menurut Nasution (1992) konsentrasi Al 60 ppm sudah dapat digunakan untuk membedakan ketahanan tanaman terhadap cekaman alumunium. Berdasarkan penelitian Darpining dkk (1999) yang menganalisa perubahan nitrat pada media tiga varietas padi pada cekaman 60 ppm umur 15 hari yaitu varietas Grogol, IR-64 dan Bengawansolo yang masing-masing adalah 8µg/lt, 20.9µg/lt dan 32.7µg/lt. Hal ini menunjukkan bahwa pada varietas Grogol, nitrat diserap dan dimanfaatkan lebih banyak daripada varietas IR-64 dan Bengawan Solo. Asimilasi nitrogen (N) dalam tubuh tanaman untuk menjadi molekul organik tergantung dari reduksi nitrat (NO₃⁻) oleh enzim nitrat reduktase. Reduksi nitrat ini memerlukan elektron dan donor utama elektron ini adalah NADH atau NADPH hasil dari fotosintesis. Jadi reduksi NO3 tersebut membutuhkan energi (Gardner dkk., 1991) dan phospor digunakan untuk menghasilkan energi karna phospor merupakan komponen struktural di sejumlah senyawa penting; molekul pentransfer energi ADP, ATP, NAD dan NADPH. Jadi varietas Grogol adalah varietas yang paling tahan terhadap cekaman alumunium dibandingkan varietas IR-64 terlebih lagi varietas Bengawan Solo yang mempunyai kandungan P paling rendah. Hal ini juga dipertegas dengan hasil analisa aktivitas nitrat reduktase dimana varietas Grogol mempunyai aktivitas nitrat reduktase yang paling tinggi, diikuti varietas IR-64 dan yang paling rendah adalah varietas Bengawansolo.

Tabel 10. Pengaruh interaksi perlakuan varietas padi dan konsentrasi alumunium terhadap kandungan P akar padi umur 16 hari

Varietas Padi	Kandungan P (%) jaringan akar				pada konsentrasi A	
	0 ppm		30 ppm	12.	60 ppm	
Grogol	0.185	h	0.355	bc	0.340	d
IR-64	0.405	a	0.345	cd	0.365	b
B. Solo	0.200	g	0.220	f	0.245	e

Keterangan: Angka yang diikuti huruf yang sama menunjukkian berbeda tidak nyata pada uji Duncan taraf 5%.

Hasil analisa pada jaringan akar menunjukkan bahwa pada kondisi media tanpa dicekam alumunium, kandungan P lebih kecil dibandingkan dengan media yang tercekam alumunium kecuali pada varietas IR-64. Besarnya unsur P dalam jaringan akar ini diduga tidak dapat dimanfaatkan secara optimal karena keberadaan alumunium yang bersifat meracun pada tanaman sehingga proses metabolisme pun terganggu.

4.5 Berat Kering Daun dan Akar Padi Umur 16 Hari

Parameter berat kering pada daun, akar maupun berat kering total padi umur 16 hari dalam analisa varian menunjukkan berbeda sangat nyata, baik pada perlakuan konsentrasi alumunium (A), perlakuan varietas padi (B) maupun pada interaksi konsentrasi alumunium dengan varietas padi (lampiran 8, 9 dan 10).

Hasil uji jarak berganda Duncan pada taraf 5% terhadap pengaruh interaksi perlakuan dapat dilihat pada tabel 11, 12 dan 13.

Tabel 11. Pengaruh interaksi perlakuan varietas padi dan konsentrasi alumunium terhadap berat kering daun padi umur 16 hari

Varietas Padi	Berat kering daun padi (gram) pada konsentrasi Al					
	0 ppm		30 ppm		60 ppm	
Grogol	0.0182	a	0.0182	a	0.0177	b
IR-64	0.0180	a	0.0162	c	0.0158	c
B. Solo	0.0135	d	0.0122	e	0.0107	f

Keterangan: Angka yang diikuti huruf yang sama menunjukkian berbeda tidak nyata pada uji Duncan taraf 5%.

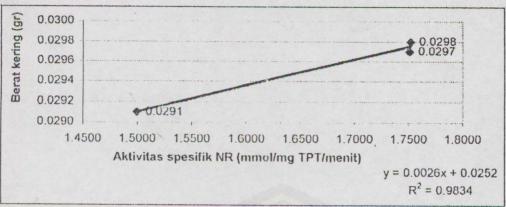
Tabel 12. Pengaruh interaksi perlakuan varietas padi dan konsentrasi alumunium terhadap berat kering akar padi umur 16 hari

Varietas Padi	Berat kering akar padi (gram) pada konsentrasi Al						
	0 ppm		30 ppm		60 ppm		
Grogol	0.0116	a	0.0116	a	0.0114	a	
IR-64	0.0116	a	0.0106	b	0.0104	b	
B. Solo	0.0093	c	0.0088	d	0.0079	e	

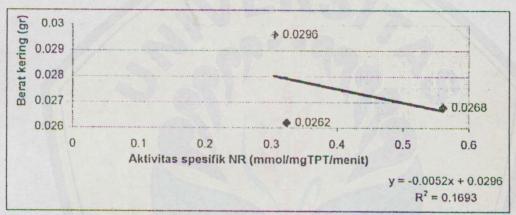
Keterangan: Angka yang diikuti huruf yang sama menunjukkian berbeda tidak nyata pada uji Duncan taraf 5%.

Tabel 13. Pengaruh interaksi perlakuan varietas padi dan konsentrasi alumunium terhadap berat kering total padi umur 16 hari

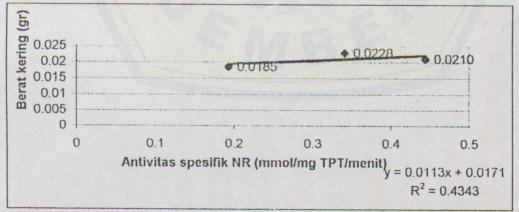
1	Varietas	Berat kering total padi (gram) pada konsentrasi Al						
	Padi			30 ppm		60 ppm		
(Grogol	0.0298	a	0.0297	a	0.0291	a	
	IR-64	0.0296	a	0.0268	b	0.0262	b	
I	3. Solo	0.0228	c	0.0210	d	0.0185	e	

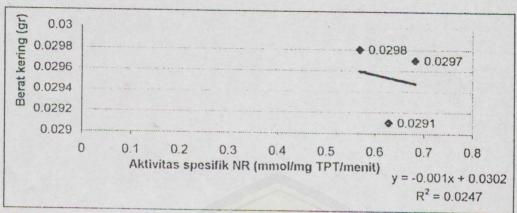

Keterangan: Angka yang diikuti huruf yang sama menunjukkian berbeda tidak nyata pada uji Duncan taraf 5%.

