

PENENTUAN NILAI KOEFISIEN KERR MINYAK ZAITUN DENGAN VARIASI SUHU MENGGUNAKAN INTERFEROMETER MICHELSON

SKRIPSI

Oleh:

Ulin Nurviana NIM 101810201019

JURUSAN FISIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS JEMBER
2015

PENENTUAN NILAI KOEFISIEN KERR MINYAK ZAITUN DENGAN VARIASI SUHU MENGGUNAKAN INTERFEROMETER MICHELSON

SKRIPSI

diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Fisika (S1) dan mencapai gelar Sarjana Sains

Oleh:

Ulin Nurviana NIM 101810201019

JURUSAN FISIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS JEMBER

2015

PERSEMBAHAN

Skripsi ini penulis persembahkan dengan penuh cinta, rasa syukur dan terima kasih yang sebesar-besarnya kepada:

- 1. Ibunda Katiyem dan Ayahanda Kamijan tercinta yang telah memberikan kasih sayang, doa dan motivasi luar biasa;
- 2. Adikku Diliam Ahmad Zulfikar yang telah memberikan doa dan inspirasinya;
- 3. Teman-teman IONS, FSLDK, dan KAMMI yang telah memberi banyak sumbangsih ilmu dan perjuangan luar biasa dalam dakwah Islam di Universitas Jember;
- 4. Teman-teman FLP Jember yang telah memberi banyak inspirasi dan motivasi untuk terus menulis;
- 5. Para Murobbi yang telah memberi banyak ilmu dan pandangan tentang Islam melalui liqo' dan kajian yang membuka wawasan keislaman penulis;
- 6. Saudara se-ukhuwah yang ada di Rubbbin Darun Najah, Deni Rahmawati, Imroatus Sholihah, Nur Izzah Azzahra, Hanifatul Imtitsal, dan teman-teman sekontrakan yang tak bisa disebut satu persatu;
- 7. Teman-teman mahasiswa Jurusan Fisika angkatan 2010 dan seluruh angkatan jurusan fisika;
- 8. Guru-guruku sejak taman kanak-kanak sampai perguruan tinggi terhormat yang telah memberikan ilmu dan bimbingan dengan penuh kesabaran;
- 9. Almamater Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

MOTTO

Perjuangan ini dirintis oleh orang-orang alim, diperjuangkan oleh orang-orang ikhlas, dan dimenangkan oleh para pemberani.

Allah akan mengangkat (derajat) orang-orang beriman diantaramu dan orang-orang yang berilmu beberapa derajat.

(QS. Al-Mujadillah: 11)*

^{*)} Sholikin Abu Izudin, Zero to Hero

^{**)} Departemen Agama Republik Indonesia.2012. *Al-Hadi: Al-Qur'an Terjemahan Per Kata Latin dan Kode Tajwid.* Jakarta: Penerbit Satu Warna.

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama: Ulin Nurviana

NIM: 101810201019

Menyatakan dengan sesungguhnya bahwa karya tulis ilmiah ini yang berjudul "Penentuan Nilai Koefisien Kerr Minyak Zaitun yang Dipengaruhi Suhu Menggunakan Interferometer Michelson" adalah benar-benar hasil karya tulis sendiri, kecuali jika disebutkan sumbernya dan belum pernah diajukan pada institusi manapun, serta bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa ada tekanan dan paksaan dari pihak manapun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.

Jember, Yang menyatakan,

Ulin Nurviana NIM 101810201019

SKRIPSI

PENENTUAN NILAI KOEFISIEN KERR MINYAK ZAITUN DENGAN VARIASI SUHU MENGGUNAKAN INTERFEROMETER MICHELSON

Oleh:

Ulin Nurviana

NIM 101810201019

Pembimbing

Dosen Pembimbing Utama : Ir. Misto, M.Si.

Dosen Pembimbing Anggota : Dr. Artoto Arkundato, S.Si., M.Si

PENGESAHAN

Skripsi berjudul "Penentuan Nilai Koefisien Kerr pada Minyak Zaitun yang Dipengaruhi Suhu Menggunakan Interferometer Michelson" telah diuji dan disahkan oleh Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jem berpada:

hari :

tanggal

tempat : Fakultas MIPA Universitas Jember.

Tim Penguji:

Ketua (Dosen Pembimbing Utama) Sekertaris (Dosen Pembimbing Anggota)

Ir. Misto, M.Si NIP.195911211991031 002

Dosen Penguji I

Dr. Artoto Arkundato, S.Si., M.Si NIP.196912251999031 001

Dosen Penguji II

Drs. Yuda Cahyoargo Hariadi, M.Sc., Ph.D NIP. 197412152002121 001 Nurul Priyantari, S.Si., M.Si NIP.197003271997022 001

Mengesahkan Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam

Prof. Drs. Kusno DEA, Ph.D. NIP.196101081986021001

RINGKASAN

Penentuan Nilai Koefisien Kerr pada Minyak Zaitun yang Dipengaruhi Suhu Menggunakan Interferometer Michelson; Ulin Nurviana, 101810201019; 2015; 45 halaman; Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

Minyak zaitun telah dikenal sejak ribuan tahun yang lalu dan memiliki banyak manfaat terutama dalam bidang kesehatan. Minyak zaitun mengandung asam lemak tak jenuh tunggal dan omega-9, sehingga tidak mengherankan jika minyak zaitun dimanfaatkan sebagai bahan pengobatan penyakit jantung dan kanker. Minyak zaitun di pasaran terdiri dari tiga jenis yaitu Extra Virgin Oil, Virgin Olive Oil, dan Refined Olive Oil. Secara umum masyarakat mengidentifikasi kemurnian dari tiga jenis minyak zaitun tersebut dari warna dan harga. Extra Virgin Olive Oil adalah minyak zaitun murni yang merupakan hasil perasan pertama, dengan warnanya kehijauan karena belum mengalami pemanasan. Sedangkan untuk jenis Virgin Olive Oil warnanya sedikit kekuningan, dan Refined Olive Oil warnanya tampak lebih putih, karena telah mengalami pemanasan beberapa kali. Pemanasan pada minyak zaitun menyebabkan perubahan asam lemak. Perubahan asam lemak inilah yang berbahaya bagi tubuh jika dikonsumsi. Mengingat begitu pentingnya minyak zaitun dalam kehidupan, maka penting untuk mengetahui kemurnian minyak zaitun berdasarkan nilai koefisien Kerr ketika minyak dipanaskan, sehingga dalam hal ini dilakukan penelitian secara fisika untuk mengetahui seberapa besar pengaruh suhu terhadap nilai koefisien Kerr yang diperoleh minyak zaitun.

Dalam penelitian ini minyak zaitun dipanaskan terlebih dahulu pada suhu 70°C hingga penurunan pada suhu 30°C. Setelah dilakukan pengamatan penurunan suhu awal sebelum dikenai medan listrik, perlakuan kedua adalah setiap penurunan suhu dikenai medan listrik luar, sehingga dalam hal ini akan terjadi perubahan indeks bias

pada medium tersebut. Semakin besar medan listrik yang diberikan pada bahan, maka jumlah frinji pada layar akan semakin berkurang. Dari jumlah frinji tersebut dapat diketahui nilai koefisien Kerr (R_k) .

Hasil yang didapatkan dalam penelitian ini menunjukkan perbedaan nilai koefisien Kerr dan perbedaan pengaruh suhu pada masing-masing minyak. Minyak zaitun Extra Virgin Olive Oil pada suhu 50°C memiliki nilai Koefisien Kerr yang yaitu (1,300±0,026), dengan batas pengaruh suhu 50°C. Sedangkan Virgin Olive Oil memiliki nilai Koefisien Kerr yang lebih besar daripada Extra Virgin Olive Oil yaitu (1,347±0,030) dengan batas pengaruh suhu 60°C, dan Refined Olive Oil memiliki nilai Koefisien paling besar yaitu (1,356±0,048), dan berpengaruh pada setiap kenaikan suhu. Perbedaan warna pada masing-masing minyak menyebabkan nilai Kerr yang dihasilkanpun berbeda. Perbedaan warna tersebut disebabkan karena pemanasan yang dilakukan pada minyak. Minyak Zaitun Refined Olive Oil berwana keputihan karena telah mengalami pemanasan secara berulang dalam proses pembuatannya, sedangkan Extra Virgin Olive Oil berwarna kehijauan karena merupakan minyak perasan pertama dan secara umum dinyatakan murni, sehingga dari uraian tersebut dapat disimpulkan bahwa nilai koefisien Kerr yang kecil menunjukkan tingkat kemurnian yang tinggi, sedangkan nilai Koefisien Kerr yang besar menunjukkan tingkat kemurnian yang rendah.

Uji statistik yang dilakukan pada hasil nilai koefisien Kerr yang diperoleh menunjukkan bahwa T hitung lebih besar dari pada T tabel dengan korelasi 0, 882. Dari hasil tersebut dapat disimpulkan bahwa suhu mempengaruhi nilai Kerr, di mana semakin tinggi suhu maka nilai Kerr yang dihasilkan semakin naik.

PRAKATA

Segala puji syukur kehadirat Allah SWT atas segala taufik dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi ini dengan judul "Penentuan Nilai Koefisien Kerr pada Minyak Zaitun yang Dipengaruhi Suhu Menggunakan Interferometer Michelson". Skripsi ini disusun untuk memenuhi salah satu syarat menyelesaikan pendidikan strata satu (S1) pada Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

Penyusun skripsi ini tidak terlepas dari bantuan berbagai pihak. Oleh karena itu, penulis menyampaikan terima kasih kepada:

- 1. Ir. Misto, M.Si., selaku dosen pembimbing utama, Dr. Artoto Arkundato, S.Si, M.Si., selaku dosen pembimbing anggota I, Drs. Yuda C. Hariadi, M.Sc., Ph.D. selaku dosen penguji I dan Nurul Priyantari, S.Si., M.Si., selaku dosen penguji II yang telah meluangkan waktu, pikiran, dan perhatian dalam penulisan skripsi ini;
- 2. Keluarga besarku, Ayahanda Kamijan, Ibunda Katiyem, Adikku Diliam Ahmad Zulfikar yang telah memberikan inspirasi kepadaku;
- 3. Mas Edy Sutrisno selaku teknisi Laboratorium Elektronika dan Instrumentasi, yang turut serta membantu dalam pembuatan alat;
- 4. Pak Taufik selaku teknisi Laboratorium Optoelektronika dan Fisika Modern yang turut membantu selama penelitian;
- 5. Teman-teman seperjuanganku, Diar, Faik, iim, Anik, Safril, Liya, beserta semua sahabat-sahabat Fisika dan sahabat-sahabat kontrakan yang telah memberikan dorongan dan motivasi hingga selesainya skripsi ini;
- 6. Semua pihak yang telah memberikan bantuan dan dukungan dalam penyelesaian skripsi ini.

Besar harapan penulis bila segenap pembaca memberikan kritik dan saran yang bersifat membangun demi kesempurnaan skripsi ini. Akhir kata, penulis berharap semoga skripsi ini dapat memberikan manfaat bagi kita semua. Amin.

Jember, Mei 2015

Penulis

DAFTAR ISI

	Halaman
HALAMAN JUDUL	i
HALAMAN PERSEMBAHAN	ii
HALAMAN MOTO	iii
HALAMAN PERNYATAAN	
HALAMAN PEMBIMBINGAN	v
HALAMAN PENGESAHAN	vi
RINGKASAN	vii
PRAKATA	ix
DAFTAR ISI	xi
DAFTAR GAMBAR	xiv
DAFTAR TABEL	XV i
BAB 1. PENDAHULUAN	
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 BatasanMasalah	3
1.4 Tujuan	3
1.5 Manfaat	4
BAB 2. TINJAUAN PUSTAKA	5
2.1 Tanaman Zaitun	5
2.1.1 Taksonomi Tanaman Zaitun	5
2.1.2 Morfologi Tanaman Zaitun	6
2.2 Buah Zaitun	6
2.3 Minyak Zaitun	7
2.4 Efek Kerr	8
2.5 Indeks Bias	11
2.6 Polarisasi Cahaya	13
2.7 Interferensi dan Difraksi	13

2.8 Interferometer Michelson
BAB 3. METODE PENELITIAN16
3.1 Tempat dan Waktu Penelitian16
3.2 Alat dan Bahan Penelitian
3.2.1 Alat Penelitian
3.2.2 Bahan Penelitian
3.3 Tahap Persiapan Penelitian
3.3.1 Tahap Penentuan Bahan
3.3.2 Tahap Persiapan
3.3.3 Tahap Penyusunan Alat Penelitian
3.3.4 Kalibrasi Alat Penelitian20
3.3.5 Tahap Perlakuan Bahan20
1. Perlakuan Suhu20
2. Perlakuan Medan Listrik21
3.3.6 Proses Pegambilan Data21
3.3.7 Analisa Data
BAB 4. HASIL DAN PEMBAHASAN26
4.1 Hasil Penelitian26
4.1.1 Pengukuran Efek Wadah
4.1.2 Pengamatan Pengaruh Medan Listrik (E) terhadap Perubahan
Jumlah Frinji (ζ)
4.1.3 Hasil Pengukuran Medan Listrik (E) terhadap Jumlah Pola
Gelap Terang Frinji (ζ) pada Layar Pengamatan dengan
Suhu Tertentu
4.1.4 Hasil Pengukuran Kenaikan Medan Listrik (E) terhadap Frinji
yang Hilang pada Beberapa Suhu33
4.1.5 Hasil Perhitungan Nilai Kerr pada Tiga Jenis Minyak Zaitun
dalam Beberapa Suhu38
4.2 Pembahasan40
BAB 5. PENUTUP41
5.1 Kesimpulan41

5.2 Saran	41
DAFTAR PUSTAKA	42
LAMPIRAN	45

DAFTAR GAMBAR

	Halaman
2.1	Pohon Zaitun6
2.2	Buah Zaitun6
2.3	Skema Metode Efek Kerr
2.4	Grafik Hubungan antara Perubahan Jumlah Frinji yang Hilang Δm
	sebagai Fungsi Medan Listrik E
2.5	Skema Interferometer Michelson dengan 1. Laser, 2. Cermin 1, 3.
	Cermin 2, 4. Layar
3.1	Tahap Penelitian
3.2	Desain Alat Penelitian
4.1	Grafik Hubungan antara Kenaikan Medan Listrik (E) terhadap
	Jumlah Lingkaran Gelap Terang (ζ) pada Wadah Sampel Tanpa
	Medium Minyak
4.2	Pola Gelap Frinji Minyak Zaitun Extra Virgin Olive Oil pada
	Suhu 50; gambar (a) pada Tegangan 0 Volt; (b) pada Tegangan
	900 Volt; (c) Tegangan 1800 Volt
4.3	Grafik Hubungan antara Kenaikan Medan Listrik (E) terhadap
	Jumlah Lingkar Gelap Terang (ζ) pada Suhu 70 °C
4.4	Grafik Hubungan antara Kenaikan Medan Listrik (E) terhadap
	Jumlah Lingkar Gelap Terang (ζ) pada Suhu 60 °C
4.5	Grafik Hubungan antara Kenaikan Medan Listrik (E) terhadap
	Jumlah Lingkar Gelap Terang (ζ) pada Suhu 50 °C30
4.6	Grafik Hubungan antara Kenaikan Medan Listrik (E) terhadap
	Jumlah Lingkar Gelap Terang (ζ) pada Suhu 40 °C31
4.7	Grafik Hubungan antara Kenaikan Medan Listrik (E) terhadap
	Jumlah Lingkar Gelap Terang (ζ) pada Suhu 30 °C
4.8	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap
	Terang yang Hilang (Δm) pada Suhu 70 °C
4.9	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap

