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It is He who made the sun

To be a shining glory

And the moon to be a light
Of beauty, and measured out
Stages for her; that ye might
Know the number of years
And the count of time.
Nowise did God create this
But in truth and righteousness
Thus doth He explain His Signs
In detail, for those who
Understand

(Holy Quran, X:5)
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ABSTRACT

Representation of finite geometries either by means of abelian finite groups or by
means of marks of a Galois Field was developed by Robert D. Carmichael in the thirties.
The emphasis was on projective finite geometries, while the Euclidean ones were
mentioned very briefly and were considered as certain subsets of projective finite geomet-
ries. The concept of a vector space was not utilized by Carmichael [4].

In this dissertation I consider Affine finite geometries explicitly. The main idea is to
introduce the concepts of parallelism and orthogonality, in those geometries, which are
represented by means of finite vector spaces.

Beginning with a Galois Field GF[p™] we construct a k-dimensional vector space
Vk(GF[p™]). We call this space a k-dimensional Affine finite geometry of order p" or
a k-dimensional Affine finite space of order p”.

The elements of this space are called points and particular subsets, namely subsets
which can be written in the form {a + pb} , where a and b are elements of Vx(GF[p"])
with b# 0 and u € GF[p"], are called lines.

The terminologies “lying on” and “intersecting’ are defined in a very obvious way.

Similarity among lines is defined by means of direction points (direction vectors) and
two lines are said to be parallel if they are similar and disjoint.

The concept of standard pseudo inner product of two vectors is defined much in the
same way as the standard inner product in Vi(R) (or RK ). Two vectors are said to be ortho
gonal to each other if their standard inner product is zero and two lines are said to be ortho-
gonal or perpendicular to each other whenever its respective direction vectors are orthogonal.

It is not impossible that a line might be orthogonal to itself. Such a line is called iso-
tropic. As a consequence two lines which are parallel might be orthogonal to each other.
This fact is something new, unexpected and rather surprising, especially when we consider
the Affine finite plane.

Based on the vector equation of a plane in Rk, especially in R3, a plane in Vk(GF[p"1])
is defined to be a subset which can be written in the form {a + b OC} , where u, 0 €
GF[p"] and b and c are two non zero vectors which are not similar.

Only planes in V3 (GF[p™]) are considered in this dissertation. As expected coordinate
equation of a plane, normal vector of a plane and many other notions have the same form
as in the ordinary Affine geometry.

Since in finite systems counting theorems are important, one of the main problems
here is the determination of the total number of lines and planes.

vi
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ABSTRAK

Penyajian geometri terhingga baik dengan grup abel terhingga maupun dengan unsur-
unsur dari suatu medan Galois telah dikembangkan oleh Robert D Carmichael sekitar
tahun tigapuluhan. Titik beratnya diletakkan pada geometri proyektif terhingga. Adapun
geometry Euclides terhingga hanya disebut sepintas lalu saja dan dianggap sebagai anak
himpunan tertentu dari geometri proyektif terhingga. Konsep ruang vektor belum diguna-
kan oleh Carmichael (4]

Dalam disertasi ini saya meninjau geometri Afin terhingga secara eksplisit. Ide
utamanya ialah memperkenalkan konsep-konsep kesejajaran dan ketegaklurusan, dalam
geometri tersebut yang disajikan dengan ruang vektor terhingga.

Dimulai dengan suatu medan Galois GF[p" ] kita bangun suatu ruang vektor berdimen-
si k yaitu Vg (GF[p" ] ). Kita namakan ruang ini geometri Afin terhingga berdimensi k
dan tingkat p" atau ruang Afin terhingga berdimensi k dan tingkat p"

Unsur-unsur ruang ini disebut titik dan anak himpunan-anak himpunan khusus yaitu
anak himpunan yang dapat diucapkan dalam bentuk {a +pbf ,dimanaab€V, (GF[p"])
dengan b # 0 dan u € GF[p" ], disebut garis.

Istilah-istilah ““terletak pada’ dan “berpotongan’ didefinisikan dengan cara yang
sangat eviden.

Pengertian searah antara dua garis didefinisikan dengan bantuan titik arah atau vektor
arah dan dua garis dikatakan sejajar bila keduanya searah dan saling lepas.