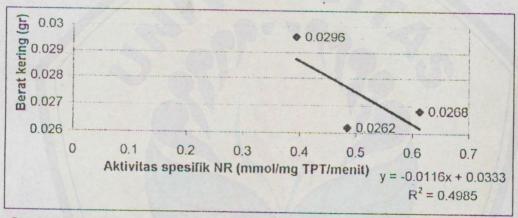
Parameter berat kering pada interaksi perlakuan antara varietas padi dan konsentrasi alumunium baik pada daun maupun pada akar menunjukkan bahwa pada media tanpa cekaman alumunium mempunyai berat kering lebih besar daripada media yang dicekam alumunium 30 ppm dan media yang dicekam alumunium 30 ppm mempunyai berat kering yang lebih besar daripada media yang tercekam 60 ppm. Hal ini menunjukkan bahwa konsentrasi alumunium sangat berpengaruh terhadap pertumbuhan tanaman. Semakin tinggi konsentrasi alumunium semakin besar pula pengaruh toksik yang ditimbulkan sehingga pertumbuhannya menjadi jelek atau bahkan mati. Sedangkan apabila dihubungkan dengan hasil analisa aktivitas nitrat reduktase dimana pada media 0 ppm Al, aktivitas nitrat reduktasenya lebih rendah daripada media 30 ppm Al tetapi lebih tinggi daripada media 60 ppm Al, hal ini diduga karena pada media 0 ppm Al tanaman lebih banyak menyerap amonium daripada nitrat. Amonium yang diserap oleh tanaman mengakibatkan penurunan aktivitas nitrat reduktase sehingga lebih rendah daripada yang tercekam 30 ppm Al. Tetapi meskipun demikian, penyerapan

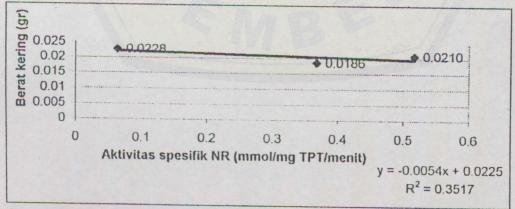

amonium yang menyebabkan menurunnya aktivitas nitrat reduktase tetap diikuti dengan peningkatan biomasa dan tinggi tanaman. Hal ini sesuai dengan penelitian yang telah dilakukan Sugiharto (1996) bahwa akumulasi amonium dalam tubuh tanaman dapat meningkatkan biomasa dan tinggi tanaman tetapi tidak diikuti dengan peningkatan aktivitas nitrat reduktase

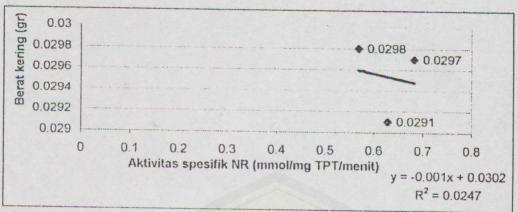
Uji jarak berganda Duncan taraf 5% terhadap pengaruh interaksi baik pada daun maupun pada akar menunjukkan bahwa varietas Grogol mempunyai berat kering paling besar diikuti varietas IR-64 dan Bengawansolo. Perbedaan tersebut membuktikan bahwa ketiga varietas padi tersebut mempunyai kemampuan (respon) yang berbeda terhadap ion alumunium. Pada varietas Grogol nilai berat kering pada media tanpa dicekam maupun media yang dicekam alumunium 30 ppm dan 60 ppm hampir sama. Sedangkan pada varietas IR-64 dan Bengawansolo pada media yang dicekam alumunium 60 ppm mengalami penurunan yang besar. Hal ini bila dikaitkan dengan analisa aktivitas nitrat reduktase membuktikan bahwa pada varietas tahan (Grogol) yang mempunyai berat kering paling tinggi juga mempunyai aktivitas nitrat reduktase yang tinggi pula. Varietas peka (Bengawansolo) yang mempunyai berat kering terendah mempunyai aktivitas nitrat reduktase yang rendah pula. Sedangkan varietas yang tergolong moderat (IR-64) mempunyai berat kering yang nilainya diantara varietas tahan dan varietas peka, dan besar aktivitas nitrat reduktase-nya juga diantara varietas tahan dan varietas peka.

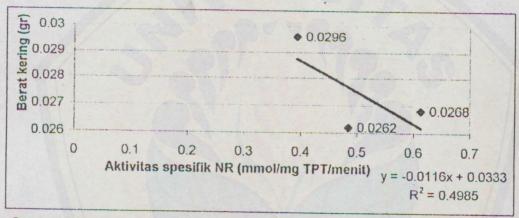

Untuk mengetahui hubungan antara aktivitas spesifik nitrat reduktase masingmasing varietas dengan berat kering pada tiga media tanam yang diperlakukan dapat dilihat pada gambar 1 sampai 6.