	Terang yang Hilang pada suhu 70 °C Fungsi Log	. 34
4.10	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap	
	Terang yang Hilang (Δm) pada Suhu 60 °C	.35
4.11	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap	
	Terang yang Hilang pada suhu 60 °C Fungsi Log	.36
4.12	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap	
	Terang yang Hilang (Δm) pada Suhu 50 °C	.37
4.13	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap	
	Terang yang Hilang pada suhu 50 °C Fungsi Log	.38
4.14	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap	
	Terang yang Hilang (Δm) pada Suhu 40 °C	.39
4.15	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap	
	Terang yang Hilang pada suhu 40 °C Fungsi Log	.40
4.16	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap	
	Terang yang Hilang (Δm) pada Suhu 30 °C	.41
4.17	Grafik Kenaikan Medan Listrik (E) terhadap Jumlah Lingkar Gelap	
	Terang yang Hilang pada suhu 30 °C Fungsi Log	.42

DAFTAR TABEL

	Halaman
2.1	Kemurnian Berbagai Jenis Minyak Zaitun
2.2	Karakteristik Minyak Zaiun Jenis Virgin Olive Oil
2.3	Karakteristik Minyak Zaitun Jenis Virgin OliveOil
3.1	Kekuatan Hubungan antara Dua Variabel
4.1	Nilai Ralat Grafik untuk Hubungan antara Kenaikan Medan Listrik (E)
	terhadap jumlah Lingkar Gelap Terang (ζ) pada Suhu 70 °C pada Tiga
	Jenis Minyak Zaitun
4.2	Nilai Ralat Grafik untuk Hubungan antara Kenaikan Medan Listrik (E)
	terhadap jumlah Lingkar Gelap Terang (ζ) pada Suhu 60 °C pada Tiga
	Jenis Minyak Zaitun
4.3	Nilai Ralat Grafik untuk Hubungan antara Kenaikan Medan Listrik (E)
	terhadap jumlah Lingkar Gelap Terang (ζ) pada Suhu 50 °C pada
	Tiga Jenis Minyak Zaitun
4.4	Nilai Ralat Grafik untuk Hubungan antara Kenaikan Medan Listrik (E)
	terhadap jumlah Lingkar Gelap Terang (ζ) pada Suhu 40°C pada Tiga
	Jenis Minyak Zaitun
4.5	Nilai Ralat Grafik untuk Hubungan antara Kenaikan Medan Listrik
	(E) terhadap jumlah Lingkar Gelap Terang (ζ) pada Suhu 40 °C pada
	Tiga Jenis Minyak Zaitun
4.6	Nilai Perhitungan Grfik untuk Hubungan antara Kenaikan Medan
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada
	Suhu 70 °C
4.7	Nilai Perhitungan Grafik untuk Hubungan antara Kenaikan Medan
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada Suhu 70 °C
	sebagai Fungsi Log
4.8	Nilai Perhitungan Grfik untuk Hubungan antara Kenaikan Medan
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada
	Suhu 60 °C

4.9	Nilai Perhitungan Grafik untuk Hubungan antara Kenaikan Medan	
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada Suhu 60 °C	
	sebagai Fungsi Log	37
4.10	Nilai Perhitungan Grfik untuk Hubungan antara Kenaikan Medan	
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada	
	Suhu 50 °C	38
4.11	Nilai Perhitungan Grafik untuk Hubungan antara Kenaikan Medan	
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada Suhu	
	60 °C sebagai Fungsi Log	39
4.12	Nilai Perhitungan Grfik untuk Hubungan antara Kenaikan Medan	
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada	
	Suhu 40 °C	40
4.13	Nilai Perhitungan Grafik untuk Hubungan antara Kenaikan Medan	
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada Suhu	
	40 °C sebagai Fungsi Log	41
4.14	Nilai Perhitungan Grfik untuk Hubungan antara Kenaikan Medan	
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada	
	Suhu 430 °C	42
4.15	Nilai Perhitungan Grafik untuk Hubungan antara Kenaikan Medan	
	Listrik (E) terhadap Jumlah Frinji yang Hilang (Δm) pada Suhu	
	40 °C sebagai Fungsi Log	43
4.16	Nilai Koefisien Kerr pada Tiga Jenis Minyak Zaitun	44
4.17	Parameter Kemurnian Berbagai Jenis Minyak Zaitun	48

DAFTAR LAMPIRAN

	Hal	aman
A.	Pengukuran Indeks Bias Tiga Jenis Minyak Zaitun pada Masing-ma	sing
	Suhu	50
B.	Perhitungan Ralat Grafik Hubungan antara Gelap Terang Frinji (ζ)	
	Terhadap Kenaikan Medan Listrik (E)	51
C.	Perhitungan Ralat Grafik Hubungan antara Perubahan Frinji (Δm)	
	Terhadap Kenaikan Medan Listrik (E)	52
D.	Perhitungan Ralat Grafik Hubungan antara Perubahan Frinji (Δm)	
	Terhadap Kenaikan Medan Listrik (E)	53
Е	Perhitungan Koefisien Kerr pada Tiga Jenis Minyak Zaitun pada	
	Variasi Suhu	54
F	Perhitungan untuk Mengetahui Ketebalan Wadah	59

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Minyak zaitun telah dikenal oleh masyarakat dunia sejak ribuan tahun lalu. Masyarakat mengenal minyak zaitun sebagai salah satu obat yang cukup berperan penting dalam dunia kesehatan. Dalam minyak zaitun terdapat polifenol yang mengandung asam lemak tak jenuh, minyak ini juga memiliki peran yang sangat penting dalam bidang kesehatan, terutama dalam penyembuhan dari penyakit (Putri, 2011). Sebagian besar minyak zaitun (70%) berupa asam lemak dan omega-9 (asam lemak oleat). Asam lemak omega-9 merupakan asam lemak tak jenuh yang memiliki keunggulan yaitu sulit teroksidasi, sehingga tidak mengherankan jika minyak zaitun dimanfaatkan sebagai bahan pengobatan seperti penyakit jantung dan kanker. Minyak zaitun di pasaran dikenal sebagai Virgin Olive Oil yang terdiri dari tiga jenis yaitu Extra Virgin Oil, Virgin Olive Oil, dan Refined Olive Oil. Secara umum masyarakat mengidentifikasi kemurnian dari tiga jenis minyak zaitun tersebut dari warna dan harga. Extra Virgin Olive Oil adalah minyak zaitun murni yang merupakan hasil perasan pertama, dengan warnanya kehijauan karena belum mengalami pemanasan. Sedangkan untuk jenis Virgin Olive Oil warnanya sedikit kekuningan, dan Refined Olive Oil warnanya tampak lebih putih, karena telah mengalami pemanasan beberapa kali (Herdiansyah, 2007). Menurut Murrik (2011), bahwa pemanasan pada minyak zaitun menyebabkan perubahan asam lemak. Perubahan tersebut terjadi karena adanya oksidasi oleh oksigen, sehingga menurunkan jumlah asam lemak tak jenuh tunggal (cis) dalam minyak, dan jika dipanaskan dengan suhu tinggi asam lemak tak jenuh tunggal (cis) akan berubah ikatan molekulnya menjadi asam lemak tak jenuh rangkap (trans). Perubahan asam lemak inilah yang berbahaya bagi tubuh jika dikonsumsi.

Asam lemak pada minyak zaitun merupakan asam lemak tak jenuh tunggal (cis) yang kaya manfaat dibandingkan asam lemak yang lain, dan kemurnian

minyak ditentukan dari kadungan asam lemak tersebut. Asam lemak tak jenuh tunggal sangat mudah bereaksi dengan suhu, sehingga minyak zaitun sangat baik dikonsumsi langsung tanpa mengalami pemanasan, dan penyimpanannya harus di tempat yang jauh dari sinar matahari. Mengingat begitu pentingnya minyak zaitun dalam kehidupan, maka penting untuk mengetahui kemurnian minyak zaitun berdasarkan nilai koefisien Kerr ketika minyak dipanaskan, sehingga dalam hal ini dilakukan penelitian secara fisika untuk mengetahui seberapa besar pengaruh suhu terhadap nilai koefisien Kerr yang diperoleh minyak zaitun.

Efek Kerr banyak digunakan untuk aplikasi uji kemurnian bahan (zat cair) dengan cara membangkitkan pulsa cahaya yang dilewatkan dalam medium atau bahan dengan memanfaatkan medan listrik yang diatur hidup dan mati (on-off). Kejadian tersebut dapat diterangkan berdasarkan terjadinya polarisasi muatan listrik atau dipol listrik pada bahan. Sebelumnya beberapa penelitian terkait efek elektro-optik telah dilakukan di Universitas Jember oleh Widayanti et al.,(2012). Penelitian tersebut dilakukan untuk mengetahui kualitas madu berdasarkan nilai koefisien Kerr yang diperoleh. Selain itu, penelitian terkait elektro-optik juga telah dilakukan di Universitas Diponegoro oleh Kusuma et al., (2006) yang memberikan hasil bahwa kenaikan medan listrik yang diberikan mempengaruhi indeks bias bahan. Pada penelitian lain dengan objek penelitian adalah larutan garam, yang mana penelitian tersebut bertujuan untuk menentukan sifat optik dari larutan menunjukkan bahwa konsentrasi garam memberikan pengaruh besar pada jumlah frinji yang diamati dari pola interferensi.

Berdasarkan uraian di atas, maka penelitian ini dilakukan untuk mengetahui nilai koefisien Kerr minyak zaitun pada beberapa suhu menggunakan metode interferometer Michelson. Di mana Interferometer Michelson merupakan salah satu metode yang mampu memberikan hasil penelitian cukup akurat, terutama kemampuan mendeteksi perubahan frinji yang sangat kecil sampai pada orde mikrometer. Beda fase (perubahan frinji) dalam hal ini berbanding lurus dengan perubahan indeks biasnya. Jadi indeks bias bahan dapat diketahui dengan menghitung perubahan frinji yang terjadi pada layar pengamatan (Saroja, 2011).

Dalam penelitian ini minyak zaitun dipanaskan terlebih dahulu pada suhu 70° C hingga penurunan pada suhu 30° C untuk mengetahui apakah penurunan suhu mempengaruhi jumlah frinji pada layar pengamatan sebelum dikenai tegangan. Setiap penurunan suhu dikenai tegangan yang akan menimbulkan medan listrik sebanyak enam variasi tegangan yaitu 300 volt, 600 volt, 900 volt, 1200 volt, 1500 volt, dan 1800 volt. Pemberian medan listrik akan mempengaruhi jumlah frinji pada layar pengamatan. Semakin besar medan listrik yang diberikan pada bahan, maka jumlah frinji pada layar akan semakin berkurang dan indeks bias bahan juga akan berubah. Nilai koefisien Kerr (R_k) diperoleh dari perubahan frinji dan indeks bias bahan. Nilai koefisien Kerr (R_k) yang besar menunjukkan tingkat kemurnian yang rendah. Sedangkan ketika nilai koefisien Kerr (R_k) menunjukkan nilai yang kecil, maka tingkat kemurnian pada minyak zaitun tinggi.

1.2 Rumusan masalah

Dari uraian latar belakang di atas, maka rumusan masalah dalam penelitian ini adalah bagaimana pengaruh suhu terhadap jumlah frinji dan nilai koefisien Kerr yang diperoleh dari ketiga minyak zaitun yaitu Extra Virgin Olive Oil, Virgin Olive Oil, dan Refined Olive Oil.

1.3 Batasan masalah

Berdasarkan rumusan masalah yang digunakan, maka batasan masalah dalam penelitian ini adalah

- 1. Dalam penelitian ini menggunakan suhu lingkungan sekitar
- 2. Menggunakan perubahan suhu $70^{\circ}C$, 60C, $50^{\circ}C$, 40C, $30^{\circ}C$.

1.4 Tujuan

Adapun tujuan dari penelitian ini adalah mengetahui apakah suhu mempengaruhi jumlah frinji dan nilai Kerr yang dihasilkan dari minyak zaitun Ekstra Virgin Olive Oil, Virgin Olive Oil dan Refined Olive Oil.

1.5 Manfaat

Manfaat secara umum yang diperoleh dari penelitian ini yaitu mengetahui kemurnian minyak zaitun berdasarkan nilai koefisien Kerr yang dipengaruhi suhu menggunakan interferometer Michelson, sehingga dalam hal ini dapat diperoleh kemurnian minyak zaitun yang diuji secara fisika. Selain itu hasil penelitian juga dapat dijadikan referensi pendukung untuk pengujian kemurnian minyak zaitun selanjutnya.

BAB 2. TINJAUAN PUSTAKA

2.1 Tanaman Zaitun

Dalam dunia ilmiah, tanaman zaitun memiliki nama ilmiah *Olea Europaea* yang tergolong tumbuhan perdu tahunan. Tumbuhan ini menghasilkan buah pada tahun ke-15 sampai 20 tahun masa pertumbuhannya. Tumbuhan ini mampu tumbuh hingga ratusan tahun dengan tetap memproduksi buah secara penuh. Masyarakat menggunakan tumbuhan zaitun sebagai salad dan kosmetik (Delita, 2012). Selain itu, minyak zaitun mengandung lemak tak jenuh yang tinggi (utamanya asam lemak polifenol dan *oleic*) sehingga memiliki banyak manfaat terutama untuk kesehatan dan kecantikan (Fehri *et al.*, 2014).

2.1.1 Taksonomi Tanaman Zaitun (*Olea europaea*)

Taksonomi zaitun adalah sebagai berikut:

Kingdom : Green Plants

Subkingdom : Tracheobionata-vascular plants

Superdivision: Spermatophyta-seed plants

Division : Magnoliophyta-flowering plants

Kelas : Magnoliopsida-Dicotyledons

Subklas : Asteridae

Famili : Oleaceae-ash, privet, lilac and olives

Genus : Olea

Spesies : Europa

(Johnson, 2012).

2.1.2 Morfologi Tanaman Zaitun

Tanaman zaitun (*Olea europaea*) memiliki tinggi pohon kira-kira 3 meter. Pohon zaitun menghijau sepanjang tahun, dan bisa dipanen ketika musim dingin tiba (Pratiwi, 2011). Daunnya tunggal, berbentuk elips, ujung runcing, tepi rata, dan panjang daun $20 - 90 \text{ mm} \times 7 - 15 \text{ mm}$. Sedang bunganya berwarna putih atau krem. Bunga pada tanaman zaitun berkembang pada bulan oktober sampai maret (Susilo, 2012).

Gambar 2.1 Pohon Zaitu (Sumber: Tempo, 2013)

2.2 Buah Zaitun

Buah zaitun berbentuk oval berwarna hijau. Pengelolaan untuk buah yang sudah matang bisa dilakukan dengan cara diperas yang akan menghasilkan minyak zaitun. Buah zaitun merupakan sumber gizi. Rata-rata komposisi kimia dari buah zaitun yaitu, air (50%), minyak (22%), gula (19.1%), selulosa (5.8%), protein (1,6%), dan abu (1,5%) (Pratiwi, 2011).

Gambar 2.2 Buah Zaitun (Sumber: Pohon zaitun, 2012)

2.3 Minyak Zaitun

Minyak zaitun (olive oil) merupakan minyak nabati dari tanaman zaitun yang kaya manfaat seperti untuk obat-obatan, memasak dan kosmetik. Pada buah zaitun mengadung saponin, alkaloid, dan tannin. Dalam beberapa riset juga ditemukan adanya flavonoid apigenin, luteolin, chryseriol, dan devivatnya (Mursida, 2014).