Konsep hasilkali dalam baku palsu dari dua vektor didefinisikan dengan jalan yang
serupa seperti hasilkali dalam baku pada V (R) ( Rk). Dua vektor dikatakan saling orto-
gonal jika hasilkali dalamnya nol dan dua garis dikatakan saling ortogonal atau saling tegak-
lurus bila vektor arah masing-masing saling tegaklurus.

Tidaklah mustahil bahwa suatu garis mungkin tegaklurus pada dirinya sendiri. Garis
semacam itu disebut isotrop. Sebagai akibatnya dua garis yang sejajar mungkin saja saling
tegaklurus.

Kenyataan ini menunjukkan sesuatu yang baru, tidak diduga dan agak mengejutkan
khususnya apabila kita tinjau Bidang Afine terhingga.

Berdasarkan persamaan vektor dari sebuah bidang dalam Rk, khususnya R3, bidang
dalam Vk(GF[p"] ) didefinisikan sebagai anak himpunan yang dapat diucapkan dalem
bentuk { at+ub+ 00} dimana a, b, c€ Vk(GF[p“] ) dengan b # (_); ¢ # 0 serta b tak searah
dengan ¢ dan u, 6 € GF[p"].

Hanya bidang dalam V3(GF[p"] ) akan dibahas di sini. Seperti yang diharapkan
ternyata persamaan koordinat suatu bidang, vektor normal suatu bidang dan banyak
konsep lainnya mempunyai bentuk yang sama seperti dalam geometri Afin yang biasa.
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Karena dalam sistem-sistem terhingga teorema-teorema pembilangan (penghitungan)
penting, maka salah satu masalah utama disini yaitu menentukan banyaknya garis dan

banyaknya bidang.
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INTRODUCTION

Finite geometries can be set up in two ways, namely axiomatically [22] or by
representation [4], [4a]. The most difficult one is the first.
Reprensentation of finite geometries by means of abelian finite groups has been done

by Robert D Carmichael [4]. He began with an abelian finite group of prime power order
p(k+ Dn and of type (1, 1, 1,...,1). A point is defined to be any subgroup of order g

while a line is defined to be a subgroup generated by two different subgroups which are
points.

He called this geometry a k-space projective geometry and denoted it by PG(k,p™).

The two basic axioms of projective geometry in PG(2, p") namely :

(i) Given two distinct points, there exists one and only one line passing through both
points, and its dual
(ii) Two distinct lines intersect in one and only one point,

becomes true theorems.

He also gave a representation of finite projective geometry by means of “marks”
which means elements of a Galois Field. A k-dimensional finite projective geometry is a
set of (k + 1)--tuples (g, p1, 42, . . . ,Mk), Where uo, 11, 42, . . . ,Mk are elements of a
Galois Field GF[p™] at least one of which is different from zero. He called such a (k + 1)—
tuple a homogeneous coordinate.

Since the concept of a vector space has not been used, difficulties arose when such a
coordinate will be added or will be multiplied by another element of the field GF[p"].

The emphasis of his work is finite projective geometry, while the Euclidean finite
one was mentioned very briefly. By a Euclidean finite geometry is meant the set of (k +1)—
tuples (1, uy, u2.. . . ,uk) where the y; ’s are elements of a Galois Field GF [p™]. Any such
a (k + 1)—tuple is called a point. Hence the total number of points in that geometry is p“k.
He denoted this geometry by EG(k, p™).

I simply begin with a Galois Field £ = GF[p"] and set up the vector space Ekover Z,

k
where X is the cartesian product of k factors, namely

EEEXIX... X3
in the very usual way. I denote this vector space by Vi(Z) or Vk(GF[p"]) [3].

Any vector in Vk(Z) is defined to be a point and any subset L C Vi (Z) is called a
line if and only if there exist points (vectors) a, b € Vi (Z) with b # 0 such that

L={a+06bl0EZ]
Here b is called a direction vector or direction point of L.

Furthermore a vector ¢ # 0 is said to be similar to a vector d # 0 if and only if there
exists an element u €X such that ¢ = ud. Clearly similarity is an equivalence relation. Two
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lines are said to be similar if their direction vectors are similar and two lines are said to be
parallel if they are similar and disjoint.