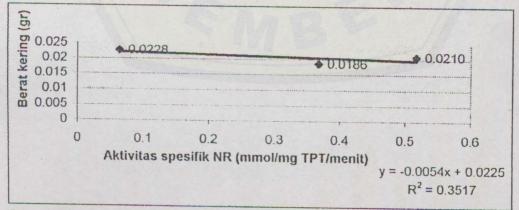

Gambar 1. Hubungan antara aktivitas spesifik nitrat reduktase daun varietas Grogol umur 16 hari dengan berat kering total pada tiga konsentrasi AI: 0.0298 (0 ppm A 0.0297 (30 ppm AI) dan 0.0291 (60 ppm AI)


Gambar 2. Hubungan antara aktivitas spesifik nitrat reduktase daun varietas IR-64 umur 16 hari dengan berat kering total pada tiga konsentrasi AI : 0.0296 (0 ppm AI), 0.0268 (30 ppm AI) dan 0.0262 (60 ppm AI)


Gambar 3. Hubungan antara aktivitas spesifik nitrat reduktase daun varietas B.Solo umur 16 hari dengan berat kering total pada tiga konsentrasi AI: 0.0228 (0 ppm AI), 0.0210 (30 ppm AI) dan 0.0185 (60 ppm AI)


Gambar 4. Hubungan antara aktivitas spesifik nitrat reduktase akar varietas Grogol umur 16 hari dengan berat kering total pada tiga konsentrasi Al : 0.0298 (0 ppm Al), 0.0297 (30 ppm Al) dan 0.0291 (60 ppm Al)


Gambar 5. Hubungan antara aktivitas spesifik nitrat reduktase akar varietas IR-64 umur 16 hari dengan berat kering total pada tiga konsentrasi AI : 0.0296 (0 ppm AI), 0.0268 (30 ppm AI) dan 0.0262 (60 ppm)


Gambar 6. Hubungan antara aktivitas spesifik nitrat reduktase akar varietas B.Solo umur 16 hari dengan berat kering total pada tiga konsentrasi AI: 0.0228 (0 ppm AI) 0.0210 (30 ppm AI) dan 0.0185 (60 ppm AI

Gambar 4. Hubungan antara aktivitas spesifik nitrat reduktase akar varietas Grogol umur 16 hari dengan berat kering total pada tiga konsentrasi AI : 0.0298 (0 ppm AI), 0.0297 (30 ppm AI) dan 0.0291 (60 ppm AI)

Gambar 5. Hubungan antara aktivitas spesifik nitrat reduktase akar varietas IR-64 umur 16 hari dengan berat kering total pada tiga konsentrasi AI: 0.0296 (0 ppm AI), 0.0268 (30 ppm AI) dan 0.0262 (60 ppm)

Gambar 6. Hubungan antara aktivitas spesifik nitrat reduktase akar varietas B.Solo umur 16 hari dengan berat kering total pada tiga konsentrasi AI: 0.0228 (0 ppm AI) 0.0210 (30 ppm AI) dan 0.0185 (60 ppm AI

V. KESIMPULAN

5.1 Kesimpulan

Hasil penelitian yang dilakukan dapat disimpulkan sebagai berikut :

- 1. Terdapat perbedaan aktivitas nitrat reduktase pada tiga katagori ketahanan varietas padi (tahan, moderat dan peka).
- Aktivitas nitrat reduktase daun padi umur 16 hari menunjukkan berbeda nyata dan yang paling tinggi adalah varietas Grogol (tahan) kemudian varietas IR-64 (moderat) dan yang paling rendah adalah varietas Bengawansolo sedangkan pada akar menunjukkan tidak berbeda nyata.
- 3. Aktivitas nitrat reduktase daun padi umur 16 hari perlakuan macam media menunjukkan berbeda nyata dan yang paling tinggi adalah media tanam dengan konsentrasi Al 30 ppm, diikuti media tanam dengan konsentrasi Al 0 ppm dan 60 ppm (paling rendah) sedangkan pada akar menunjukkan tidak berbeda nyata.

5.2 Saran

Berdasarkan penelitian yang telah dilakukan maka untuk melengkapi dan menyempurnakan hasil penelitian ini, perlu diadakan penelitian dengan memvariasi taraf konsentrasi alumunium pada berbagai stadia pertumbuhan tanaman padi untuk mengetahui besarnya pengaruh pada setiap stadia pertumbuhan.

DAFTAR PUSTAKA

- Anderson, J. W. and J. Beardall, 1991, Molecular Activity of Plant Cell, An Introduction to Plant Biochemistry Blackwell Scientific Publications, London Edinburg, 384P.
- Anwar, S., D.Sopandie, M.Jusuf dan S.Budiarti, 1996, Reduktase Nitrat Kedelai (Glycine max (L.) Merr.) yang Toleran dan Peka terhadap Cekaman Alumunium: Pendekatan dengan Antigen-Antibodi, Forum Pasca Sarjana IPB, Bogor: hal. 1-12
- Blum, A., 1988, *Plant Breeding On Stress Environment*, Agricultural Research Organization, Bat Dagan, Israel.
- Darpining, B. Santoso dan D. E. Munandar, 1998, *Identifikasi Ketahanan Beberapa Varietas Padi (Oryza sativa L.) terhadap Cekaman Alumunium*, Fakultas Pertanian, Universitas Jember, Jember.
- Delhaize, E., P.R. Ryan dan P.J. Randall, 1993, Aluminium Tolerance In Wheat (Triticum aestivum L.), II. Aluminium Stimulated Excretion of Malic Acid From Root Apices, Plant Physilogy 103: 695-702p.
- Dwidjoseputro, D., 1988, Pengantar Fisiologi Tumbuhan, Gramedia Jakarta, Jakarta, 29p.
- Fitter, A. H. dan R. K. M. Hay, 1992, Fisiologi Lingkungan Tanaman, Gadjah Mada University Press, Jakarta.
- Galvez, L. dan R.B. Clark, 1991, Nitrate and Ammonium Uptake Changes for Al-Tolerant and Al-Sensitive Sorghum Genotypes Grown with and Without Al, Plant and Soil 129:245-256.
- Gardner, F. P., R. B. Pearce and R. L. Mitcell, 1991, Fisiologi Tanaman Budidaya, H. Susilo (Terj.), Universitas Indonesia Press, Jakarta, 148p.
- Hamsyah, Inu G. Ismail, Suwarno, dan Wijaya, A., 1993, Sewindu Penelitian di Lahan Rawa, Badan Penelitian dan Pengembangan Pertanian Bogor, Bogor.
- Huang, J. W. and D. L. Grunes., 1992, Pottasium/ Magnesium Ratio on Alumunium Tolerance and Mineral Composition of Wheat Forage, Agronomy Journal 64: 643-650p.