Minyak zaitun memiliki beberapa jenis yang masing-masing memiliki tingkat kemurnian tersendiri. Adapun kemurnian minyak berdasarkan hasil penelitian *California Department of Food and Agriculture* dapat dilihat dari tabel berikut:

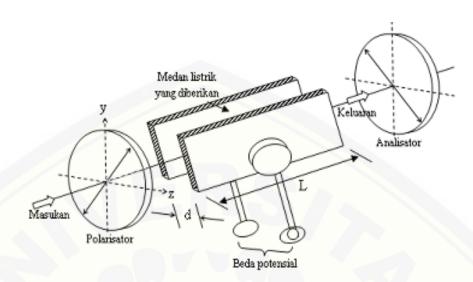
Tabel 2.1 Kemurnian berbagai jenis minyak zaitun

		Olive Oil	7		d-Olive Oil	Oli	ve Pomace	Oil
Parameter	EVO	VOO	COO	ROOB	ROO	RPOB	ROPO	COPO
Kandungan sterol (mg/kg)	≥ 870	≥ 870	≥ 870	≥ 1000	≥ 1000	≥ 1600	≥ 1800	≥ 2500
Kandungan asam lemak trans (% asam lemak)	≤ 0,05	≤ 0,05	≤ 0,10	≤ 0,20	≤ 0,20	≤ 0,40	≤ 0,40	≤ 0,20
Kandungan yang lain (% asam lemak)	≤ 250	≤ 250	≤ 300	≤ 350	≤ 350	> 350	> 350	> 350 ²

Sumber: State of California Department of Food and Agriculture (2014)

Minyak zaitun murni terdiri atas komponen mayor dan minor. Komponen mayor merupakan *ester* dari alkohol gliserol dengan asam lemak mendominasi hingga 98% dari berat total minyak zaitun, sedang pada komponen minor yang berupa fenol, hidrokarbon, serta pigmen terdapat dalam jumlah yang kecil. Komponen minor berfungsi sebagai antioksidan yang mampu menetralkan radikal bebas, sebab dihasilkan oleh peroksidasi lipid yang dikandungnya (Pratiwi, 2011). Asam lemak pada minyak zaitun dibagi menjadi dua yaitu:

- a. Asam lemak yaitu MUFA dan PUFA. MUFA terdiri dari omega-9, dan PUFA yang tersusun dari omega-6 dan omega-3.
- b. Asam lemak jenuh yang dibagi menjadi asam *palmitat* (15%), dan asam stearat (5%) (Savitri, 2011).


Dalam Mursida (2014), berdasarkan jenisnya minyak zaitun dibedakan menjadi lima jenis yaitu:

- a. *Extra-Virgin Olive Oil*, merupakan minyak hasil perasan pertama, dan memiliki keasaman kurang dari 1%.
- b. *Virgin Olive Oil*, hampir sama dengan *Extra Virgin Olive Oil*, hanya saja untuk *Virgin Olive Oil* diambilkan dari buah yang tingkat keasamannya lebih tinggi.
- c. *Refined Olive Oil*, minyak ini berasal dari hasil penyulingan dengan tingkat keasaman lebih dari 3,3%.
- d. *Pure Olive Oil*, pada minyak ini warna, aroma dan rasanya lebih ringan daripada *Virgin Olive Oil*.
- e. Extra Light Olive Oil, adalah campuran minyak zaitun murni dengan sulingan.

2.4 Efek Kerr

Dengan Polariskop, tahun 1875 Kerr mengamati sebuah lempeng kaca yang awalnya isotrop menjadi anisotrop jika lempeng tersebut berada dalam medan listrik yang kuat. Hal tersebut juga terjadi pada beberapa cairan seperti benzene, nitrobenzene, karbondisulfida, dan cairan yang lain. Gejala tersebut akhirnya dikenal dengan Efek Kerr.

Efek Kerr biasa digunakan untuk menghasilkan pulsa cahaya seperti menentukan kecepatan cahaya, dengan cara menggunakan medan listrik secara hidup dan mati (on-off) pada bahan yang menunjukkan adanya efek Kerr. Kejadian efek tersebut dapat diterangkan berdasarkan terjadinya polarisasi muatan listrik atau dipole listrik (Soedojo, 1992).

Gambar 2.3 Skema metode Efek Kerr (Pedrotti, 2008)

Rossi (1957) menyatakan bahwa cairan yang ditempatkan di antara dua plat logam dan diberi tegangan yang berbeda diletakkan di antara analisator dan polarisator. Seperti gambar di atas, bahwa fotosel menangkap seberkas cahaya yang ditembakkan melalui polarisator yang melewati sel kaca dan analisator. Ketika terjadi pemutaran bidang polarisasi, fotosel akan menerima intensitas yang besar dari intensitas minimum. Sedang ketika analisator diputar tegak lurus akan diperoleh intensitas minumum, dan dari sini dapat ditentukan sudut pergeseran analisator atau sudut polarisasi. Sedangkan bahan transparan yang diberi medan listrik luar akan berakibat adanya deformasi dalam distribusi elektron pada ions, sehingga mengakibatkan adanya perubahan posisi pada tempat ions. Jika terjadi peningkatan medan listrik pada momen dipol, maka akan terjadi polarisasi.

Suatu medium yang dikenai oleh medan listrik luar akan mengalami perubahan pada sifat optiknya. Pada medium yang memiliki dipol besar, maka akan mengalami reorientasi (Gerthsen, 1996). Dengan terjadinya perubahan sifat optik tersebut maka akan terjadi perubahan indeks bias. Indeks bias pada suatu medium yang telah terpengaruhi medan listrik mampu memberikan dua jenis perubahan yaitu efek

Pockels dan efek Kerr. Di mana efek Pockels merupakan efek yang terjadi pada zat padat, dan efek Kerr terjadi pada zat cair.

Menurut Yudoyono *et al.*, (2001), perubahan indeks bias sebagai fungsi medan listrik dinyatakan dalam rumus sebagai berikut:

$$(\Delta n) = \frac{rn_0^3}{2}E + \frac{Rn_0^3}{2\lambda}E^2\lambda \tag{2.1}$$

keterangan,

r = koefisien Pockels elektro-optik (m/V)

 $\frac{\operatorname{rn}_0^3}{2}$ E = efek Pockels pada media interkasi zat padat

R = koefisien Kerr elektro-optik (m²/V²)

 $\frac{\operatorname{Rn}_0^3}{2\lambda}$ = koefisien Kerr elektro-optik(m/V²)

 $\frac{Rn_0^3}{2\lambda}E^2$ = efek Kerr pada media interaksi zat cair

Pada buku Pedrotti (1993) yang mengacu pada penelitian Kusuma (2006) bahwa persamaa (2.1) dapat diubah menjadi:

$$\Delta n = AE + BE^2 \tag{2.3}$$

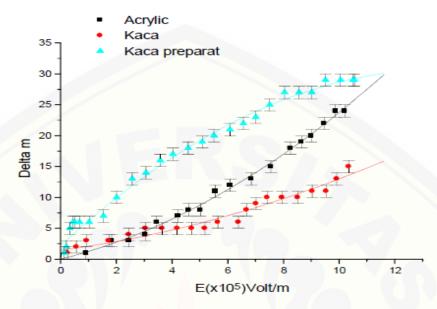
Atau,

$$\Delta n = \frac{r_l n_0^3 t}{\lambda} E + \frac{R_k n_0^3 t}{\lambda} E^2$$
 (2.2)

keterangan,

 Δn = perubahan indeks bias

 r_l = koefisien Pockels elektro-optik (m/V)


 n_0 = indeks bias awal medium sebelum dikenai medan listrik

 R_k = koefisien Kerr elektro-optik (m²/V²)

 λ = panjang gelombang laser yang digunakan (nm)

E = medan listrik luar (volt/meter)

t = tebal wadah sampel (mm)

Gambar 2.4 Grafik hubungan antara perubahan jumlah frinji yang hilang Δm sebagai fungsi medan listrik E (sumber: Kusuma *et al.*, 2006).

Gambar 2.4 merupakan hasil penelitian dari Kusuma (2006) yang memberi gambaran hubungan antara perubahan jumlah frinji sebagai fungsi medan listrik dengan sampel berupa akrilik, kaca preparat dan kaca akuarium. Dalam grafik di atas menunjukkan bahwa struktur kristal akrilik dan preparat lebih teratur dari kaca akuarium. Berdasarkan penelitian tersebut juga diperoleh hubungan antara medan listrik dan jumlah frinji yang hilang (Δ m) cenderung kuadratis yang menandakan sifat dari ketiga bahan tersebut tak memiliki sifat simetri kristal (Kusuma *et al.*, 2006).

2.5 Indeks Bias

Indeks bias bagi orang awam identik dengan pensil yang dicelupkan ke dalam gelas berisi air murni. Dari persitiwa tersebut akan terlihat terjadinya pembengkokan batang pensil yang terletak pada medium udara dengan air. Indek bias memiliki banyak manfaat, di antaranya dapat digunakan untuk mengetahui kadarluarsa pada minyak oli (Yunus *et al*, 2009). Sedang pada bidang industri, indeks bias digunakan

untuk menentukan besarnya konsentrasi pada produk makanan. Menurut Sutiah (2008) indek bias dapat digunakan untuk mengetahui kemurnian dari minyak goreng.

Dalam hal ini indeks bias menjadi salah satu sifat penting dari suatu optik yang berada pada medium yang berbeda (Rofiq, 2010). Indeks bias pada suatu medium dapat dicari dengan persamaan seperti di bawah ini.

$$n = \frac{c}{v} \tag{2.3}$$

Di mana n adalah indeks bias, v adalah kelajuan cahaya, dan c merupakan kecepatan cahaya (Murdeka $et\ al.,\ 2010$).

Penelitian untuk menentukan sifat fisik dan kimia pada berbagai jenis minyak termasuk minyak zaitun pernah dilakukan oleh Laras dan Tsaknis (2002) menggunakan refraktometer Abbe.

Tabel 2.2 karakteristik minyak zaitun jenis virgin olive oil

Parameter	Virgin Olive Oil
Densitas pada suhu 24 ⁰ C (mg/mL)	0,915
Indeks bias (24 ⁰ C)	1, 4620
Warna (kuning)	47,00
Titik didih (⁰ C)	190
Asam lemak jenuh (oleic acid) (%)	0,98
Kandungan Yodium (g I/100g)	80,01
Viskositas	74,01

Sumber: Lalas dan Tsaknis (2002)

Penelitian lain dilakukan oleh Yunus *et al.*, (2009) untuk menentukan indek bias minyak zaitun menggunakan metode Deviasi Minimum pada Prisma (tabel 2.2).

Tabel 2.3 karakteristik minyak zaitun jenis virgin olive oil

Parameter	Virgin Olive Oil
Densitas (mg/mL)	0,8639
Indeks bias (25 ⁰ C)	1, 4639

Sumber: Yunus et al., (2009)

2.6 Polarisasi Cahaya

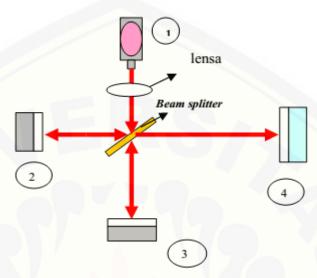
Cahaya merupakan gelombang transversal, di mana vektor magnet dan vektor listrik bergetar tegak lurus pada arah penjalaran seperti gelombang longitudinal. Cahaya dikatakan terpolarisasi apabila merambat pada arah tertentu, dan polarisasi sendiri adalah perubahan beberapa arah getar cahaya menjadi satu arah getar (Halliday, 1993). Sedangkan alat untuk mempolarisasikan cahaya disebut polarimeter, di mana alat ini mampu mengukur sudut rotasi bidang polarisasi. Berdasarkan besarnya perputaran polarimeter tergantung pada, temperatur, struktur molekul, panjang gelombang, pelarut, dan banyaknya molekul pada jalan cahaya (Fressenden, 2014).

2.7 Interferensi dan Difraksi

Interferensi adalah gejala terjadinya pola gelap terang yang berselang-seling dari suatu bayangan sumber cahaya. Interferensi dapat diterangkan berdasarkan teori gelombang elektromagnetik, di mana dua berkas cahaya akan saling menguatkan jika keduanya sefase dan saling menghapus atau melemahkan jika fase keduanya saling berlawanan (Soedojo, 1992).

Menurut Sutrisno (1979) pola interferensi dapat terjadi adanya prinsip superposisi yang terjadi pada medium gelombang. Salah satu peristiwa interferensi yang dapat kita temuai yaitu gelombang berdiri dengan medium berdimensi dua.

Suatu alat yang digunakan untuk menghasilkan interferensi dari suatu gelombang optik disebut interferometer optik. Pada umumnya interferometer dibedakan menjadi dua macam, yaitu interferometer pembagi amplitudo dan interferometer pembagi muka gelombang. Pada pembagi amplitudo, gelombang cahaya jatuh pada suatu lempeng kaca tipis. Sebagian dari gelombang akan diteruskan dan sebagian yang lain akan dipantulkan. Setelah gelombang terbagi menjadi dua, tentu saja amplitudo pada gelombang tersebut semakin kecil, dan apabila gelombang ini dapat disatukan kembali, maka akan tercipta pola interferensi (Hecht, 1992).


2.8 Interferometer Michelson

Interferometer dibuat pertamakli oleh Albert A Michelson (Giancoli, 2001). karena memiliki ketelitian yang tinggi maka alat ini digunakan dalam pengukuran panjang gelombang, dan perubahan ketebalan yang sangat kecil dari suatu objek (Sear dan Zimansky, 2003)

Ada bermacam-macam interferometer yang dapat dipakai bersama dengan sumber cahaya yang salah satunya adalah interferometer Michelson. Prinsip yang digunakan pada interferometer Michelson adalah pembagian ampitudo gelombang atau pemantulan sebagian dan ditransmisikan sebagian. Pada hal ini, berkas yang telah dipantulkan dan ditransmisikan akan dipantulkan kembali oleh cermin, sehingga akan bertemu dan berinterferensi (Sarojo, 2010). Dalam interferometer Michelson, diperoleh bahwa pada setiap pertambahan tebal $\frac{\lambda}{2}$ terdapat pola cincin gelap terang yang terletak semakin keluar dari pusatnya, dengan demikian sistem pusatnya akan bergeser keluar. Dengan cara mengecilkan ketebalan lapisan udara pola-pola cincin akan mengecil, seolah-olah tertelan oleh pusatnya. Pola lapisan udara dapat diatur pada posisi nol, sehingga pola garis dengan kemiringan yang sama dapat diatur pula, maka dapat diamati dengan jelas tebal lapisan udara yang jauh maupun yang dekat dengan cincin (Musbach, 1996). Interferometer Michelson mampu membentuk pola yang lebih tajam, dan jarak antar frinji lebih sempit dibandingkan dengan interferometer yang lain, meskipun pada dasarnya semua jenis interferometer dapat digunakan dalam penelitian penentuan elektro-optik pada bahan.

Berikut merupakan gambar diagram interferometer Michelson Oleh permukaan beam splitter (pembagi berkas) cahaya laser. Pada bagian ini sebagian gelombang dipantulkan ke kanan dan sisanya diteruskan ke atas. Bagian yang dipantulkan ke kanan oleh cermin akan dipantulkan kembali ke beam splitter dan kemudian menuju ke layar. Sedangkan yang ditransmisikan juga akan dipantulkan kembali ke beam splitter, kemudian bersatu dengan cahaya cermin menuju layar, sehingga akan terjadi

interferensi antara kedua sinar, dan terciptalah pola gelap terang (frinji) (Soedojo, 1992).

Gambar 2.5 Sekema interferometer Michelson dengan 1. Laser, 2. Cermin 1, 3. Cermin 2, 4. Layar

Untuk mengukur jarak pergeseran yang berhubungan dengan perubahan frinji, maka dapat digunakan rumus,

$$\Delta d = \frac{\Delta N \lambda}{2} \tag{2.3}$$

Dengan Δd adalah perubahan lintasan optis, ΔN adalah perubahan jumlah frinji, dan λ adalah panjang gelombang (Phywe, 2006).

BAB 3. METODE PENELITIAN

3.1 Tempat dan Waktu Penelitian

Tempat penelitian dilaksanakan di Laboratorium Optoelektronika dan Fisika Modern Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember. Penelitian ini dimulai pada bulan November 2014 sampai Januari 2015.

3.2 Alat dan Bahan Penelitian

3.2.1 Alat Penelitian

Adapun alat yang digunakan dalam penelitian ini adalah sebagai berikut.