A subset A © Vi (2) is said to be a plane if and only if there exist three'vectors
a,b,ceEVK(Z) with b # 6 ¢ # 0 where b and c are not similar, such that:

A=ta+ub+00|u,062§ ;

In addition I introduce the standard pseudo inner product to define orthogonality.

Then I call this Vg (GF[p" ]) a k-dimensional Affine Finite Geometry of order p®
and denote it by AFG(k,p"™)

The basic idea of this procedure is obvious. To build up finite geometries we search a
representation of them. Then we deduce theorems. Finally we compare these theorems,
which are discovered from the representation with the corresponding ones from the ordinary
Affine geometry. We can see whether they are similar or not.

As a side product I discuss in brief the Projective finite plane, deduced from the
3-dimensional Affine finite geometry AFG(3,p") where lines through 0 are defined to
be points and planes through 0 are defined to be lines.

In my remark I consider the possibility of defining distances and midpoints in
AFG(k,p") and investigating whether there is a relation between an Affine finite geometry
and a graph.

The following scheme is the basic idea of this representation.

o

Affine
Finite Geometry

. Ordinary
, Affine Geometry
L |

—

BN _____,__1
|
i

—

i

| Representation of
| Affine Finite
' Geometry

—

:
!
!
4

*

)

Theorems deduced ,I :'
| o
|

Well known theorems from
x ; ; .
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|
|
|
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CHAPTER 1

FINITE VECTOR SPACES

1.1 Notation

Let V be a vector space over the field Z. Elements of V are denoted by the Italian
lettersa, b, c, . . ., X, y, z, while elements of Z are denoted by the Greek letters «, 3, 7, K,
. AR

[f a€ V then the set of all multiples of a, namely

|6a 6€Z]
is denoted by X a.
Ifa. b, EV. then the set {a+6b | 0€Z | is denoted

by a+ Zb,
and if a.b.c€Vtheset{a+ub+0¢ Iu,OEE}

is denoted by
a+2Zb+ Zc.

The k-dimensional vector space Ekover Z is denoted by vV, (2) 13 .

1.2 Finite vector spaces

By a finite vector space V over the field Z is meant a finite abelian group V which
is a vector space over Z. Obviously finite vector spaces are finite dimensional ones. We
may have an infinite vector space over a finite field, for instance the trancendental
extension of a finite field by adjunction of an indeterminate is an infinite vector space
over the original finite field.

But we can not have a non zero finite vector space V over an infinite field, for if such
a space V would exist wecan select a non zero element a € V and form the set of all mutiples
of a, which will be an infinite subset of V and thus contradicts the hypothesis that V is
finite.

So we can state the following proposition:

PROPOSITION 1.2.1
There does not exist a non zero finite vector space over an infinite field.

1.3 The vector space Vi (GF[p"])

So a non zero finite vector space V must be a finite one over a Galois GF[p"]. Since
two vector spaces over the same field, with the same dimension are isomorphic, hence for
the investigation of finite vector spaces it is sufficient to consider the spaces Vi (GF[p"]).
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CHAPTER 11

THE AFFINE FINITE GEOMETRY AFG(k, p")

2.1 Points and lines

Let T be a Galois Field GF[p"]. We consider the k-dimensional vector space
Vk(Z) = VK (GF[p"]) over . We are going to make this vector space a finite gometry
by defining points and lines as follows:

DEFINITION 2.1.1
Any element of Vi (2) is called a point.

DEFINITION 2.1.2
A subset L C Vk(Z) is called a line if and only if there exist points a and bEV, (Z)
withb # Osuch that L = a + Zb.

Hence this vector space V¢ (Z) is called a k-dimensional Affine finite space of

order p" or an Affine finite geometry of dimension k and order p". | he following

statement is obvious.

COROLLARY 21.3
The total number of points in an Affine finite geometry of dimension k and order p” it
equal to p™¥.

We denote this geometry by AFG(k, p™). If a line L in AFG(k, p™) is represented
by the formula a +Zb, the point b is called a direction point or direction vector of L.

It is denoted by df .
We say that a point b lies on L or L goes through b if and only if bE L. A line L is

called to intersect M if and only if L " M # (@ and the fact that two lines K and N coincide
is expressed by K = N.

PROPOSITION 2.1 4

The line L = a + Zb goes through the point a.