- Jaya, 1998, "Menopang Swasembada Pangan". Dalam Semai (November, I) No.2. Jakarta: hal. 7-9.
- Marschner, H., 1986, Mineral Nutrition of Higher Plants, Academic Press, Harcourt Brace Javanovic Publisher, Berlin, New York, London, 649p.
- Marni, A.M., R. Asnawi dan Slameto, 1998, Kajian Daya Adaptasi Padi Baru Varietas Cibodas Terhadap Cekaman Air pada Tanah Podzolik Merah Kuning, Agrotropika, Lampung.
- Minella, E. and M. E. Sorrells, 1992, Aluminium Tolerance in Barley Genetics Relationships among Genotypes of Diverse Origin, Crop Science.32: 593-598.
- Nasution, I., 1992, Teknik Uji Toleransi Kultivar Padi Gogo terhadap Keracunan Alumunium, Seminar Hasil Penelitian Tanaman Pangan, Balai Penelitian Tanaman Pangan Bogor, 101-111p.
- Radjagukguk, B., 1983, Masalah Pengapuran Tanah Mineral di Indonesia (Ed)
 Radjagukguk dan Jutono, Prosiding Seminar Alternatif-Alternatif Pelaksanaan
 Program Pengapuran Tanah-Tanah Mineral Masam di Indonesia, Fakultas
 Pertanian Gadjah Mada, Yogyakarta.
- Ridwan dan Aswir, 1998, Pengelolaan Bahan Organik Untuk Tanaman Padi di Sawah Bukaan Baru, Balai Penelitian Tanaman Pangan, Padang.
- Salisbury, F. B. and C. W. Ross, 1995, Fisiologi Tumbuhan, Penerbit ITB, Bandung.
- Siregar, H., 1981, Budidaya Tanaman Padi Di Indonesia, Penerbit P.T.Sastra Hudaya Anggota IKAPI, Bogor.
- Soemartono, 1994, Cekaman Lingkungan, Tantangan Pemuliaan Tanaman Masa Depan. Makalah Forum Komunikasi Pemuliaan Tanaman Indonesia, Komisariat Jawa Timur, 6-7 Desember, 1994, Jember.
- Srivastava, H. S., 1980, Regulation of Ntrate Reductase Activity on Higher Plants, Phytochemistry, 19: 725-733.
- Sugiharto, B., 1996, Regulasi Ekspresi Gen pada Tanaman, Fakultas Pertanian Universitas Jember, Jember, 56p.

- Taslim H., S.Partohardjono, dan Djunainah, 1989, Bercocok Tanam Padi Sawah, Balai Penelitian dan Pengembangan Pertanian, Pusat Penelitian dan Pengembangan Tanaman Pangan Bogor, 482p.
- Warner, R. L. and R. C. Huffaker, 1989, Nitrate Transport is Independent of NADH and NADP(H) Nitrate Reductase In Barley Seedlings, Plant Physiol., 947-953.
- Yang, C. M. and J. M. Sung, 1980, Relation Between Nitrate Reductase Activity and Growth of Rice Seedling, Jour. Agric. Assoc., China, 111: 15-23.
- Yitnosumarto, 1993, Percobaan Perancangan Analisanya Dan Interpretasinya, Gramedia, Jakarta.

Lampiran 1. Data aktivitas spesifik nitrat reduktase (mmol/mg TPT/menit) daun padi umur 8 hari

Kombinasi	Ula	ngan	Total	Rata-rata
Perlakuan	1	11		
A1B1	2.1880	1.6980	3.8860	1.9430
A1B2	0.8130	1.2540	2.0670	1.0335
A1B3	1.3470	0.6760	2.0230	1.0115
A2B1	2.8610	2.7750	5.6360	2.8180
A2B2	1.6380	0.9590	2.5970	1.2985
A2B3	1.6580	0.8620	2.5200	1.2600
A3B1	1.9090	2.2390	4.1480	2.0740
A3B2	0.7810	0.2020	0.9830	0.4915
A3B3	0.2870	0.2120	0.4990	0.2495

Tabel dua arah untuk parameter aktivitas spesifik nitrat reduktase (mmol/mg TPT/menit)

daun padi umur 8 hari

Faktor	the same	Jumlah		
Α	B1	B2	B3	1
A1	3.8860	2.0670	2.0230	7.9760
A2	5.6360	2.5970	2.5200	10.7530
A3	4.1480	0.9830	0.4990	5.6300
Jumlah	13.6700	5.6470	5.0420	24,3590

Sidik ragam aktivitas spesifik nitrat reduktase daun padi umur 8 hari.

Sumber	DB	JK	KT	F-Hitung	F-Tabel	
Keragaman					5%	1%
Perlakuan	8	10.4090				
Α	2	2.1920	1.0960	8.0985**	4.26	8.02
В	2	7.7320	3.8660	28.5665**	4.26	8.02
AB	4	0.4840	0.1210	0.8941ns	3.63	6.42
Galat	9	1.2180	0.1353			
Total	17	11.6270				

Keterangan: **: Berbeda sangat nyata ns: Berbeda tidak nyata

31

Digital Repository Universitas Jember

Lampiran 1a. Uji jarak berganda Duncan taraf 5% terhadap data aktivitas nitrat reduktase (mmol/mgTPT/menit) daun padi umur 8 hari pada berbagai konsentrasi Al

Perlakuan	Rerata	SSR	LSR	Notasi
A2	1.7920	3.3400	0.5017	а
A1	1.3290	3.2000	0.4806	b
A3	0.9380			b
Se	0.1502			

Keterangan: Huruf yang sama pada kolom yang sama menunjukkan berbeda tidak nyata

Lampiran 1b. Uji jarak berganda Duncan taraf 5% terhadap data aktivitas nitrat reduktase (mmol/mgTPT/menit) daun padi umur 8 hari pada berbagai varietas padi

Perlakuan	Rerata	· SSR ······	-LSR	- Notasi
B1	2.2780	3.3400	0.5017	а
B2	0.9410	3.2000	0.4806	b
B3	0.8400			b
Se	0.1502			

Lampiran 2. Data aktivitas spesifik nitrat reduktase (mmol/mg TPT/menit) daun padi umur 16 hari

Kombinasi	Ular	ngan	Total	Rata-rata
Perlakuan	1	11		
A1B1	1.8920	1.6120	3.5040	1.7520
A1B2	0.2400	0.3680	0.6080	0.3040
A1B3	0.2020	0.4800	0.6820	0.3410
A2B1	1.7230	1.7790	3.5020	1.7510
A2B2	0.4370	0.6840	1.1210	0.5605
A2B3	0.4200	0.4680	0.8880	0.4440
A3B1	1.4820	1.5170	2.9990	1.4995
A3B2	0.3090	0.3370	0.6460	0.3230
A3B3	0.2750	0.1120	0.3870	0.1935