- 1. Satu set perlengkapan interferometer Michelson untuk mengetahui hubungan antara medan listrik (E) terhadap perubahan frinji (ζ) .
- 2. Laser He-Ne sebesar 632,8 nm sebagai sumber cahaya monokromatik.
- 3. Stavol yang dihubungkan dengan laser He-Ne dan tegangan tinggi DC sebagai penyetabil tegangan.
- 4. Tegangan tinggi DC dari 0 s/d 1800 volt sebagai sumber tegangan untuk medan listrik luar (*E*).
- 5. Kaca preparat dengan ketebalan 0,15 mm.
- 6. Plat homogen dua keping yang berukuran 3x5 cm² diletakkan sejauh 1 cm. Plat homogen dihubungkan dengan tegangan tinggi DC sebagai medan listrik luar (E).
- 7. *Heater* sebagai pemanas.
- 8. Kabel sebagai penghubung plat dengan tegangan tinggi DC yang posisinya sejajar.
- 9. Termometer sebagai alat ukur suhu.

3.2.2 Bahan penelitian

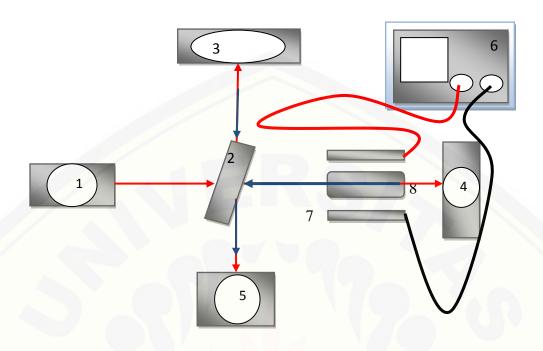
Bahan yang digunakan dalam penelitian ini adalah minyak zaitun yang terdiri dari tiga jenis yaitu, *Extra virgin olive oil*, *Virgin olive oil*, dan *Refined olive oil*.

3.3 Tahap Penelitian

Tahap penelitian penentuan nilai koefisien Kerr pada minyak zaitun terdiri dari beberapa tahap. Tahap-tahap tersebut ditunjukkan dengan gambar berikut:

Gambar 3.1 Tahap Penelitian

3.3.1 Tahap Penentuan Bahan


Bahan yang digunakan dalam penelitian ini adalah minyak zaitun dengan tiga jenis yaitu *Ekstra virgin olive oil*, *Virgin olive oil*, dan *Refined olive oil*. Bahan ini digunakan karena minyak zaitun memiliki kandungan asam lemak tak jenuh tunggal yang bermanfaat untuk kesehatan dibandingkan dengan minyak biasa, selain itu jenis minyak zaitun tersebut mudah didapatkan di pasaran.

3.3.2 Tahap Persiapan

Penelitian ini dilaksanakan di Laboraturium Optoelektronika dan Fisika Modern, yang mula-mula diukur terlebih dahulu suhu dalam ruang tersebut. Minyak zaitun di simpan pada suhu ruang sebelum digunakan sebagai objek penelitian, tujuannya agar suhu minyak tetap konstan. Sedang untuk peralatan interferometer Michelson disusun tetap, agar tidak terjadi perubahan cahaya, dan mendapatkan nilai galat yang kecil. Dalam penetian ini menggunakan tegangan tinggi DC agar diperoleh kenaikan tegangan yang diharapakan.

3.3.3 Tahap Penyusun Alat Penelitian

Pada penelitian ini menggunakan satu set alat interferometer Michelson dengan sumber cahaya yaitu laser He-Ne. Sampel yang sudah diberi plat sejajar diletakkan di depan *movable mirror*, dan dihubungkan dengan tegangan tinggi DC. Pola interferensi dicari dengan cara menggeser cermin *movable mirror* hingga dihasilkan pola frinji pada layar. Adapun desain alat penelitian disusun seperti gambar 3.1 di bawah ini.

Gambar 3.2 Desain Alat Penelitian

Keterangan pada skema peralatan penelitian penentuan nilai Kerr di atas sebagai berikut.

- 1. Laser He-Ne dengan $\lambda = 632.8$ nm.
- 2. Beam Spitter berperan memisahkan berkas cahaya menjadi dua bagian.
- 3. *Adjustable Mirror* berfungsi memantulkan berkas cahaya menuju pemisah bekas, dan dari pemisah berkas sebagian dari berkas cahaya diteruskan oleh pemisah berkas menuju layar pengamatan dengan posisinya yang tetap.
- 4. *Movable Mirror* untuk mentransmisikan berkas menuju *Beam Spitter*, kemudian dari pemisah berkas, sebagian berkas cahaya tersebut akan direfleksikan oleh *Beam Spitter* menuju layar pengamatan dengan posisinya yang berubah-ubah.
- 5. Layar pengamatan yang berfungsi untuk mengamati perubahan frinji yang terjadi.
- 6. Tegangan tinggi DC.
- 7. Plat homogen yang disusun sejajar.
- 8. Wadah sebagai tempat sampel.

3.3.4 Tahap Perlakuan Bahan

1. Perlakuan Suhu

Jenis minyak zaitun yang digunakan dalam penelitian ini yaitu minyak zaitun jenis Ekstra *Virgin olive oil*, *Virgin olive oil*, dan *Refined olive oil*. Dalam pengambilan data, minyak zaitun dipanaskan menggunakan *heater* pada suhu 70°C hingga mengalami penurunan suhu 60°C, 50°C, 40°C dan 30°C. Pengambilan suhu ini bertujuan untuk mengetahui pengaruh suhu terhadap jumlah frinji pada layar pengamatan. Mengingat bahwa minyak zaitun lemah terhadap cahaya matahari, sehingga pemanasan yang terlalu tinggi dapat merusak asam lemak dan juga menghilangkan bau pada minyak zaitun, sebab itulah jarang masyarakat menggunakan minyak zaitun sebagai bahan penggoreng.

2. Tahap Perlakuan Medan Listrik

Minyak zaitun pada penurunan suhu 70° C, 60° C, 50° C, 40° C, 30° C dikenai tegangan sebanyak enam variasi tegangan yaitu, 300 volt, 600 volt, 900 volt, 1200 volt, 1500 volt, dan 1800 volt, dengan jarak antara kedua plat yang sejajar adalah 5x3 cm² dan diposisikan sejauh 1 cm. Wadah sampel berukuran $(1,8\times1,8)$ cm² dengan ketebalan 0,15 mm yang terbuat dari *deglass* diletakkan di antara plat sejajar. Dengan demikian medan listrik (E) dapat ditentukan dengan mengasumsikan bahwa besar medan sebanding dengan besar tegangan, dan berbanding terbalik dengan jarak antara dua plat sejajar (d). Perubahan jumlah frinji pada layar pengamatan disebabkan karena adanya pemberian medan listrik (E) pada bahan yang diamati, dengan begitu dapat pula diketahui indeks bias juga perubahan frinji yang hilang.

3.3.5 Kalibrasi Alat Penelitian

Interferometer Michelson yang digunakan dalam penelitian ini dikalibrasi dengan cara memposisikan bagian-bagian dari alat ini secara tepat, agar sinar yang melewati bagian-bagian interferometer tersebut dapat segaris, sehingga pada nilai 1

skala mikrometer sama dengan pergeseran *movable mirror* yaitu sebesar 1 μm. Untuk kalibrasi dengan aquades pada penelitin ini menggunakan persamaan yaitu:

$$n_{water} = \frac{(2t - N\lambda_0) + (1 - \cos\theta)}{2t(1 - \theta(rad)) - N\lambda_0}; \ \theta(rad) = \theta \times \frac{\pi}{180^{\circ}}$$
(3.1)

di mana,

n = indeks bias aquades

N = jumlah pergeseran frinji

t = tebal medium (cm)

 λ_0 = panjang gelombang sumber cahaya (nm)

 θ = perubahan sudut medium (°)

Sedang untuk mengetahui apakah ketebalan wadah sampel berpengaruh pada jumlah frinji ketika diberi tegangan atau tidak menggunakan persamaan yang diasumsikan oleh Kusuma *et al.*, (2006):

$$\zeta = \zeta_0 - aE \tag{3.2}$$

Keterangan:

 ζ = jumlah frinji

 ζ_0 = jumlah frinji pada medan listrik 0 volt

a = ukuran yang tergantung dari wadah sampel

3.3.6 Proses Pengambilan Data

Interferometer Michelson yang digunakan dalam pengambilan data disusun berdasarkan gambar. Sampel berupa minyak zaitun yang telah diberi perlakuan suhu dari suhu 70 °C sampai penurunan suhu 30 °C pada wadah yang diposisikan di antara dua plat sejajar. Dalam hal ini dilakukan tiga kali pengulangan untuk tiap jenis minyak yang dipakai yaitu *Extra virgin olive oil*, *Virgin olive oil*, dan *Refined olive oil*. Pola inteferensi dapat dicari dengan cara menggeser *movable mirror* sampai terlihat frinji gelap terang pada layar. Sampel diletakkan pada kedua plat sejajar

dengan jarak 2 cm, dan diberi tegangan tinggi DC dari 0 sampai dengan 1800 volt dengan menggunakan interval 300 volt. Dari perlakuan di atas akan diperoleh perubahan jumlah frinji.

Karakteristik elektro-optik atau koefisien Kerr (R_k) dapat diketahui dengan adanya perubahan jumlah frinji yang hilang (Δm) yang dihasilkan dari lima variasi suhu. Frinji yang muncul pada layar pengamatan dihitung dari pusat lingkaran sampai pada radius 2 cm. Data yang dihasilkan diolah dengan cara membuat dua grafik hasil pengamatan yaitu grafik hubungan antara perubahan frinji yang hilang sebagai fungsi medan listrik (E) pada tiga jenis minyak yang digunakan, dan grafik perubahan jumlah frinji/cm atau pengurangan indeks bias sebagai fungsi medan listrik (E).

3.3.7 Analisis Data

Dalam penelitian ini, data yang diperoleh dapat dibuat dua grafik yang berlaku untuk tiga jenis minyak zaitun dari jenis yang berbeda. Grafik pertama kenaikan medan listrik (E) terhadap jumlah frinji yang hilang (Δm) . Grafik kedua terkait kenaikan medan listrik (E) terhadap banyaknya jumlah lingkaran gelap terang/cm (ζ) , dari grafik kedua dapat disimpulkan nilai koefosien Kerr dari minyak zaitun.

Medan listrik dapat ditentutan berdasarkan persamaan:

$$E = V/d \text{ (V/m)} \tag{3.2}$$

Kenaikan medan listrik (E) terhadap banyaknya jumlah lingkaran gelap terang/cm (ζ) di layar pengamatan dan kenaikan medan listrik (E) terhadap jumlah frinji yang hilang (Δm) masing-masing dilakukan sebanyak lima kali. Sehingga berturut-turut digunakan ralat standart deviasi sebagai berikut:

$$\Delta \zeta = \sqrt{\frac{\Sigma(\zeta_i - \bar{\zeta})^2}{(n-1)}} \; ; \; \Delta_{\Delta m} = \sqrt{\frac{\Sigma(\Delta m_i - \overline{\Delta m})^2}{(n-1)}}$$
 (3.3)

Semakin besar medan listrik yang diberikan pada minyak, maka akan terjadi perubahan frinji yang hilang (Δm) akan semakin banyak pula. Interferometer Michelson dapat mengamati perubahan indeks bias dalam orde mikro $((\Delta n) \sim 10^{-6})$, di mana perubahan indeks bias ketika dikenai medan listrik akan terakumulasi dari jumlah frinji yang hilang (Δm) di layar interferometer Michelson. Sehingga dengan alasan tersebut (Δn) sebanding dengan (Δm) , perubahan indek bias terhadap medan listrik didekati oleh persamaan (Kusuma *et al.*, 2006):

$$\Delta m = \frac{r_l n_0^3 t}{\lambda} E + \frac{R_k n_0^3 t}{\lambda} E^2 \tag{3.4}$$

Keterangan:

 Δm = berkurangnya jumlah frinji ketika medan listrik E divariasi

 r_l = Koefisien Pockels elektro-optik (m/V)

 R_k = Koefisien Kerr elektro-optik (m²/V²)

 n_0 = Indeks bias medium sebelum dikenai medan listrik luar

t = Tebal wadah sampel (mm)

 λ = Panjang gelombang laser He-Ne (nm).

Mengingat medium berupa zat cair dan isotropik maka efek Kerr yang muncul pada perhitungan di grafik. Sehingga, persamaan (3.4) menjadi:

$$\Delta m = \frac{R_k n_0^3 t}{\lambda} E^2 \tag{3.5}$$

Dari persamaan (3.5) di atas yang perlu dihitung adalah nilai koefisien Kerr (R_k) bahan. Nilai koefisien Kerr (R_k) dapat diperoleh dengan cara melinierkan persamaan (3.5) dalam bentuk logaritmik untuk mendapatkan persamaan garis lurus. Setelah diambil bentuk logaritmik, maka dibuat grafik linier log E terhadap log Δm , seperti pada gambar (3.3). Linearisasi grafik ini bertujuan untuk mempermudah menganalisis grafik serta perhitungannya.

Untuk menentukan koefisien Kerr elektro-optik (R_k) diketahui dari persamaan grafik di atas yaitu:

$$c = \log\left(\frac{R_k n_0^3 t}{\lambda}\right) \tag{3.6}$$

dimisalkan,

$$\log\left(\frac{R_k n_0^3 t}{\lambda}\right) = \log \nu \tag{3.7}$$

maka,

$$c = \log \nu$$
 dan, $\nu = \text{antilog } c$

Jika nilai ν telah diketahui maka akan diperoleh persamaan R_k di bawah ini:

$$Rk = \frac{\nu \lambda}{n_0^3 t} \tag{3.8}$$

Setelah nilai R_k diketahui, maka yang perlu dicari kemudian adalah nilai standart error perhitungan untuk nilai Kerr elektro-optiknya (ΔR_k) dengan rumus sebagai berikut:

$$\frac{\Delta c}{c} = \frac{\Delta R_k}{R_k} \tag{3.9}$$

Keterangan:

 R_k = koefisien Kerr elektro-optik

 ΔR_k = ralat ketidakpastian perhitungan R_k

c = konstanta dari grafik

 Δc = ralat ketidakpastian perhitungan c

Dapat digunakan persamaan demikian, karena nilai $c \sim R_k$, Sehingga berdasarkan persamaan (3.9) di atas menjadi,

$$\Delta R_k = \frac{\Delta c. R_k}{c} \tag{3.10}$$

Dimana standart error (Δc) diperoleh dari perhitungan ralat grafik untuk nilai c.

Setelah diketahui nilai Kerr pada masing-masing minyak zaitun, maka digunakan uji statistik berupa uji t untuk melihat hubungan antara nilai Kerr dan perubahan suhu. Uji statistik t memberikan t hitung yang akan dibandingkan dengan t tabel, dengan hipotesis H_o dan H_A yaitu:

H_o: tidak ada hubungan antara perubahan suhu dengan nilai Kerr

H_A : ada hubungan antara perubahan suhu dengan nilai Kerr

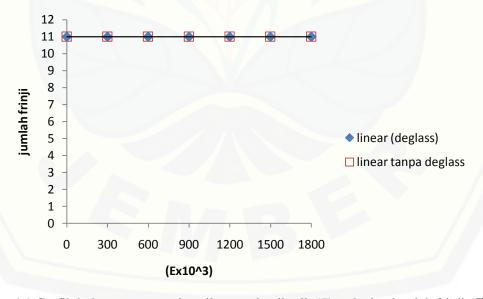
H_A ditolak dan H_o diterima apabila t hitung lebih kecil dari t tabel, begitu juga sebaliknya, bila t hitung lebih besar dari t tabel, maka H_o ditolak dan H_A diterima.

Koefisien korelasi dalam pengujian ini akan memberikan gambaran hubungan antara suhu dengan nilai Kerr, yang memiliki besar antara -1 sampai +1. Jika korelasi menunjukkan angka +1 atau positif, maka dapat disimpulkan bahwa semakin tinggi suhu maka nilai Kerr juga akan semakin tinggi.