The following theorems are basic and plausible.

PROPOSITION 2.1.5

A line in AFG(k, p™) contains exactly p" points.

PROOF

This proposition is based on the property that in a vector space the relation 6x = 0 implies
#=0orx=0.

Let L be a line in AFG(k, p") and let L = a + Zb. Hence the total number of points in

4
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L is at most p". Suppose there are 1. 02€ X such thata+01b=a + 02b. Thus 81b = 07b.
Or(6; 62)b=0. Then according to the property just mentioned before this means that
01 =62 since b # 0. Hence the number of points on L is equal to the number of possible

choices of 6, i.e equal to p" ®

DEFINITION 2.1.6
A non zero vector a is said to be similar to a non zero vector b if and only if there exists
af€ Zsuchthata=60b. Notation:awnb.

Obviously similarity is an equivalence relation.

PROPOSITION 2.1.7
Two direction points of a line are similar

PROOF
Let L be a line in AFG(k, p™). and let L be represented by two different formulas, say
L=a+Zband L=s+ Zt.
Then according to a previous proposition a and s lie on L.
Hence we can write: a =s + ut torsome u€Z
and s=a+0bforsomefeZ

We consider two cases:
(i) a#s
(i) a=s

In case (i) we have u #0and § #0, whilea - s = ut = - 6b.

Hence b = (--0) lut which means that b » t.

In the other case take a point ¢ # a on L. Then there exist 0 and 7€ Z. both unequal

zero such that:

c=atob=s+rt=a+t.
Hense ob = 7t or b = ¢~ ! 7t. This means b v t. w

PROPOSITION 2.1.8
If a and b are two distinct points, then the line L = a + Z(b - a) goes through both points.

This is obvious sincea=a+0(b-a)andb=a+ 1(b — a).
The following theorem is the fundamental one in geometry.

THEOREM 2.1.9 (The Fundamental Theorem)
Given two distinct points, there exists one and only one line passing through both points.

PROOF

(i) Existence

This has been stated in proposition 2.1.8. If we called those two points a and b, then one
of the lines passing through both points is the line L represented by L=a+ Z(b — a).
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(ii)) Uniqueness

Let M be another line passing through a and b. Since M is a line hence there exist points s

and t # 0 such that M= s + St. Since a, b€ M this means that there exist « and BEZ such
that:

a=s+atand b=s+ft.

Further let x €L. hence

x=atylb-a)=s+at+y(B-a)t=s+(a+yp- yot.

This means that x€ M. Therefore L C M. However L and M are both finite sets with
the same number of elements, since both are lines. Hence L =M which means both lines

coincide. "
REMARK

Another straight forward proof without using the conventional set inclusion can be done
in the following way:

Let M be another line passing through a and b, then there exist points s and t # 0

such that M =s + Zt. Since a and b are on M this means that there exist u and 6 € ¥ such
that:

a=s+utand b=s+ 0t 7
Hence b a=(0 — u)t. By hypothesis a differsfrom b, hence b — a = (6 - w)t # 0. This
implies that u # 6. Then solving s and t from equation (*) we get:

t=(0—u)‘l(b—a) and s=a-ut=a—u(0—p)'l(b—a).
Therefore:
M=s+Zt=a-p@-p ' (b a+Z06-w b a
={a—u(0—u)_l(b-a)+a(0—y)'1(b—a)|062}
={at(0 w)® w (b -a)loeZ)={a+Nb- a)|AEZ)=
=a+ Z(b — a) which is 1dentical to L.

COROLLARY 2.1.10

Two distinct lines intersect in at most one point.

DEFINITION 2.1.11

Two lines are said to be similar if its direction vectors are similar.
Notation: L «»» M.

This definition is well defined because of proposition 2.1.7. Clearly similarity among lines
is an equivalence relation.

LEMMA 2.1.12

If two similar lines intersect, then they coincide.
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PROOF
Suppose L and M are two lines suchthat LcoMand LN M#@.Let L=a+ b and
M = ¢+ Zd where b v»» d. We may write d = b. Hence M = ¢ + Z(6b).
Take a pointq€ L N M;
qe Lhenceq=a+Ab forsome A€ X

qQqEM hence q =c + ud forsome ueX

Further q =c+ ud = ¢ + ufb

Ora+Ab=c+ ufb hence c =a+ (A — ud)b.
For any point xonMonehasx=c+od=(a+ (A~ uf)b) +ofb=a+ (A — ud + gb)b L.
This means that M C L. Thus M = L. =

PROPOSITION 2.1.13
Given a line L = a + Zb, then for any u and 6 € £ with 8 # 0, the line M = (a + ub) + £(6b)
coincides with L.