Tabel dua arah untuk parameter aktivitas spesifik nitrat reduktase (mmol/mg TPT/menit)

daun padi umur 16 hari

Faktor		Jumlah		
A	B1	B2	B3	
A1	3.5040	0.6080	0.6820	4.7940
A2	3.5020	1.1210	0.8880	5.5110
A3	2.9990	0.6460	0.3870	4.0320
Jumlah	10.0050	2.3750	1.9570	14.3370

Sidik ragam aktivitas spesifik nitrat reduktase daun padi umur 16 hari

Sumber			F-Hitung	F-Hitung F-Tab		
Keragaman			5%	1%		
Perlakuan	8	7.0720				
A	2	1.1820	0.5910	39.6644**	4.26	8.02
В	2	6.8420	3.4210	229.5973**	4.26	8.02
AB	4	0.0470	0.0118	0.7919ns	3.63	6.42
Galat	9	0.1340	0.0149			
Total	17	7.2060				

Keterangan: **: Berbeda sangat nyata ns: Berbeda tidak nyata

Lampiran 2a. Uji jarak berganda Duncan taraf 5% terhadap data aktivitas nitrat reduktase (mmol/mgTPT/menit) daun padi umur 16 hari pada berbagai konsentrasi Al

Perlakuan	Rerata	SSR	LSR	Notasi
A2	0.9190	3.3400	0.1663	a
A1	0.7990	3.2000	0.1594	b
A3	0.6720			b
Se	0.0498			

Keterangan: Huruf yang sama pada kolom yang sama menunjukkan berbeda tidak nyata

Lampiran 2b. Uji jarak berganda Duncan taraf 5% terhadap data aktivitas nitrat reduktase (mmol/mgTPT/menit) daun padi umur 16 hari pada berbagai varietas padi

Perlakuan	Rerata	SSR	LSR	Notasi
B1	1.6680	3.3400	0.1663	а
B2	0.3960	3.2000	0.1594	b
B3	0.3260			ь
Se	0.0498			4

ampiran 3. Data aktivitas spesifik nitrat reduktase (mmol/mg TPT/menit) akar padi umur 16 hari

Kombinasi	Ular	ngan	Total	Rata-rata
Perlakuan	1	11		
A1B1	0.4100	0.7270	1.1370	0.5685
A1B2	0.4000	0.3870	0.7870	0.3935
A1B3	0.3710	0.9060	1.2770	0.6385
A2B1	0.6100	0.7550	1.3650	0.6825
A2B2	0.5890	0.6360	1.2250	0.6125
A2B3	0.5340	0.4990	1.0330	0.5165
A3B1	0.6710	0.5850	1.2560	0.6280
A3B2	0.5010	0.4680	0.9690	0.4845
A3B3	0.4100	0.3240	0.7340	0.3670

Tabel dua arah untuk parameter aktivitas spesifik nitrat reduktase (mmol/mg TPT/menit)

akar padi umur 16 hari

Faktor	Faktor B			Jumlah
Α	B1	B2	B3	
A1	1.1370	0.7870	1.2770	3.2010
A2	1.3650	1.2250	1.0330	3.6230
A3	1.2560	0.9690	0.7340	2.9590
Jumlah	3.7580	2.9810	3.0440	9.7830

Sidik ragam aktivitas spesifik nitrat reduktase akar padi umur 16 hari

Y		DB JK	KT	F-Hitung _	F-Tabel	
					5%	1%
Perlakuan	8	0.1970				
Α	2	0.0380	0.0190	0.7983ns	4.26	8.02
В	2	0.0620	0.0310	1.3025ns	4.26	8.02
AB	4	0.0980	0.0245	1.0294ns	3.63	6.42
Galat	9	0.2140	0.0238		1/19	
Total	17	0.4110		NAME OF THE OWNER, THE		

Keterangan : ns : Berbeda tidak nyata

Lampiran 3a. Uji jarak berganda Duncan taraf 5% terhadap data aktivitas nitrat reduktase (mmol/mgTPT/menit) akar padi umur 16 hari pada berbagai konsentrasi Al

David	morning and	padi umur 1	o nari pada b	perbagai konse
Perlakuan	Rerata	SSR	LSR	Notasi
A2	0.6038	3.3400	0.2104	
A1	0.5335	3.2000	0.2015	а
A3	0.4932	0.2000	0.2015	a
Se	0.0630			a

Keterangan : Huruf yang sama pada kolom yang sama menunjukkan berbeda tidak nyata

Lampiran 3b. Uji jarak berganda Duncan taraf 5% terhadap data aktivitas nitrat reduktase (mmol/mgTPT/menit) akar padi umur 16 hari pada berbagai varietas padi

Porlaluses	F3		To Harr pada t	perbagai varie
Perlakuan	Rerata	SSR	LSR	Notasi
B1	0.6267	3.3400	0.2104	
B3	0.5077	3.2000	0.2015	а
B2	0.4973	0.2000	0.2015	а
Se	0.0630			а
1	0.0000			

Lampiran 4. Data kandungan N (%) jaringan daun padi umur 16 hari

Kombinasi	Ula	ngan	Padi umur 16 Total	Rata-rata
Perlakuan	1	11		ruta-rata
A1B1	6.2300	6.2200	12.4500	6.2250
A1B2	9.6300	9.6400	19.2700	9.6350
A1B3	9.4500	9.4500	18.9000	9.4500
A2B1	12.4600	12.4700	24.9300	12.4650
A2B2	10.3300	10.3100	20.6400	10.3200
A2B3	8.9300	8.9200	17.8500	8.9250
A3B1	8.7500	8.7600	17.5100	8.7550
A3B2	9.8000	9.8100	19.6100	9.8050
A3B3	10.3300	10.3300	20.6600	10.3300

Tabel dua arah untuk parameter kandungan N (%) jaringan daun padi umur 16 hari

B1	DO		Jumlah
	B2	B3	
2.4500	19.2700		E0 6200
4.9300	20 6400		50.6200
7.5100			63.4200
4.8900			57.7800 171.8200
	4.9300 7.5100	4.9300 20.6400 7.5100 19.6100	4.9300 20.6400 17.8500 7.5100 19.6100 20.6600