Tabel 3.1 Kekuatan hubungan antara dua variabel

Koefisien Korelasi (n)	Interpretasi
0	Tidak terdapat korelasi antara dua variabel
$0 < n \le 0.25$	Korelasi sangat lemah
$0.25 < n \le 0.5$	Korelas cukup
$0.5 < n \le 0.75$	Korelasi kuat
$0.75 < n \le 0.99$	Korelasi sangat kuat
1	Korelasi sempurna

Sumber Jonathan (2006)

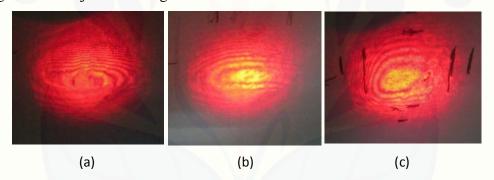

BAB 4. HASIL DAN PEMBAHASAN

4.1 Hasil Penelitian

Data yang diperoleh dari penelitian karakteristik elektro-optik ini adalah data jumlah perubahan frinji setiap penurunan suhu, pengaruh medan listrik (E) terhadap jumlah lingkar gelap terang yang hilang (Δm) , dan nilai koefisien Kerr (R_k) yang diperoleh dari hasil perhitungan dan diuji dengan menggunakan uji statistik T.

4.1.1 Pengukuran Efek Wadah

Pengukuran ini bertujuan untuk mengetahui apakah ketebalan wadah sampel mempengaruhi pola perubahan frinji pada layar. Dalam hal ini dilakukan perbandingan antara wadah sampel yang terbuat dari deglass tanpa medium dikenai tegangan 300 volt sampai 1800 volt, dengan tanpa deglass, dan diberikan tegangan yang sama. Hasil pengukuran disajikan dalam gambar berikut:

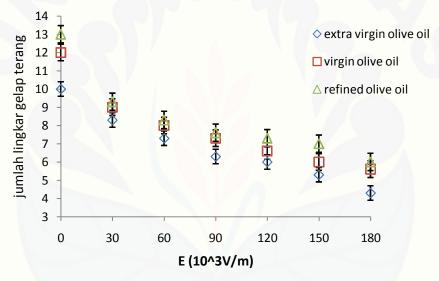


Gambar 4.1 Grafik hubungan antara kenaikan medan listrik (E) terhadap jumlah frinji (ζ) pada wadah sampel (deglass) dengan tanpa deglass

Dari hasil pengamatan pada gambar 4.1 menunjukkan jumlah frinji yang sama. Tidak ada penambahan atau pengurangan pada wadah sampel (deglass) maupun tanpa delgass. Bahkan ketika diberi tegangan dan tegangan dinaikan hingga 1800 volt, tetap tidak ada perubahan frinji yang terjadi, sehingga dari hasil pengamatan tersebut dapat disimpulkan bahwa tebal wadah sampel tidak mempengaruhi jumlah pola frinji. Jumlah perubahan frinji tergantung dari medium yang dilalui cahaya dengan tinggi tegangan yang diberikan.

4.1.2 Pengamatan Pengaruh Medan Listrik (E) terhadap perubahan jumlah frinji (ζ)

Berikut adalah pola frinji dari minyak zaitun jenis *Extra virgin olive oil* pada suhu 50°C yang yang dikenai tegangan 0 volt, 900 volt dan 1800 volt. Hasil pengamatan disajikan dalam gambar berikut:



Gambar 4.2 Pola gelap frinji minyak zaitun *Extra virgin olive oil* pada suhu 50 °C; gambar (a) pada tegangan 0 Volt; (b) pada tegangan 900 Volt; (c) tegangan 1800 Volt.

Pada gambar 4.2 merupakan perubahan yang terjadi pada pola frinji saat diberi tegangan. Gambar (a) merupakan pola gelap terang pada tegangan 0 volt. Dalam hal ini belum ada pengurangan jumlah frinji. Gambar (b) telah diberi tegangan 900 volt, dan terlihat jumlah lingkar frinji mengalami pengurangan karena kenaikan tegangan, dan gambar (c) terlihat jelas pada tegangan 1800 volt bahwa pola frinji telah mengalami perubahan yaitu semakin melebar dan berkurang jumlahnya.

4.1.3 Hasil pengukuran kenaikan medan listrik (*E*) terhadap jumlah pola gelap terang frinji (ζ) pada layar pengamatan dengan penurunan suhu 70°C, 60°C, 50°C, 40°C, dan 30°C

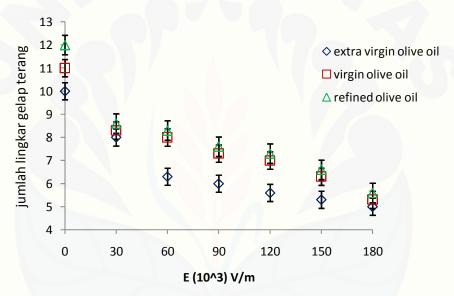
Pengukuran kenaikan medan listrik (*E*) terhadap jumlah gelap terang frinji yang dipengaruhi suhu 70°C, 60°C, 50°C, 40°C, dan 30°C bertujuan untuk mengetahui apakah suhu mempengaruhi jumlah frinji pada layar pengamatan, dan hasil pengukuran ini disajikan dalam bentuk grafik yang masing-masing akan dibandingkan perubahannya.

Gambar 4.3 Grafik hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 70°C

Dari gambar 4.4 dapat dibuat tabel ralat grafik untuk mengetahui nilai yang sebenarnya dari ketiga jenis minyak zaitun yaitu sebagai berikut:

Tabel 4.1 Nilai ralat grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 70°C pada tiga jenis minyak zaitun

Jenis minyak	$\zeta = (\rho \pm \Delta \rho)E + (c \pm \Delta c)$
Extra virgin olive oil	$(-0.029\pm0.0013) \text{ E} + (9.4\pm0.14)$
Virgin olive oil	$(-0.031\pm0.0027) \text{ E} + (10.6\pm0.29)$
Refined olive oil	$(-0.031\pm0.0036) \text{ E} + (11.2\pm0.39)$

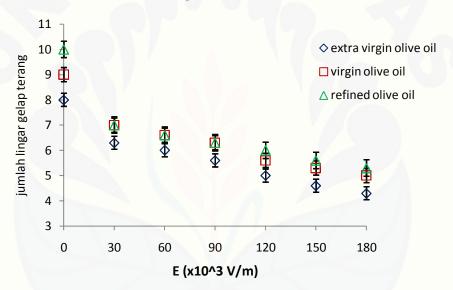

Keterangan:

 ζ = jumlah frinji

 ρ = gradien grafik

c = konstanta grafik

Pada gambar 4.3 dapat dilihat bahwa semakin besar tegangan yang diberikan, maka jumlah frinji akan semakin berkurang. Pengurangan jumlah frinji dapat dibuktikan dengan tanda negatif pada gradien grafik yang ditunjukkan pada tabel 4.1. Pada tabel tersebut nilai konstanta grafik tertinggi dimiliki oleh minyak zaitun jenis *Refined olive oil* yaitu 11,2. Hal tersebut terjadi karena sebelum dikenai tegangan, jumlah frinji yang dimiliki *Refined olive oil* lebih banyak dibandingkan jumlah frinji dari dua jenis minyak zaitun yang lain.

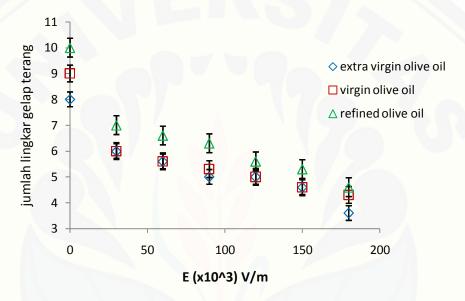

Gambar 4.4 Grafik hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 60°C

Dari gambar 4.4 dapat dibuat tabel ralat grafik untuk melihat perbedaan nilai yang sebenarnya dari ketiga jenis minyak zaitun yaitu sebagai berikut:

Tabel 4.2 Nilai ralat grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 60°C pada tiga jenis minyak zaitun

Jenis minyak	$\zeta = (\rho \pm \Delta \rho)E + (c \pm \Delta c)$
Extra virgin olive oil	$(-0.025\pm0.0026) \text{ E} + (8.86\pm0.28)$
Virgin olive oil	$(-0.026\pm0.0021) \text{ E} + (9.96\pm0.23)$
Refined olive oil	$(-0.028\pm0.0028) \text{ E} + (10.5\pm0.30)$

Pada penurunan suhu 60 °C jumlah frinji yang dihasilkan pada layar pengamatan mengalami penurunan. Dapat dibandingkan pada minyak jenis *Refined olive oil* pada suhu 70 °C yang mendapat rata-rata jumlah frinji pada tegangan 300 volt adalah 9,3 sedang pada penurunan suhu 60 °C jumlah frinji berkurang menjadi 8,6. Hal tersebut juga berlaku pada minyak zaitun jenis *Extra virgin olive oil* dan *Virgin olive oil*. Sedang pada tabel ralat grafik dapat dilihat kembali bahwa *Refined olive oil* tetap memiliki nilai yang lebih besar dari yang lain. Sedang nilai konstanta grafik terkecil dimiliki oleh *Extra virgin olive oil*.

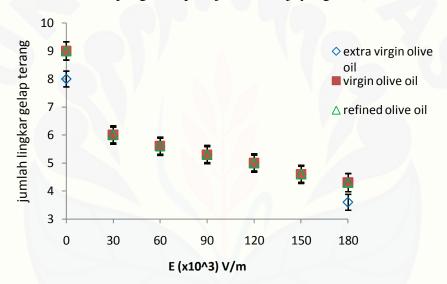

Gambar 4.5 Grafik hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 50°C

Dari gambar 4.5 dapat dibuat tabel ralat grafik untuk melihat perbedaan nilai yang sebenarnya dari ketiga jenis minyak zaitun yaitu sebagai berikut:

Tabel 4.3 Nilai ralat grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 50°C pada tiga jenis minyak zaitun

Jenis minyak	$\zeta = (\rho \pm \Delta \rho)E + (c \pm \Delta c)$
Extra virgin oil	$(-0.018\pm0.0013) \text{ E} + (7.34\pm0.14)$
Virgin olive oil	$(-0.019\pm0.0016) \text{ E} + (8.15\pm0.18)$
Refined olive oil	$(-0.020\pm0.0028) \text{ E} + (8.56\pm0.30)$

Pada gambar 4.5 dapat diketahui bahwa jenis minyak zaitun *Refined olive oil* dan *Virgin olive oil* memiliki jumlah rata-rata frinji yang sama pada tegangan 300 volt, 600 volt dan 900 volt. Sedang pada penambahan tegangan yanga lebih tinggi, nilai mulai berubah. Pada tabel 4.3 masih menunjukkan posisi yang sama yaitu *Refined olive oil* diposisi terbesar dengan nilai konstanta grfik 8.56, dan nilai terkecil juga masih tetap pada *Extra virgin olive oil*.


Gambar 4.6 Grafik hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 40°C

Dari gambar 4.6 dapat dibuat tabel ralat grafik untuk melihat perbedaan nilai yang sebenarnya dari ketiga jenis minyak zaitun yaitu sebagai berikut:

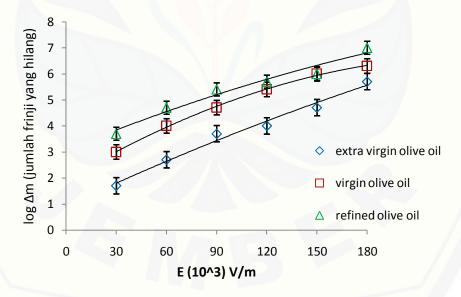
Tabel 4.4 Nilai ralat grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 40°C pada tiga jenis minyak zaitun

Jenis minyak	$\zeta = (\rho \pm \Delta \rho)E + (c \pm \Delta c)$
Extra virgin oil	$(-0.019\pm0.0017) \text{ E} + (7.17\pm0.19)$
Virgin olive oil	$(-0.020\pm0.0028) \text{ E} + (7.56\pm0.30)$
Refined olive oil	$(-0.024\pm0.0026) E + (8.69\pm0.28)$

Pada penurunan sudu 40 °C dapat terlihat jelas bahwa frinji semakin menurun jumlahnya, sehingga dapat disimpulkan bahwa suhu mempengaruhi jumlah frinji pada layar pengamatan. Pada gambar 4.6 dapat dilihat bahwa nilai minyak zaitun Extra virgin olive oil dan Virgin olive oil tidak berbeda jauh, bahkan hampir sama pada setiap kenaikan suhu. Hal ini disebabkan karena suhu 40°C merupakan suhu yang mendekati normal, sehingga tidak begitu mempengaruhi jumlah frinji, dan kedua minyak tersebut memiliki warna yang tak berbeda jauh, seperti kehijuan pada Extra virgin olive oil, kekuningan pada Virgin olive oil, dan keputihan pada Refined olive oil. Warna ini mempengaruhi pula jumlah frinji yang dihasilkan.

Gambar 4.7 Grafik hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 30°C

Dari gambar 4.7 dapat dibuat tabel ralat grafik untuk melihat perbedaan nilai yang sebenarnya dari ketiga jenis minyak zaitun yaitu sebagai berikut:


Tabel 4.5 Nilai ralat grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah lingkar gelap terang (ζ) pada suhu 30°C pada tiga jenis minyak zaitun

Jenis Minyak	$\zeta = (\rho \pm \Delta \rho)E + (c \pm \Delta c)$
Extra virgin olive oil	$(-0.0197\pm0.0016) \text{ E} + (7.22\pm0.18)$
Virgin olive oil	$(-0.0208\pm0.0028) \text{ E} + (7.56\pm0.30)$
Refined olive oil	$(-0.0208\pm0.0028) \text{ E} + (7.56\pm0.30)$

Pada gambar 4.7 pada suhu normal, nilai rata-rata dari ketiga jenis minyak zaitun sama pada tegangan 300 volt, 600 volt, 900 volt dan 1200 volt. Nilai ketiga jenis minyak zaitun sama berturut-turut yaitu 6, 5.6, 5.3, dan 5. Sedang pada tegangan berikutnya yaitu tegangan 1500 volt dan 1800 volt telah sedikit mengalami perubahan jumlah. Dalam hal ini dapat disimpulkan bahwa penurunan suhu mempengaruhi jumlah frinji pada masing-masing minyak zaitun. Untuk suhu normal, nilai terkecil tetap dimiliki *Extra virgin olive oil*, dan nilai terbesar pada *Refined olive oil*.

4.1.4 Hasil pengukuran kenaikan medan listrik (*E*) terhadap jumlah frinji yang hilang pada penurunan suhu 70 °C, 60 °C, 50 °C, 40 °C, 30 °C

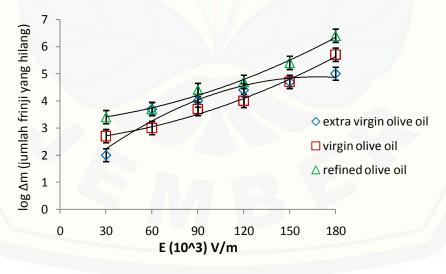
Pengukuran kenaikan medan listrik (E) terhadap jumlah frinji yang hilang disajikan dalam dan grafik fungsi log untuk mengetahui linearisasi dari grafik yang disajikan sebelumnya, juga untuk mempermudah dalam perhitungan nilai Kerr.

Gambar 4.8 Grafik kenaikan medan listrik (*E*) terhadap jumlah lingkar gelap terang yang hilang pada suhu70°C fungsi log.

Dari gambar 4.8 dapat dibuat tabel grafik untuk mengetahui nilai sebenarnya dari grafik pada masing-masing minyak zaitun.