PROOF
Since both lines L and M are passing through a and a + b they must coincide, according to
theorem 2.1.9. &

2.2 Parallel lines
One of the main ideas in this dissertation is to define the concept of parallelism,
since Affine geometry is characterized by the existence of two non intersecting lines

in a plane.

DEFINITION 2.2.1

Two lines L and M are said to be parallel to each other if and only if:
i) LoM

(i) LNM=0

Notation: L I/ M

THEOREM 2.2.2
Given a line L and a point q not on L, then there exists one and only one line contain-
ing q wich is parallel to L.

PROOF
Let L be a line and q a point such that q € L. Since L is a line, it can be written as

L=a+ b, where a, bE Vk (Z) and b # 0.

Consider the line M = q + Zb. Then M contains q and it is similar to L. It remains to be
proved that LN M = 0.

Assume that M intersects L. Since both lines are similar, according to Lemma 2.1.12 they
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coincide. Hence q€ L, which contradicts our hypothesis.
To show the uniqueness, suppose M’ is another line passing through q and parallel to
L. So we have
L7 M
and L/ M
L 7 Mgives L ® M, thusM » L. While L / M’ means also L ©> M’'. Hence M v» M’

since similarity is transitive. Then according to Lemma 2.1.12 M = M".

2.3 Number of lines

In this paragraph we want to determine the total number of lines in AFG(k, p™)
beginning with
(i) The total number of lines passing through a given point,
(ii) the total number of lines parallel to a given line
c.q the total number of lines with a certain direction.
(iii) the total number of lines in AFG( k, p™).
If nothing is mentioned, the word total number of lines means total number of

distinct lines.

THEOREM 2 31
The total number of lines passing through a given point in AFG(K, p™) is equal to

pnk SO

_n.

p ]

PROOF
Take a point a in AFG(k, p"). The total number of points different from a is pnk - 1.

So we can make pnk -~ 1 lines through a. Each line contains p" — 1 points different

from a. Hence there are

pnk ]
n

P lines through the point a. =
p

THEOREM 2.3.2
Given a line L in AFG(k, p"). there are exactly p"(¥ = 1) 1 lines parallel to L.

PROOF
Since L contains p" points, there are pnk — p™ points not on L. We can construct the same
number of lines (one through each point) parallel to L. But each line contains p" points.

R,
Hence there are ————n—E = p“(k = 1) _ 1 different lines parallel to L. =
P
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COROLLARY 2.3.3
Given a line L in AFG(k, p"), there are exactly p™X — 1) lines similar to L.

For futher purposes we introduce the word direction by saying that two lines have the same
direction when they are similar. Furthermore we say that a line L has direction b when its
direction vector (direction point) is similar to b.

THEOREM 2.3.4
The total number of lines in AFG(k, p™) is equal to

otk —1) P — 1

p" — 1
PROOF
There are p™ — 1 directions in AFG(k, p™). Up to similarity the total number of distinct
directions is

pnk__]

p
In each direction there are pr’(k g4 parallel lines. Hence the total number of lines is equal

1 -

to

pik — 1) phi. ]
n
p —1

2.4 Orthogonality

We are now going to define the notion of standard pseudo inner product. Just for our
purposes here we define it in the following way.

DEFINITION 2.4.1
The Standard Pseudo Inner Product (SPIP) of two vectors x and y€ Vi (Z) where

=1, 82, .. -..40)
and y=(1M1.792,...,1nk)
is defined to be £1m1 +&2m2 +. .. + Eknk and will be denoted by x.y.

[t can be verified easily that the standard pseudo inner product satisfies the following
properties:

(1) x.y=y.x for any x,y€ Vk(Z)
i) x.(y+z)=xy+x
-y el = . for any x,y,z€Vi(Z)

(iii)) (x+y)z=x.z+y.z

(iv) (ux).(0y)=ub x.y, ¥ p€Z & ¥ x,yeVi(2)
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DEFINITION 2.4.2
Two vectors x and y are said to be mutually orthogonal if x.y = 0 (Notationx 1 y).