Sidik ragam kandungan N jaringan daun padi umur 16 hari

Sumber Keragaman	DB	JK	KT	F-Hitung	F-T	abel
Perlakuan	8	43.7182			5%	1%
Α	2	13.7175	6.8588	68588.0**	4.00	
В	2	1.7911	0.8955	8955.0**	4.26	8.02
AB	4	28.2092	7.0523	70523.0**	4.26 3.63	8.02
Galat	9	0.0005	0.0001	. 0020.0	3.03	6.42
Total	17 Borbodo	43.7182	6 8 Va			

Lampiran 4a. Uji jarak berganda Duncan taraf 5% terhadap data kandungan N (%) daun p umur 16 hari pada perlakuan interaksi antara varietas padi dan konsentrasi

Perlakuan	Rerata	SSR	LSR	Notasi
A2B1	12.4650	3.5200	0.0193	а
A3B3	10.3300	3.5200	0.0193	b
A2B2	10.3200	3.5200	0.0193	b
A3B2	9.8050	3.5000	0.0192	С
A1B2	9.6350	3.4700	0.0190	d
A1B3	9.4500	3.4100	0.0187	е
A2B3	8.9250	3.3400	0.0183	f
A3B1	8.7550	3.2000	0.0175	g
A1B1	6.2250			h
Se	0.0055			

Lampiran 5. Data kandungan N (%) jaringan akar padi umur 16 hari

Kombinasi	Ulai	ngan	Total	Rata-rata
Perlakuan	1	11		
A1B1	1.8600	1.6900	3.5500	1.7750
A1B2	3.1500	3.1600	6.3100	3.1550
A1B3	2.8000	2.8100	5.6100	2.8050
A2B1	2.1700	2.1800	4.3500	2.1750
A2B2	3.3300	3.3200	6.6500	3.3250
A2B3	2.6200	2.6100	5.2300	2.6150
A3B1	2.7300	2.7400	5.4700	2.7350
A3B2	3.1300	3.1600	6.2900	3.1450
A3B3	2.2800	2.2700	4.5500	2.2750

Tabel dua arah untuk parameter kandungan N (%) jaringan akar padi umur 16 hari

F	Faktor A		Jumlah		
		B1	B2	B3	
	A1	3.5500	6.3100	5.6100	15.4700
	A2	4.3500	6.6500	5.2300	16.2300
	A3	5.4700	6.2900	4.5500	16.3100
	Jumlah	13.3700	19.2500	15.3900	48.0100

Sidik ragam kandungan N jaringan akar padi umur 16 hari

Sumber	DB	JK	KT	F-Hitung	F-T	abel	
Keragaman					5%	1%	
Perlakuan	8	4.2347					
A	2	0.0716	0.0358	21.0588**	4.26	8.02	
В	2	2.9752	1.4876	875.0588**	4.26	8.02	
AB	4	1.1878	0.2970	174.7059**	3.63	6.42	
Galat	9	0.0153	0.0017				
Total	17	4.2500	Name of the second				

Lampiran 5a. Uji jarak berganda Duncan taraf 5% terhadap data kandungan N (%) akar pa umur 16 hari pada perlakuan interaksi antara varietas padi dan konsentrasi

Perlakuan	Rerata	SSR	LSR	Notasi
A2B2	3.3250	3.5200	0.1028	а
A1B2	3.1550	3.5200	0.1028	b
A3B2	3.1450	3.5200	0.1028	b
A1B3	2.8050	3.5000	0.1022	C
A3B1	2.7350	3.4700	0.1013	C
A2B3	2,6150	3.4100	0.0996	d
A3B3	2.2750	3.3400	0.0975	е
A2B1	2.1750	3.2000	0.0934	f
A1B1	1.7750			g
Se	0.0292			

Lampiran 6. Data kandungan P (%) jaringan daun padi umur 16 hari

Kombinasi	Ulai	ngan	Total	Rata-rata
Perlakuan	1	11		
A1B1	0.5000	0.5200	1.0200	0.5100
A1B2	0.7300	0.7400	1.4700	0.7350
A1B3	0.4600	0.4500	0.9100	0.4550
A2B1	0.4200	0.4300	0.8500	0.4250
A2B2	0.5400	0.5300	1.0700	0.5350
A2B3	0.2800	0.3000	0.5800	0.2900
A3B1	0.5300	0.5400	1.0700	0.5350
A3B2	0.4400	0.4300	0.8700	0.4350
A3B3	0.2700	0.2600	0.5300	0.2650

Tabel dua arah untuk parameter kandungan P (%) jaringan daun padi umur 16 hari

Faktor A	A CONTRACTOR OF THE PARTY OF TH	Jumlah		
	B1	B2	B3	
A1	1.0200	1.4700	0.9100	3.4000
A2	0.8500	1.0700	0.5800	2.5000
A3	1.0700	0.8700	0.5300	2.4700
Jumlah	2.9400	3.4100	2.0200	8.3700

Sidik ragam kandungan P jaringan daun padi umur 16 hari

Sumber DB Keragarnan	DB	DB JK	KT	F-Hitung	F-Tabel	
				5%	1%	
Perlakuan	8	0.3159				
A	2	0.0931	0.0465	465.0**	4.26	8.02
В	2	0.1666	0.0833	833.0**	4.26	8.02
AB	4	0.0562	0.0140	140.0**	3.63	6.42
Galat	9	0.0007	0.0001			
Total	17	0.3166			-///	

Lampiran 6a. Uji jarak berganda Duncan taraf 5% terhadap data kandungan P (%) daun p umur 16 hari pada perlakuan interaksi antara varietas padi dan konsentrasi

Perlakuan	Rerata	SSR	LSR	Notasi
A1B2	0.7350	3.5200	0.2489	а
A3B1	0.5350	3.5200	0.2489	b
A2B2	0.5350	3.5200	0.2489	b
A1B1	0.5100	3.5000	0.2475	C
A1B3	0.4550	3.4700	0.2454	d
A3B2	0.4350	3.4100	0.2411	de
A2B1	0.4250	3.3400	0.2362	е
A2B3	0.2900	3.2000	0.2263	f
A3B3	0.2650			g
Se	0.0707			