Tabel 4.6 Nilai perhitungan grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah frinji yang hilang (Δm) pada suhu 70°C sebagai fungsi log

Jenis minyak	$log\Delta m = (\gamma \pm \Delta \gamma)logE + (c \pm \Delta c)$
Extra virgin olive oil	$(0.120 \pm 0.017) \log E + (-0.044 \pm 0.078)$
Virgin olive oil	$(0.142\pm0.009)\log E + (-0.023\pm0.041)$
Refined olive oil	$(0.149 \pm 0.005)\log E + (-0.014 \pm 0.027)$

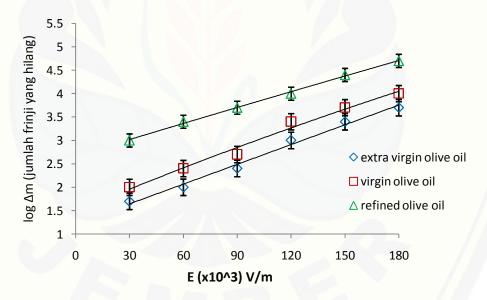

Keterangan:

 $y = \log \Delta m$

 $x = \log E$

$$c = \log(\frac{R_k \, n_0^3 \, t}{\lambda})$$

Dari gambar 4.8 dapat dilihat bahwa nilai tertinggi dari jumlah penurunan frinji akibat kenaikan medan listrik tetap diperoleh minyak zaitun jenis *Refined olive oil*, sedangkan nilai terkecil dimiliki oleh minyak zaitun jenis *Extra virgin olive oil*. Hasil nilai dapat dibuktikan dengan tabel 4.9 di mana nilai c pada *Extra virgin olive oil* terkecil di antara yang lain. Begitu juga dengan *Refined olive oil* yang memiliki nilai tertinggi.

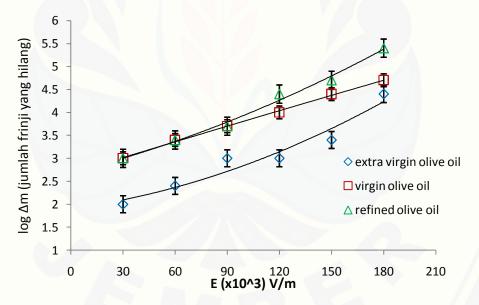

Gambar 4.9 Grafik kenaikan medan listrik (*E*) terhadap jumlah lingkar gelap terang yang hilang pada suhu 60°C fungsi log.

Dari gambar 4.9 dapat dibuat tabel grafik untuk mengetahui nilai sebenarnya dari grafik pada masing-masing minyak zaitun.

Tabel 4.7 Nilai perhitungan grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah frinji yang hilang (Δm) pada suhu 60°C sebagai fungsi log

Jenis minyak	$log\Delta m = (\gamma \pm \Delta \gamma)logE + (c \pm \Delta c)$
Extra virgin olive oil	$(0.124\pm0.012)\log E + (-0.029\pm0.057)$
Virgin olive oil	$(0.123 \pm 0.009)\log E + (-0.023 \pm 0.044)$
Refined olive oil	$(0.136 \pm 0.007)\log E + (-0.016 \pm 0.033)$

Dari gambar tersebut dapat disimpulkan, bahwa hasil log nilainya tak berbeda jauh dengan gambar grafik sebelumnya, di mana nilai tertinggi pada setiap kenaikan tegangan tetap dimilik *Refined olive oil*, dan nilai terendah pada *Extra virgin olive oil*. Kesimpulan dari hasil grafik dapat dilihat dari tabel 4.7 di mana nilai c *Extra virgin olive oil* adalah 0,029.

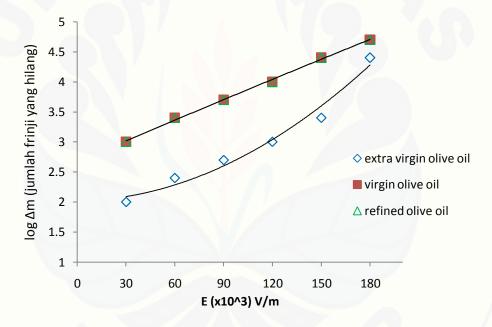

Gambar 4.10 Grafik kenaikan medan listrik (*E*) terhadap jumlah lingkar gelap terang yang hilang pada suhu 50°C fungsi log.

Dari gambar 4.10 dapat dibuat tabel grafik untuk mengetahui nilai sebenarnya dari grafik pada masing-masing minyak zaitun.

Tabel 4.9 Nilai perhitungan grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah frinji yang hilang (Δm) pada suhu 50°C sebagai fungsi log

Jenis minyak	$log\Delta m = (\gamma \pm \Delta \gamma)logE + (c \pm \Delta c)$
Extra virgin olive oil	$(0.090\pm0.012)\log E + (-0.030\pm0.055)$
Virgin olive oil	$(0.100\pm0.009)\log E + (-0.025\pm0.045)$
Refined olive oil	$(0.120\pm0.004)\log E + (-0.010\pm0.019)$

Seperti grafik log sebelumnya, pada gambar 4.10 dapat dilihat bahwa semakin besar medan yang diberikan maka jumlah frinji akan semakin berkurang. Pengurangan jumlah frinji juga dipengaruhi oleh suhu yang diberikan. Penurunan suhu mempengaruhi jumlah frinji yang di hasilkan. Pada suhu 50°C jumlah frinji terbesar pada *Refined olive oil* dengan nilai rata-rata pada tegangan 1800 volt yaitu 6,4 (dalam fungsi log). Sedang pada suhu sebelumnya *Refined olive oil* menghasilkan nilai rata-rata pada tegangan 1800 volt yaitu 4,7 (dalam fungsi log). Hal ini jelas menunjukkan bahwa suhu mempengaruhi jumlah frinji.


Gambar 4.11 Grafik kenaikan medan listrik (*E*) terhadap jumlah lingkar gelap terang yang hilang pada suhu 40°C fungsi log.

Dari gambar 4.11 dapat dibuat tabel grafik untuk mengetahui nilai sebenarnya dari grafik pada masing-masing minyak zaitun.

Tabel 4.10 Nilai perhitungan grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah frinji yang hilang (Δm) pada suhu 40°C sebagai fungsi log

Jenis minyak	$log\Delta m = (\gamma \pm \Delta \gamma)logE + (c \pm \Delta c)$
Extra virgin olive oil	$(0.100\pm0.010)\log E + (-0.024\pm0.047)$
Virgin olive oil	$(0.120 \pm 0.004)\log E + (-0.010 \pm 0.019)$
Refined olive oil	$(0.125 \pm 0.006)\log E + (-0.016 \pm 0.031)$

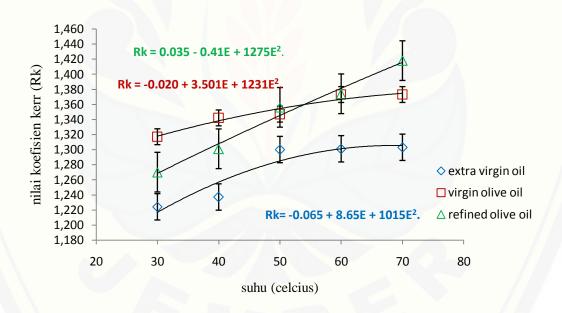
Hasil gambar 4.11 pengurangan jumlah frinji pada *Refined olive oil* dan *Virgin olive oil* mengalami perbedaan pada tegangan 1200 volt, 1500 volt dan 1800 volt. Sedang pada nilai konstanta grafik minyak zaitun *Virgin olive oil* lebih besar daripada *Refined olive oil*, hal ini mungkin pengaruh dari nilai kedua minyak pada tegangan 300 volt, 600 volt dan 900 volt yang menunjukkan nilai sama.

Gambar 4.12 Grafik kenaikan medan listrik (*E*) terhadap jumlah lingkar gelap terang yang hilang pada suhu 30°C fungsi log.

Dari gambar 4.12 dapat dibuat tabel grafik untuk mengetahui nilai sebenarnya dari grafik pada masing-masing minyak zaitun.

Tabel 4.11 Nilai perhitungan grafik untuk hubungan antara kenaikan medan listrik (E) terhadap jumlah frinji yang hilang (Δm) pada suhu 30°C sebagai fungsi log

Jenis minyak	$log\Delta m = (\gamma \pm \Delta \gamma)logE + (c \pm \Delta c)$
Extra virgin olive oil	$(0.098\pm0.010)\log E + (-0.024\pm0.047)$
Virgin olive oil	$(0.120 \pm 0.004)\log E + (-0.010 \pm 0.019)$
Refined olive oil	$(0.120 \pm 0.004)\log E + (-0.010 \pm 0.019)$


Pada gambar 4.12 dapat dilihat bahwa tidak ada perubahan antara kedua grafik. Jumlah frinji pada *Refined olive oil* masih sama dengan *Virgin olive oil* pada semua tegangan. Hal ini dapat dibuktikan dengan nilai tabel 4.11 yang menunjukkan nilai sama. Selain itu jumlah frinji yang dimiliki *Virgin olive oil* dan *Refined olive oil* sebelum diberi tegangan adalah sama. Sedang nilai terkecil tetap dimiliki oleh *Extra Virgin olive oil*, di mana sebelum diberi tegangan jumlah frinji lebih kecil dari *Virgin olive oil* maupun *Refined olive oil*.

4.4.5 Hasil perhitungan koefisien Kerr pada tiga jenis minyak zaitun dalam suhu beberapa suhu

Nilai Kerr pada minyak zaitun jenis *Extra virgin olive oil*, *Virgin olive oil*, dan *Refined olive oil* dalam penelitian ini diperoleh dari fungsi log pada gambar grafik 4.8; 4.9; 4.10; 4.11, dan 4.12. Nilai Kerr diperoleh dengan menggunakan rumus pada persamaan (2.2). Adapun nilai yang diperoleh pada masing-masing minyak disajikan dalam tabel 4.12. Nilai yang diperoleh diuji dengan menggunakan uji t untuk mengetahui apakah ada hubungan antara kenaikan suhu dengan nilai Kerr. Nilai daru uji t disajikan dalam lampiran.

No	Jenis Minyak	Suhu	$(R_k \pm \Delta R_k) (\times 10^{-3} \text{ m}^2/\text{V}^2)$
1	Extra virgin olive oil	70	$(1,303 \pm 0,021)$
		60	$(1,301 \pm 0,020)$
		50	$(1,300 \pm 0,026)$
		40	$(1,237 \pm 0,033)$
		30	$(1,224 \pm 0,030)$
2	Virgin olive oil	70	$(1,373 \pm 0,038)$
		60	$(1,373 \pm 0,031)$
		50	$(1,347 \pm 0,030)$
		40	$(1,342 \pm 0,054)$
		30	$(1,317 \pm 0,050)$
3	Refined olive oil	70	$(1,418 \pm 0,049)$
		60	$(1,374 \pm 0,040)$
		50	$(1,356 \pm 0,048)$
		40	$(1,301 \pm 0,042)$
		30	(1.270 ± 0.053)

Tabel 4.12 Nilai koefisien Kerr pada tiga jenis minyak zaitun

Gambar 4.14. Grafik perbandingan nilai koefisien Kerr ketiga jenis minyak zaitun pada masing-masing suhu

Dari hasil perhitungan nilai koefisien Kerr di atas menunjukkan bahwa *Extra* virgin olive oil memiliki nilai yang lebih kecil dibandingkan dengan nilai koefisien Kerr pada minyak zaiun Virgin olive oil ataupun Refined olive oil. Minyak zaitun

yang berkualitas tinggi memiliki nilai koefisien Kerr yang lebih kecil seperti *Extra Virgin olive oil*, hal ini dapat dijelaskan dengan perbedaan warna dan jumlah frinji yang dihasilkan oleh layar pengamatan pada hasil perhitungan grafik pada gambargambar sebelumnya. Jumlah frinji yang kecil mempengaruhi nilai Kerr yang akan dihasilkan.

4.2 Pembahasan

Penelitian ini bertujuan untuk menentukan nilai koefisien kerr pada tiga jenis minyak zaitun yaitu Extra virgin olive oil, Virgin olive oil dan Refined olive oil. Pada suhu 70°C, 60°C, 50°C, 40°C, 30°C, dilakukan di labolaturium Optoelektronika dan Fisika Modern yang mula-mula diukur suhu ruangan yaitu 30°C. Data pada penelitian ini disajikan dalam bentuk grafik analisis yang dapat dilihat pada gambar 4.4 sampai dengan gambar 4.7. Dari grafik yang telah disediakan dapat diketahui bahwa semakin besar medan yang diberikan pada medium, maka jumlah frinji akan semakin berkurang. Dalam penelitian ini juga menggunakan perbedaan suhu yaitu dari suhu 70°C sampai dengan suhu 30°C. Perubahan suhu yang diberikan mempengaruhi grafik hubungan antara medan listrik dan jumlah frinji. Dari hasil grafik dapat dilihat bahwa semakin tinggi suhu, maka jumlah frinji semakin banyak, dan sebaliknya, semakin berkurang suhu maka jumlah frinji akan semakin berkurang. Pengurangan jumlah frinji pada medan yang berbeda merupakan indikator dari perubahan indeks bias. Indeks bias berkorelasi dengan perubahan suhu, di mana besar medan yang diberikan akan mempengaruhi nilai indeks bias pada bahan tersebut. Hal ini sesuai dengan pernyataan Kusuma et al, (2006), bahwa indeks bias berkurang seiring dengan meningkatnya medan listrik yang diberikan.

Dari grafik analisis tersebut dihasilkan beberapa nilai gradient grafik yang menunjukkan bahwa nilai minyak zaitun *Extra virgin olive oil* lebih kecil daripada *Virgin olive oil* ataupun *Refined olive oil*, dengan nilai gradient grafik *Extra Virgin Olive Oil* pada suhu 70°C dan 60°C berturut-turut adalah (-0,029±0,0013) dan (-

0,025±0,0026). Sedangkan pada *Refined olive oil* yang menunjukkan nilai tertinggi pada suhu 70°C dan 60°C memiliki nilai gradient grafik berturut-turut (-0,031±0,0036) dan (-0,028±0,0028). Dari hasil gradient grafik tersebut terlihat jelas perbedaannya yang berlangsung pada setiap menurunan suhu, bahwa *Extra virgin olive oil* memiliki nilai terkecil, dan sebaliknya *Refined olive oil* memiliki nilai gradient grafik terbesar. Jumlah nilai gradient grafik yang kecil ataupun besar pada masing-masing minyak zaitun juga berpengaruh pada nilai konstanta grafik, di mana pada suhu 70°C dan 60°C minyak zaitun *Extra Virgin Olive oil* memiliki nilai (9,4±0,14) dan (8,86±0,28). Sedang *Refined olive oil* memiliki nilai (11,2±0,39).

Grafik log pada gambar 4.9 sampai 4.12 merupakan garfik hasil pengurangan jumlah frinji setiap kenaikan tegangan. Seperti yang sudah disebutkan dalam metode analisis, bahwa grafik pengurangan jumlah frinji diubah menjadi grafik log untuk melihat lineariasai dari data, sehingga akan memudahkan analisis dalam perhitungan nilai koefisien Kerr. Pada grafik log gambar 4.9 hingga 4.12 menunjukkan bahwa nilai minyak zaitun *Extra virgin olive oil* tetap memiliki nilai konstanta grafik terkecil dibandingkan dengan minyak zaitun jenis yang lain, hal ini dibuktikan dengan jumlah frinji yang dimiliki *Extra virgin olive oil* sebelum diberi tegangan lebih kecil dari pada jumlah frinji yang dimiliki *Virgin olive oil* maupun *Refined olive oil*, dan hal ini akan berlangsung setiap penurunan tegangan.

Untuk mengetahui nilai Kerr diperlukan indeks bias awal pada masing-masing jenis minyak yang diberi perlakuan suhu, yaitu dari suhu 70°C sampai penurunan suhu 30°C dengan interfal 10. Penentuan indeks bias ini bertujuan untuk mengetahui apakah suhu yang diberikan memberi perubahan pada nilai indeks bias masing-masing minyak. Nilai indeks bias dapat dilihat di lampiran 1, di mana dari tabel lampiran indeks bias dapat diketahui bahwa penurunan suhu mempengaruhi nilai indeks bias, di mana semakin turun suhu yang digunakan, maka indeks bias akan semakin besar. Nilai indeks bias akan digunakan untuk menentukan nilai Kerr masing-masing jenis minyak pada setiap penurunan suhu dan perubahan tegangan.