Lampiran 7. Data kandungan P (%) jaringan akar padi umur 16 hari

Kombinasi	Ulai	ngan	Total	Rata-rata
Perlakuan	1	- 11		
A1B1	0.1800	0.1900	0.3700	0.1850
A1B2	0.4100	0.4000	0.8100	0.4050
A1B3	0.2000	0.2000	0.4000	0.2000
A2B1	0.3500	0.3600	0.7100	0.3550
A2B2	0.3400	0.3500	0.6900	0.3450
A2B3	0.2200	0.2200	0.4400	0.2200
A3B1	0.3400	0.3400	0.6800	0.3400
A3B2	0.3700	0.3600	0.7300	0.3650
A3B3	0.2500	0.2400	0.4900	0.2450

Tabel dua arah untuk parameter kandungan P (%) jaringan akar padi umur 16 hari

Faktor	Faktor B			Jumlah
Α	B1	B2	B3	
A1	0.3700	0.8100	0.4000	1.5800
A2	0.7100	0.6900	0.4400	1.8400
A3	0.6800	0.7300	0.4900	1.9000
Jumlah	1.7600	2.2300	1.3300	5.3200

Sidik ragam kandungan P jaringan akar padi umur 16 hari

Sumber	Sumber DB Keragaman	DB JK	KT	F-Hitung _	F-Tabel	
Keragaman					5%	1%
Perlakuan	8	0.1087				
Α	2	0.0096	0.0048	160.0000**	4.26	8.02
В	2	0.0675	0.0338	1126.6667**	4.26	8.02
AB	4	0.0316	0.0079	263.3333**	3.63	6.42
Galat	9	0.0003	0.00003			
Total	17	0.1090		The state of the s		

Lampiran 7a. Uji jarak berganda Duncan taraf 5% terhadap data kandungan P (%) akar pa umur 16 hari pada perlakuan interaksi antara varietas padi dan konsentrasi

Perlakuan	Rerata	SSR	LSR	Notasi
A1B2	0.4050	3.5200	0.0136	а
A3B2	0.3650	3.5200	0.0136	b
A2B1	0.3550	3.5200	0.0136	bc
A2B2	0.3450	3.5000	0.0136	cd ·
A3B1	0.3400	3.4700	0.0134	d
A3B3	0.2450	3.4100	0.0132	е
A2B3	0.2200	3.3400	0.0129	f
A1B3	0.2000	3.2000	0.0124	g
A1B1	0.1850			h
Se	0.0039			

Lampiran 8. Data berat kering (gr) daun padi umur 16 hari

Kombinasi	Ulai	ngan	Total	Rata-rata
Perlakuan	1	- 11		
A1B1	0.0182	0.0182	0.0364	0.0182
A1B2	0.0179	0.0181	0.0360	0.0180
A1B3	0.0134	0.0136	0.0270	0.0135
A2B1	0.0183	0.0180	0.0363	0.0182
A2B2	0.0164	0.0159	0.0323	0.0162
A2B3	0.0122	0.0122	0.0244	0.0122
A3B1	0.0178	0.0176	0.0354	0.0177
A3B2	0.0155	0.0161	0.0316	0.0158
A3B3	0.0106	0.0107	0.0213	0.0107

Tabel dua arah untuk parameter berat kering (gr) daun padi umur 16 hari

Faktor		Jumlah		
Α	B1	B2	B3	The state of
A1	0.0364	0.3600	0.0270	0.4234
A2	0.0363	0.0323	0.0244	0.0930
A3	0.0354	0.0316	0.0213	0.0883
Jumlah	0.1081	0.4239	0.0727	0.6047

Sidik ragam berat kering daun padi umur 16 hari

Sumber	DB	JK	KT	F-Hitung	g F-Tabel	abel
Keragaman					5%	1%
Perlakuan	8	0.0001289				
Α	2	0.0000101	0.0000051	113.625**	4.26	8.02
В	2	0.0001145	0.0000573	1288.125**	4.26	8.02
AB	4	0.0000039	0.0000010	21.9375**	3.63	6.42
Galat	9	0.0000004	0.00000004			
Total	17	0.0001289				

Lampiran 8a. Uji jarak berganda Duncan taraf 5% terhadap data berat kering daun padi umur 16 hari pada perlakuan interaksi antara varietas padi dan konsentrasi

Perlakuan	Rerata	SSR	LSR	Notasi
A1B1	0.01820	3.52000	0.00050	а
A2B1	0.01820	3.52000	0.00050	а
A1B2	0.01800	3.52000	0.00050	ab
A3B1	0.01770	3.50000	0.00049	b
A2B2	0.01620	3.47000	0.00049	C
A3B2	0.01580	3.41000	0.00048	C
A1B3	0.01350	3.34000	0.00047	d
A2B3	0.01220	3.20000	0.00045	е
A3B3	0.01070			f
Se	0.00014			

Lampiran 9. Data berat kering (gr) akar padi umur 16 hari

Kombinasi	Ula	ngan	Total	Rata-rata
Perlakuan	1	H		
A1B1	0.0116	0.0116	0.0232	0.0116
A1B2	0.0115	0.0116	0.0231	0.0116
A1B3	0.0092	0.0093	0.0185	0.0093
A2B1	0.0116	0.0115	0.0231	0.0116
A2B2	0.0107	0.0105	0.0212	0.0106
A2B3	0.0089	0.0086	0.0175	0.0088
A3B1	0.0114	0.0113	0.0227	0.0114
A3B2	0.0103	0.0105	0.0208	0.0104
A3B3	0.0078	0.0079	0.0157	0.0079

Tabel dua arah untuk parameter berat kering (gr) akar padi umur 16 hari

Faktor		Faktor B				
Α	B1	B2	B3			
A1	0.0232	0.0231	0.0185	0.0648		
A2	0.0231	0.0212	0.0175	0.0618		
A3	0.0227	0.0208	0.0157	0.0592		
Jumlah	0.0690	0.0651	0.0517	0.1858		

Sidik ragam berat kering akar padi umur 16 hari

Sumber	DB	JK	KT	F-Hitung	F-Tabel	
Keragaman					5%	1%
Perlakuan	8	0.0000310				
A	2	0.0000025	0.0000013	112.5**	4.26	8.02
В	2	0.0000274	0.0000137	1233**	4.26	8.02
AB	4	0.0000011	0.0000003	24.75**	3.63	6.42
Galat	9	0.0000001	0.00000001			
Total	17	0.0000312				

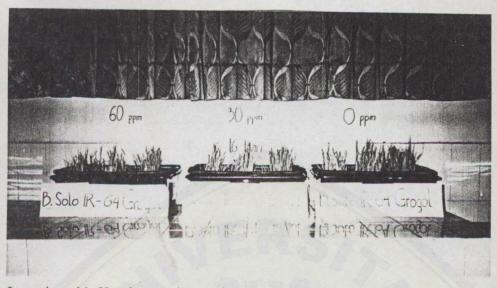
Lampiran 9a. Uji jarak berganda Duncan taraf 5% terhadap data berat kering akar padi umur 16 hari pada perlakuan interaksi antara varietas padi dan konsentrasi

Perlakuan	Rerata	SSR	LSR	Notasi
A1B1	0.01160	0.01160 3.52000 0.00		а
A1B2	0.01160	3.52000	0.00025	а
A2B1	0.01160	3.52000	0.00025	a
A3B1	0.01140	3.50000	0.00025	а
A2B2	0.01060	3.47000	0.00025	b
A3B2	0.01040	3.41000	0.00024	b
A1B3	0.00930	3.34000	0.00024	C
A2B3	0.00880	3.20000	0.00023	d
A3B3	0.00790			е
Se	0.00007			

Lampiran 10. Data berat kering (gr) total padi umur 16 hari

Kombinasi	Ula	ngan	Total	Rata-rata
Perlakuan	1	11		
A1B1	0.0298	0.0298	0.0596	0.0298
A1B2	0.0294	0.0297	0.0591	0.0296
A1B3	0.0226	0.0229	0.0455	0.0228
A2B1	0.0299	0.0295	0.0594	0.0297
A2B2	0.0271	0.0264	0.0535	0.0268
A2B3	0.0211	0.0208	0.0419	0.0210
A3B1	0.0292	0.0289	0.0581	0.0291
A3B2	0.0258	0.0266	0.0524	0.0262
A3B3	0.0184	0.0186	0.0370	0.0185

Tabel dua arah untuk parameter berat kering (gr) total padi umur 16 hari


Faktor		Faktor B		
Α	B1	B2	B3	
A1	0.0596	0.0591	0.0455	0.1642
A2	0.0594	0.0535	0.0419	0.1548
A3	0.0581	0.0524	0.0370	0.1475
Jumlah	0.1771	0.1650	0.1244	0.4665

Sidik ragam berat kering total padi umur 16 hari

Sumber	DB JK	KT	F-Hitung	F-Tabel		
Keragaman					5%	1%
Perlakuan	8	0.0002858			1000000	- 70
A	2	0.0000234	0.0000117	125.36**	4.26	8.02
В	2	0.0002540	0.0001270	1360.71**	4.26	8.02
AB	4	0.0000084	0.0000021	22.5**	3.63	6.42
Galat	9	0.0000008	0.0000001		100	3. 12
Total	17	0.0002866				

Lampiran 10a Uji jarak berganda Duncan taraf 5% terhadap data berat kering total padi umur 16 hari pada perlakuan interaksi antara varietas padi dan konsentrasi

Perlakuan	Rerata	SSR	LSR	Notasi
A1B1	0.02980	3.52000	0.00079	а
A2B1	0.02970	3.52000	0.00079	а
A1B2	0.02960	3.52000	0.00079	а
A3B1	0.02910	3.50000	0.00078	а
A2B2	0.02680	3.47000	0.00078	b
A3B2	0.02620	3.41000	0.00076	b
A1B3	0.02280	3.34000	0.00075	C
A2B3	0.02100	3.20000	0.00072	d
A3B3	0.01850			е
Se	0.00022			

Lampiran 11. Ketahanan tiga varietas padi pada media cekaman Al umur 16 hari

Digital Reportant PENDISTANDAN KEBUBAYAAN R.I UNIVERSITAS JEMBER - FAKULTAS PERTANIAN

JURUSAN TANAH

Program Studi Ilmu Tanah

Jl. Kalimantan III/23 Tegalboto Telp. (0331)336142 Jember 68121

DATA HASIL ANALISIS CONTOH TANAMAN

Atas nama: TITIN YULIANA NIM: F1B195080

		Ter	rhadap contol	h kering ang	in 105 ° C		
No.	Kode Sampel		N		P		
		0/0					
1.	Daun 0 ppm - IR-64	9,63	9,64	0,73	0,74		
2.	Daun 0 ppm - Grogol	6,23	6,22	0,50	0,52		
3.	Daun 0 ppm - Bengawan Solo	9,45	9,45	0,46	0,45		
4.	Daun 30 ppm - IR-64	10,33	10,31	0,54	0,53		
5.	Daun 30 ppm - Grogol	12,46	12,47	0,42	0,43		
6.	Daun 30 ppm - Bengawan Solo	8,93	8,92	0,29	0,30		
7.	Daun 60 ppm - IR-64	9,80	9,81	0,44			
8.	Daun 60 ppm - Grogol	8,75	8,76	0,53	0,43		
9.	Daun 60 ppm - Bengawan Solo	10,33	10,33		0,54		
10.	Akar 0 ppm - IR 64	3,15		0,27	0,26		
11.	Akar 0 ppm - Grogol		3,16	0,41	0,40		
2.	Akar 0 ppm	1,86	1,69	0,18	0,19		
		2,80	2,81	0,20	0,20		
3.	Akar 30 ppm - IR 64	3,33	3,32	0,34	0,35		
4.	Akar 30 ppm - Grogol	2,17	2,18	0,35	0,36		
5.	Akar 30 ppm - Bengawan Solo	2,63	2,61	0,22	0,22		
6.	Akar 60 ppm - IR 64	3,13	3,16	0,37	0,36		
7.	Akar 60 ppm - Grogol	2,73	2,74	0,34	0,34		
8.	Akar 60 ppm - Bengawan Solo	2,28	2,27	0,23	0,24		

Jember, 8 Nopember 1999

PENDIDIKAN OLAPOTATORIUM Kesuburan Tanah