Dari tabel 4.12 dapat diketahi bahwa nilai Kerr yang dimiliki minyak zaitun *Extra virgin olive oil* linear hanya pada suhu 30°C, 40°C, dan 50°C, dengan dinilai berturut-turut yaitu (1,224±0,03), (1,237±0,03), dan (1,300±0,02). Sedangkan suhu di atas 50°C sudah tidak bisa dilihat kelinearisasiannya, karena nilai yang dihasilkan sama. Sedangkan pada minyak zaitun jenis *Virgin olive oil* dapat dilihat nilai Kerr linear pada suhu 30°C, 40°C, 50°C, dan 60°C, dengan nilai berturut-turut yaitu (1,317±0,05), (1,342±0,05), (1,347±0,05), dan (1,373±0,03), jauh lebih tinggi dari pada batas linear nilai Kerr pada minyak zaitun *Extra virgin olive oil*. Sedangkan pada *Refined olive oil*, nilai Kerr hampir linear pada setiap kenaikan suhu, sehingga dalam hal ini dapat disimpulkan bahwa suhu mempengaruhi nilai Kerr ketiga jenis minyak zaitun, dan pengaruh suhu pada setiap minyak berbeda.

Perbedaan tinggi rendahnya nilai Kerr dapat dibuktikan dengan warna minyak yang berbeda. Minyak zaitun *Refined olive oil* telah mengalami beberapa kali pemanasan dan telah bercampur dengan berbagai bahan kimia dalam proses pembuatnnya, sehingga warna minyak keputihan. Sedangkan pada minyak zaitun *Extra virgin olive oil* memiliki nilai kehijauan. Menurut Herdiansyah (2010) bahwa minyak zaitun berubah warna bila telah mengalami pemanasan, warna minyak akan semakin berubah keputihan jika telah mengalami pemanasan berkali-kali. Sedang pada minyak zaitun *Extra virgin olive oil* memperoleh jumlah frinji terkecil, karena minyak jenis ini merupakan minyak zaitun murni yang belum mengalami pemanasan, dan warnanya kehijauan. Hal ini sesuai dengan apa yang diungkapkan Dewanti (2009) bahwa kualitas minyak dapat dilihat dari warnanya. Pemanasan pada minyak menyebabkan partikel-partikel pada minyak mengalami perubahan struktur kimiawi, sehingga menyebabkan kerapatannya akan semakin kecil (Murrik, 2011).

Dari uraian di atas dan berdasarkan data nilai Kerr yang diperoleh masing-masing maka dapat disimpulkan bahwa minyak zaitun *Extra virgin olive oil* mengalami linearisasi nilai Kerr pada batas suhu 50°C, sedangkan jika melebihi suhu tersebut maka nilai Kerr tidak bisa dikatakan linear, dan kemungkinan hal ini karena

pengaruh dari perubahan asam lemak pada minyak yang mengalami pemanasan, sehingga tidak salah jika banyak produk dari minyak zaitun yang menyarakan untuk menyimpan minyak zaitun pada suhu normal dan tidak terkena cahaya matahari, selain itu minyak zaitun jenis ini bisa dikonsumsi secara langsung atau biasa digunakan untuk salad. Sedangkan minyak zaitun *Virgin olive oil* memiliki batas linear nilai Kerr pada suhu 60°C, dan pada minyak zaitun *Refined olive oil* mengalami linearisasi nilai Kerr pada hampir semua suhu yang diberikan pada proses penelitian ini. Perbedaan nilai ini juga mungkin pengaruh dari warna minyak dan kandungan asam lemak dalam minyak setelah dipanaskan.

Hasil nilai Kerr diuji secara statistik menggunakan uji T yang memberikan hasil bahwa suhu mempengaruhi nilai Kerr. Di mana korelasi pada masing-masing minyak menunjukkan harga positif, dan dapat disimpulkan bahwa semakin tinggi suhu maka nilai Kerr juga akan semakin naik. Uji T dalam penelitian ini memberi gambaran bahwa H_A diterima dan H_o ditolak dengan nilai T hitung pada masing-masing minyak lebih besar daripada T tabel, dengan nilai T tabel sebesar 2,132.

BAB 5. PENUTUP

5.1 Kesimpulan

Berdasarkan rumusan masalah pada penelitian ini dapat disimpulkan bahwa besar medan listrik yang diberikan pada tiga jenis minyak zaitun yatiu Extra virgin olive oil, Virgin olive oil dan Refined olive oil mempengaruhi jumlah frinji pada layar pengamatan, dan dalam hal ini hasil data disajikan dalam bentuk grafik analisis dengan gradien grafik bertanda negatif. Tanda negatif pada gradien ini menunjukkan bahwa terjadi pengurangan jumlah frinji setiap kenaikan tegangan. Begitu pula fariasi suhu yang diberikan mempengaruhi jumlah frinji, di mana semakin rendah suhu maka jumlah frinji akan semakin berkurang, dan sebaliknya. Nilai Kerr terkecil pada penelitian ini dimiliki oleh minyak Ziatun Extra virgin olive oil pada suhu 70°C, 60°C, 50°C, 40°C, dan 30°C, berturut-turut sebesar $(1,303 \pm 0,021) \times 10^{-3} \text{ m}^2/\text{V}^2$, $(1,301 \pm 0,021) \times 10^{-3} \text{ m}^2/\text{V}^2$ 0.020) × 10^{-3} m²/V², (1.300 ± 0.026) × 10^{-3} m²/V², (1.237 ± 0.033) × 10^{-3} m²/V², dan $(1,224 \pm 0,030) \times 10^{-3} \text{ m}^2/\text{V}^2$. Nilai koefisien Kerr yang kecil menunjukkan tingkat kemurnian minyak yang tinggi, dan sebaliknya nilai Kerr yang besar menunjukkan tingkat kemurnian yang kecil. Dan hasil uji T pada nilai Kerr yang telah diperoleh menunjukka bahwa $T_{hitung} > T_{tabel}$ dengan korelasi menunjukkan harga positif atau menunjukkan bahwa semakin tinggi suhu maka nilai Kerr juga akan semakin naik.

5.2 Saran

Berdasarkan penelitian yang telah dilakukan, saran untuk mendapatkan kesempurnaan penelitian selanjutnya adalah melakukan pula pengukuran untuk kandungan asam lemak pada tiga jenis minyak zaitun berdasarkan parameter kimia. Pengukuran dilakukan untuk mendapatkan hasil yang lebih kuantitatif, sehingga dapat diambil kesimpulan lebih baik dalam menentukan kemurnian minyak.

DAFTAR PUSTAKA

- Dewanti, T. A. 2009. *Karakteristik Sifat Fisika Kimia pada Produk Kacang Salut Selama Penggorengan*. Bogor: Fakultas Teknologi Pertanian ITB
- Fessenden, R. J., dan Fessenden, J. S. 1982. *Kimia Organik*. Jakarta: Penerbit Erlangga.
- Fehri, B., Aiache, J. M., Mrad, S., Korbi, S., Lamaison, J. L. 1996. *Ole Africana Herba*. *Olea Europaea L: Stimulant, anti-ulcer and anti-inflammatory effects*. Boll. Chim. Pharm. 135 (1): 42-49.
- Gerthsen, Christian, dkk. 1996. *Listrik Magnet dan Optik*. Terjemahan oleh Musbach. Jakarta: Pusat Pembinaan dan Pengembangan Bahasa.
- Halliday, Robert Resnick, Jearl Walker. 1993. Fundamentals of Physics Four Edition. New York: John Wiley and Sons, Inc.
- Hecht, E., 1992, Optics, 2nd Edition, Addison Wesley.
- Herdiansyah, Heri. 2007. *The Miracle: Mengungkap Rahasia Makanan dan Minuman Berkhasiat dalam Al-Quran.* Jakarta: Penerbit Zikrul Hakim.
- Indah Pratiwi. 2011. Viabilitas Netrofil yang dipapar Streptococcus Viridans dan Diinkubasi dengan Minyak Zaitun (Oleum Olivae). Biomedik FKG UNEJ.
- Jonathan, S. 2006. *Metode Penelitian Kuantitatif dan Kualitatif*. Yogyakarta: Graha Ilmu
- Kristi, Julia; Handayani, Nita dan Yuliati, Anis. 2012. *Pengaruh Kualitas VCO* (*Virgin Coconut Oil*) *terhadap Nilai Konstanta Kerr dan Perubahan Sudut Polarisasi Cahaya*. Prosiding Pertemuan dan Presentasi Ilmiah. Jogjakarta: Pusat Teknologi Akselerator dan Proses Bahan.
- Kusuma, Firdausi, dan Budi. 2006. *Studi Sifat Elektro-optis pada Kaca Akuarium, Kaca Preparat dan Akrilik*. Jurnal Berkala Fisika, 9 (2): 81-84.
- Lalas, S. & Tsaknis, J. 2002. "Characterization of Moring Aoleifera Seed Oil Variety Periyakulam Satu". Journal of Food Composition and Analisis. Vol. 15.65-77.
- Merrick, R. H. & Rani, E. 2010. Analisa Karakteristik Pengaruh Suhu dan Kontaminan Terhadap Viskositas Oil Menggunakan Rotasi Viskometer. Malang: Fakultas MIPA UIN Maulana Malik Ibrahim.

- Murdaka, B., Kuntoro, T., & Supriyatin. 2010. "Penyertaan Nilai Viscositas Terhadap Indeks Bias pada Zait Cair Bening". Journal Berkala Fisika. ISSN: 1410-9662. Vol. 13, No. 4, hal 119-124.
- Mursida, Malikhatul Hanna. 2014. Pengukuran Indeks Bias Minyak Zaitun (Olive Oil) pada Beberapa Suhu Menggunakan Interferometer Michelson. Jember: Universitas Jember.
- Musbach, M. 1996. *Listrik Magnet dan Optika*. Jakarta: Pusat Pembinaan dan Pengembangan Bahasa.
- N.N. Puspitasari, Bul. Tek dan Industri Pangan. 1996; 7: 84-94.
- Pedrotti, F. L. & Pedrotti, L. S. 1992. *Introduction of Optics Second Edition*. United State of America: Prentice Hall, Inc.
- Phywe, 2006. Febry-Perot Interferometer. Phywe Handbook. Phywe Series of Publication.
- Putri, N. L. 2011. Minyak Zaitun (Olea Europaea) Menunjukkan Kadar Trigliserida dalam Lemak Tikus Wistar Jantan. Jember: Fakultas Kedokteran Gigi Universitas Jember.
- Rofiq, A. 2010. Analisa Indeks Bias pada Pengukuran Konsentrasi Larutan Sukrosa ($C_{12}H_{22}O_{11}$) Menggunakan Portable Brix Meter. Semarang: Fakultas MIPA Universitas Diponegoro.
- Rossi, Bruno. 1959. Optics. London: Addison Wesley.
- Saroja, G. 2011. Gelombang dan Optika. Jakarta: Salemba Teknika.
- Sartika. 2009. Pengaruh Suhu dan Lama Proses Penggorengan (deep frying) Terhadap Pembentukan Asam Lemak Trans. Makara, Sain. Vol. 13 (1): 23-28.
- Savitri, Cut Yunita. 2011. Perbandingan Daya Kelembaman Minyak Zaitun (Olea Europaea) dan Gliserol dalam Sediaan Krim Tangan. Medan: Universitas Sumatra Utara.
- Soedojo, P. 1992. *Asas-asas Ilmu Fisika Jilid Empat Fisika Modern*. Yogyakarta: Gajah Mada University Press.
- State of California Department of Food and Agriculture. 2014. *Proposed Grade and Labeling Standards of Olive Oil, Refined Olive Oil, and Olive Pomace Oil.* Scramento: California Department of Food and Agriculture.
- Sutiah, K., Firdausi, S., & Budi, W. S. 2008. "Studi Kualitas Minyak Goreng dengan Parameter Viskositas dan Indeks Bias". Jurnal Berkala Fisika. ISSN: 1410-9662. Vol. 11, No. 2, hal 53-56.

- Sutrisno. 1979. Fisika Dasar: Gelombang dan Optik. Bandung: Penerbit ITB.
- Tegar Yudhi Susilo. 2012. *Kasiat Minyak Zaitun (Olive Oil) dalam Meningkatkan Kadar HDL (High Density Lipoprotein) Darah Tikus Wistar Jantan*. Jember: Bagian Psikologi Klinik FKG UNEJ.
- Widayanti, Ika Ratna. 2014. Penentuan Karakteristik Elektro-Optik pada Madu dengan Metode Interferometer Michelson. Jember: Universitas Jember.
- Yoshinita Noesa Delita. 2012. Validitas Monosit yang Dipapar Streptoccocus Viridians dan Diinkubasi dengan Minyak Zaitun (Oleum Olivae). Jember: Bagian Biomedik FKG UNEJ.
- Yudoyono, Rohedi, Susilo, dan Soetijono. 2001. *Optoelektronika*. Surabaya: Fisika FMIPA ITS.
- Yunus, M. M., Fen, Y. P., & Yee, L. M. 2009. "Refractive Index and Fourier Transform Infrared Spectra of Virgin Coconut Oil and Virgin Olive Oil." American Journal of Applied Science. ISSN 1546-9239. 328-331.
- Zemansky and Sears. 2003. Fisika Universitas Edisi kesepuluh Jilid 2. Jakarta: Erlangga.

Serial Online:

- Kinanthi. 2009. *Minyak Zaitun (Sumber Lemak Nabati)*. http://kinanthidiah.multiply.com/journal/item/4.12[27November2010].
- Pohon zaitun. 2012. *Keajaiban Pohon Zaitun*. http://pohonzaitun.wordpress.com/. [2 November 2010].
- Tempo. 2013. *Asal Usul Pohon Zaitun Berhasil Terungkap*. http://www.tempo.co/read/news/2013/02/08/061459928/Asal-Usul-Pohon-Zaitun-Berhasil-Terungkap. [8 Februari 2013].

LAMPIRAN

A. Pengukuran indeks

1. Pengukuran indeks bias tiga jenis minyak zaitun pada masing-masing suhu

1 No.	Jenis minyak	suhu	n	\overline{n}	Δn		
1	Extra Virgin Olive Oil	30	1.433 1.486 1.486	1,469	0,030		
		40	1.480 1.433 1.486	1,466	0,029		
	8	50	1.446 1.466 1.466	1,460	0,011		
		60	1.466 1.486 1.433	1,462	0,026		
		70	1.500 1.433 1.446	1,460	0,035		
2	Virgin Olive Oil	30	1.466 1.466 1.446	1.464	0,041		
		40	1.433 1.486 1.466	1.460	0,040		
		50	1.433 1.486 1.466	1.462	0,038		
		60	1.466 1.453 1.466	1.462	0,013		

		70	1.486 1.466 1.433	1.462	0.012
3	Refined Olive Oil	30	1.486 1.493 1.433	1,471	0,058
	ME	40	1.480 1.493 1.413	1,462	0,073
		50	1.466 1.433 1.493	1,464	0,060
		60	1.406 1.440 1.506	1,451	0,024
		70	1.466 1.446 1.466	1,460	0,005

Keterangan:

 n_0 = indeks bias awal pada masing-masing suhu

 \bar{n} = indeks bias rata-rata

 Δn = standart deviasi untuk indeks bias aquades

2. Pengukuran indeks bias aquades

n 1,3066	$ar{n}$	$n_{referensi}$	$n=(\bar{n} \pm \Delta n)$
1 2066			
1,5000			
1.3000			
1,3400	1,3266	1,333	1,3266±0,0196
1,3066			
1,3400			
	1,3066	1,3066	1,3066

Keter angan:

n = indeks bias aquades

 \overline{n} = rata-rata indeks bias aquades Δn = ralat ketidakpastian perhitungan

B. Perhitungan ralat grafik hubungan antara jumlah gelap terang frinji (ζ) terhadap kenaikan medan listrik (E)

Jenis Minyak	suhu	ρ	c	Δ	$\Deltaoldsymbol{ ho}$	Δc
Extra Virgin Oil	70	-2,9047× 10 ⁻⁵	9,4	0,3697	$1,3447 \times 10^{-6}$	0,1454
	60	$-2,5119 \times 10^{-5}$	8,8607	0,7239	$2,6331 \times 10^{-6}$	0,2848
	50	$-1,8452 \times 10^{-5}$	7,3464	0,3616	$1,3152 \times 10^{-6}$	0,1422
	40	$-1,9761 \times 10^{-5}$	7,1785	0,4896	$1,7809 \times 10^{-6}$	0,1926
	30	$-1,9761 \times 10^{-5}$	7,2214	0,4626	$1,6827 \times 10^{-6}$	0,1820
Virgin Olive Oil	70	-3,1666× 10 ⁻⁵	10,6357	0,7558	$2,7491 \times 10^{-6}$	0,2973
	60	$-2,6309 \times 10^{-5}$	9,9678	0,5889	$2,1419 \times 10^{-6}$	0,2316
	50	$-1,9523 \times 10^{-5}$	8,1571	0,4658	$1,6941 \times 10^{-6}$	0,1832
	40	$-2,0833 \times 10^{-5}$	7,5607	0,7818	$2,8434 \times 10^{-6}$	0,3075
	30	$-2,0833 \times 10^{-5}$	7,5607	0,7818	$2,8434 \times 10^{-6}$	0,3075
Refined Olive Oil	70	-3,1666× 10 ⁻⁵	11,2071	0,9947	$3,6179 \times 10^{-6}$	0,3913
	60	$-2,8809 \times 10^{-5}$	10,5928	0,7851	$2,8555 \times 10^{-6}$	0,3088
	50	$-2,0833 \times 10^{-5}$	8,5607	0,7818	$2,8434 \times 10^{-6}$	0,3075
	40	$-2,4523 \times 10^{-5}$	8,6928	0,7166	$2,6064 \times 10^{-6}$	0,2819
	30	$-2,0833 \times 10^{-5}$	7,5607	0,7818	$2,8434 \times 10^{-6}$	0,3075
	Extra Virgin Oil Virgin Olive Oil Refined Olive	Extra Virgin Oil 60 50 40 30 Virgin Olive Oil 60 50 40 30 Refined Olive Oil 70 60 50 40 40 40 40 40 40 40 60 50 40 40	Extra Virgin Oil 70 $-2,9047 \times 10^{-5}$ 60 $-2,5119 \times 10^{-5}$ 50 $-1,8452 \times 10^{-5}$ 40 $-1,9761 \times 10^{-5}$ 30 $-1,9761 \times 10^{-5}$ 30 $-1,9761 \times 10^{-5}$ 60 $-2,6309 \times 10^{-5}$ 50 $-1,9523 \times 10^{-5}$ 40 $-2,0833 \times 10^{-5}$ 30 $-2,0833 \times 10^{-5}$ Refined Olive Oil 70 $-3,1666 \times 10^{-5}$ 60 $-2,8809 \times 10^{-5}$ 50 $-2,0833 \times 10^{-5}$ 50 $-2,0833 \times 10^{-5}$ 50 $-2,0833 \times 10^{-5}$ 40 $-2,4523 \times 10^{-5}$	Extra Virgin Oil 70 $-2,9047 \times 10^{-5}$ 9,4 60 $-2,5119 \times 10^{-5}$ 8,8607 50 $-1,8452 \times 10^{-5}$ 7,3464 40 $-1,9761 \times 10^{-5}$ 7,1785 30 $-1,9761 \times 10^{-5}$ 7,2214 70 Virgin Olive Oil 70 $-3,1666 \times 10^{-5}$ 10,6357 60 $-2,6309 \times 10^{-5}$ 9,9678 60 $-2,6309 \times 10^{-5}$ 8,1571 60 $-2,0833 \times 10^{-5}$ 7,5607 60 $-2,0833 \times 10^{-5}$ 10,5928 60 $-2,0833 \times 10^{-5}$ 8,5607 60 $-2,0833 \times 10^{-5}$ 8,5607 60 $-2,0833 \times 10^{-5}$ 8,6928	Extra Virgin Oil 70 $-2,9047 \times 10^{-5}$ 9,4 0,3697 $0il$ 60 $-2,5119 \times 10^{-5}$ 8,8607 0,7239 $0il$ 50 $-1,8452 \times 10^{-5}$ 7,3464 0,3616 $0il$ 40 $-1,9761 \times 10^{-5}$ 7,1785 0,4896 $0il$ 70 0	Extra Virgin Oil 70

Keterangan:

ρ = Gradient grafikc = konstanta grafik

 $\Delta \rho$ = ralat perhitungan pada gradient grafik Δc = ralat perhitungan pada konstanta grafik

C. Perhitungan ralat grafik hubungan antara frinji (Δm) terhadap kenaikan medan listrik (E)

No.	Jenis Minyak	Suhu	γ	С	Δ	Δγ	Δc
1	Extra Virgin Oil	70	0,1201	-0,0442	0,1376	0,0171	0,0787
2		60	0,1243	-0,0298	0,9971	0,0124	0,0570
3		50	0,0908	-0,0303	0,0969	0,0120	0,0554
4		40	0,1003	-0,0245	0,0821	0,0102	0,0470
5		30	0,0988	-0,0246	0,0833	0,0103	0,0477
1	Virgin Olive Oil	70	0,1421	-0,0234	0,0723	0,0090	0,0414
2		60	0,1234	-0,0230	0,0782	0,0097	0,0447
3		50	0,1005	-0,0250	0,0800	0,0099	0,0458
4		40	0,1200	-0,0105	0,0346	0,0043	0,0198
5		30	0,1200	-0,0105	0,0346	0,0043	0,0198

No.	Jenis Minyak	Suhu	γ	С	Δ	Δγ	Δc
1	Refined Olive Oil	70	0,1499	-0,0149	0,0477	0,0059	0,0273
2		60	0,1369	-0,0166	0,0588	0,0073	0,0337
3		50	0,1200	-0,0105	0,0346	0,0043	0,0198
4		40	0,1257	-0,0161	0,0547	0,0068	0,0313
5		30	0,1200	-0,0105	0,0346	0,0043	0,0198

Keterangan:

γ = Gradient grafik
c = konstanta grafik

 $\Delta \gamma$ = ralat perhitungan pada gradient grafik Δc = ralat perhitungan pada konstanta grafik

D. Perhitungan koefisien Kerr pada tiga jenis minyak zaitun pada variasi suhu

No.	Jenis Minyak	Suhu	<i>E</i> (V/m)	log E	$\log \Delta m$	c	antilog c = v	$R_k(\text{m}^2/\text{V}^2)$	ΔR_k
1	Extra Virgin Oil	70	30000	4,477	0,230	-0,044	0,903	1,303× 10 ⁻³	$2,012 \times 10^{-5}$
2			60000	4,778	0,431				
3			90000	4,954	0,568			/	
4			120000	5,079	0,602			7/	
5			150000	5,176	0,670			//	7
6			180000	5,255	0,755			///	
							45.74	> / //	
1		60	30000	4,477	0,301	-0,029	0,933	$1,301 \times 10^{-3}$	$2,187 \times 10^{-5}$

2		60000	4,778	0,568			_	
3		90000	4,954	0,602				
4		120000	5,079	0,643				
5		150000	5,176	0,672				
6		180000	5,255	0,698				
1	50	30000	4,477	0,230	-0,030	0,933	$1,300 \times 10^{-3}$	$2,519 \times 10^{-5}$
2		60000	4,778	0,301				
3		90000	4,954	0,380				
4		120000	5,079	0,477	1 1/1//		V. (a)	
5		150000	5,176	0,531			6 11 9	
6		180000	5,255	0,568	4			
1	40	30000	4,477	0,301	-0,024	0,945	$1,23 \times 10^{-3}$	$3,320 \times 10^{-5}$
2		60000	4,778	0,380			/	104
3		90000	4,954	0,477			A	
4		120000	5,079	0,477				
5		150000	5,176	0,531				
6		180000	5,255	0,643				/ 8
1	30	30000	4,477	0,301	-0,024	0,944	$1,22 \times 10^{-3}$	$3,086 \times 10^{-8}$
2		60000	4,778	0,380			7/	7
3		90000	4,954	0,431			//	7
4		120000	5,079	0,477				8
5		150000	5,176	0,531				
6		180000	5,255	0,643				

No.	Jenis Madu	Konsentrasi	<i>E</i> (V/m)	log E	$\log \Delta m$	с	antilog c = v	$R_k(\text{m}^2/\text{V}^2)$	ΔR_k
1	Virgin Olive Oil	70	30000	4,477	0,477	-0,023	0,947	$1,37 \times 10^{-3}$	$3,838 \times 10^{-5}$
2			60000	4,778	0,602				
3			90000	4,954	0,672				
4			120000	5,079	0,732	4	4 /		
5			150000	5,176	0,778				
6			180000	5,255	0,799	4/6			
1		60	30000	4,477	0,431	-0,023	0,948	$1,37 \times 10^{-3}$	$3,194 \times 10^{-5}$
2			60000	4,778	0,477	N.			
3			90000	4,954	0,568				
4			120000	5,079	0,602				
5			150000	5,176	0,672				
6			180000	5,255	0,755				
1		50	30000	4,477	0,301	-0,025	0,943	$1,34 \times 10^{-3}$	$3,027 \times 10^{-5}$
2			60000	4,778	0,380				
3			90000	4,954	0,431				
4			120000	5,079	0,531			/	
5			150000	5,176	0,568			//	
6		\	180000	5,255	0,602			/_	
1		40	30000	4,477	0,477	-0,010	0,975	$1,34 \times 10^{-3}$	5,460× 10 ⁻⁵
2			60000	4,778	0,531				

3	_		90000	4,954	0,568				
4			120000	5,079	0,602				
5			150000	5,176	0,643				
6			180000	5,255	0,672				
1		30	30000	4,477	0,477	-0,010	0,975	$1,31 \times 10^{-3}$	4,986× 10 ⁻⁵
2			60000	4,778	0,531	4			
3			90000	4,954	0,568				
4			120000	5,079	0,602	4/			
5			150000	5,176	0,643			7.	
6			180000	5,255	0,672				
No.	Jenis Madu	Konsentrasi	<i>E</i> (V/m)	log E	$\log \Delta m$	c	antilog $c = v$	$R_k(\mathbf{m}^2/\mathbf{V}^2)$	ΔR_k
1	Refined Olive Oil	70	30000	4,477	0,568	-0,014	0,966	$1,41 \times 10^{-3}$	$4,952 \times 10^{-5}$
2			60000	4,778	0,672				
3			90000	4,954	0,732				
4			120000	5,079	0,755				10
5			150000	5,176	0,778				/ //
6			180000	5,255	0,845				
1		60	30000	4,477	0,531	-0,016	0,962	$1,37 \times 10^{-3}$	$4,008 \times 10^{-5}$
2		\	60000	4,778	0,568			//	/
4									
3	- N		90000	4,954	0,643			//	X
					0,643 0,672			- //	

6		180000	5,255	0,806				
1	50	30000	4,477	0,477	-0.010	0,975	$1,35 \times 10^{-3}$	$4,873 \times 10^{-5}$
2		60000	4,778	0,531				
3		90000	4,954	0,586				
4		120000	5,079	0,602				
5		150000	5,176	0,643				
6		180000	5,255	0,672				
1	40	30000	4 477	0.477	0.016	0.062	1 20 × 10 – 3	4 220 × 10=5
1	40		4,477	0,477	-0,016	0,963	$1,30 \times 10^{-3}$	$4,220 \times 10^{-5}$
2		60000	4,778	0,531				
3		90000	4,954	0,568				
4		120000	5,079	0,643				
5		150000	5,176	0,672				
6		180000	5,255	0,732				
1	30	30000	4,477	0,477	-0,010	0,975	$1,27 \times 10^{-5}$	5,350× 10 ⁻⁵
2		60000	4,778	0,531				7.0
3	\	90000	4,954	0,568		1		/ //
4		120000	5,079	0,602				
5	/ / ·	150000	5,176	0,643			/ /	
6		180000	5,255	0,672			7.1	

Keterangan:

= hasil logaritmik dari besarnya medan listrik (V/m) Log E

 $\text{Log } \Delta m$ = hasil logaritmik dari banyaknya jumlah frinji yang hilang

= konstanta yang dihasilkan dari grafik = Nilai koefisien Kerr (m²/V²) С

 R_k

= Standart error dari nilai koefisien Kerr yang diperoleh ΔR_k

E. Perhitungan untuk mengetahui ketebalan wadah sampel

No	Medan Listrik	ζ_0	ζ	α	\overline{lpha}	$\Delta \alpha$
1	0	11	11	0	0,00E+00	0
2	30000	11	11	0		
3	60000	11	11	0		
4	90000	11	11	0		
5	120000	11	11	0		
6	150000	11	11	0		
7	180000	11	11	0		

Keterangan:

 ζ_0 = jumlah frinji sebelum dikenai medan listrik

= jumlah frinji setelah dikenai medan listrik ζ

= nilai dari ketebalan wadah sampel α

= nilai rata-rata dari ketebalan wadah sampel $\bar{\alpha}$

= nilai standart deviasi perhitungan (α) Δα

F. Lampiran Hasil Uji T

1. Extra Virgin Olive Oil

Perbandingan antara suhu dan nilai Kerr

H_A: Ada pengaruh antara kenaikan suhu dengan nilai Kerr

Ho: Tidak ada pengaruh antara suhu dengan nilai Kerr

Dengan $T_{Tabel} = 2, 132$

Hasil uji t menggunakan excel

t-Test: Paired Two Sample for Means		
	Variable 1	Variable 2
Mean	50	1.27
Variance	250	0.0017
Observations	5	5
Pearson Correlation	0.882009737	
Hypothesized Mean Difference	0	
Df	4	
t stat	6.907344354	
P(T<=t) one-tail	0.00115214	
t Critical one-tail	2.131846786	
P(T<=t) two-tail	0.00230428	
t Critical two-tail	2.776445105	

2. Virgin Olive Oil

Hasil uji t menggunakan excel

t-Test: Paired Two Sample for Means

	Variable 1	Variable 2
Mean	50	1.346
Variance	250	0.00063
Observations	5	5
Pearson Correlation	0.944911183	
Hypothesized Mean Difference	0	
Df	4	
t hitung	6.89105031	
P(T<=t) one-tail	0.001162364	
t Critical one-tail	2.131846786	
P(T<=t) two-tail	0.002324727	
t Critical two-tail	2.776445105	

Kesimpulan

 $T_{hitung} \hspace{1.5cm} : 6,8910$

 T_{Tabel} : 2, 353

sehingga

 $T_{hitung}\!>\!T_{Tabel}$ atau H_A diterima dan H_O ditolak

3. Refined Olive Oil

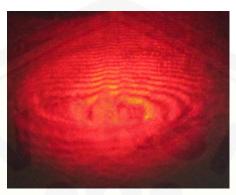
Hasil uji t menggunakan excel

t-Test: Paired Two Sample for

Means

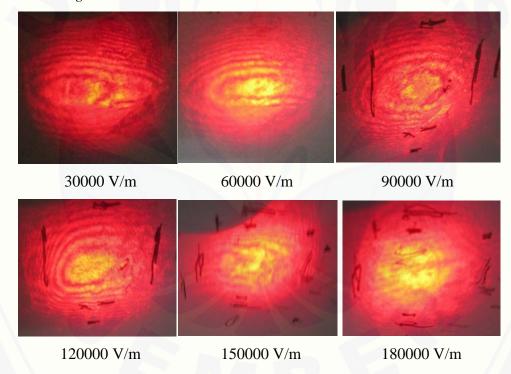
	Variable 1	Variable 2
Mean	50	1.346
Variance	250	0.00223
Observations	5	5
Pearson Correlation	0.970991819	
Hypothesized Mean Difference	0	
df	4	
t hitung	6.900725004	
P(T<=t) one-tail	0.00115628	
t Critical one-tail	2.131846786	
P(T<=t) two-tail	0.002312559	
t Critical two-tail	2.776445105	

Kesimpulan


 $T_{\text{hitung}} \qquad : 6,9007$ $T_{\text{Tabel}} \qquad : 2,353$

sehingga

T_{hitung} > T_{Tabel} atau H_A diterima dan H_O ditolak


Lampiran Dokumentasi

A. Extra Virgin Olive Oil

0 V/m

1. Extra Virgin Olive Oil suhu 50°C

2. Virgin Olive Oil suhu 50°C

B. Dokumentasi Penelitian