DEFINITION 2.4.3
Two lines L and M are said to be mutually orthogonal if di .dy = 0 (Notation L 1 M).

PROPOSITION 2.4.4
Let L.Mand N be lines. f LIMandM 7/ NthenL L N.

PROOF
LetL=a+Zb;M=c+Zdand N=¢ + =f.
Since L L M hence b.d = 0.

M / Nmeansd v ford=6fforsome €T with § #0.

Hence 0 = b.d = b.6f = 0 b.f, thus b.f = 0, since § # 0, which means that LL N. q.e.d. =

Contrary to the classical Affine geometry. in AFG(k, p") it is not impossible that
a line is orthogonal to itself. Such a line is called isotropic. The occurence of such a line is
due to the pseudo inner product. It is not caused by the finiteness of the field X ; neither
is it caused by the finiteness of its characteristic. If a pseudo Hilbert space is defined to be
a vector space endowed with a pseudo inner product, then such an isotropic line might
occur in that space.

A space which contains no isotropic lines is called an anisotropic space. Otherwise
it is called isotropic

Let us consider the space AFG(2. 2! ) namely the Affine finite plane of order 2.
This plane contains the vector (1. 1) which is orthogonal to itself and hence any line with

that direction is isotropic. In general we can state the following:

PROPOSITION 2.4.5
The space AFG(k, p") in which k = p is isotropic.

PROOF
For k = p it can easily be seen that the vector k. 1,1) is orthogonal to itself, hence
any line with that direction is isotropic.

In the space AFG(k, p™) with k > p, any vector of the form s, .. . .10 .1
where p entries are equal to 1 and the others are zero, is orthogonal to itself and hence any
line with that direction is isotropic, for the characteristic of GF[p"] is equal to p, hence

(LOWMDN . ¢ D(1,0,1,0,.. .D=12+12+. . +12=pI=0. "
On the other hand take the plane AFG( 2,31 )= AFG(2,3). The number of distinct
directions is equal to

Bl i o
4 = =4

QB W e

Those directions are represented by the vectors (1,0), (1,1), (1,2) and (0,1) and non
of them is orthogonal to itself.
Hence the space AFG(2,3) is anisotropic. So we can make the following statement.
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STATEMENT 2.4.6

There do exist anisotropic as well as isotropic spaces.

Sometimes we use synonym perpendicular instead of orthogonal. This is a geometric
terminology. while the other is an algebraic one.

Furthermore. in the ordinary Affine geometry no matter the dimension. we have
the following theorem:
Given a line L and a point b not on L. there exists one and only one line passing through
b and intersecting L perpendicularly.

A question arises whether this theorem is still valid in the Affine finite geometry

AFG(k., p"). The answer will appear to be negative. A short investigation leads to the
following result.

THEOREM 24 7
Given a line L in AFG(k, p") and a point b not on L then

(1) there exists one and only one line passing through b and intersecting L perpendicularly
if the line L is anisotropic.

(i1) if L is isotropic then
either

(a) there does not exist a line through b and intersecting L perpendicularly
or

(b) any line passing through b and intersecting L is perpendicular to L.

PROOF

Let L be a line and let b be a point not on L.

Write L =s + Zt.

Take a point x EL. Then x = s + 0t for some € 3.
Further let M be the line passing througn x and b.
ThenM=b+Z(b x)=b+Z(b - (s +01)).

The direction vector ( direction point) of L is t and the direction vector of Mis b— s — 6t.
For practical reasons let us abbreviate and denote these quantities by di and dy respectively.

Now 6 must be chosen in such a way that M L L. This means that & must satisfy the
equation

dp.dm =0 (*)
Hence t. (B - 598 =0
or tb-ts—-60tt=0

thus 0t.t=tb - ts

(1) If t.t # 0, which means that LfLieLis anisotropic, then (t.t)™ I exists and
0 =(t.t)” 1(t.b — t.s) which gives exactly one solution to the problem.
(ii) If t.t = 0, meaning that L L Li.e L is isotropic, then there are two possibilities:
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(a) tb—-ts#0
In this case 6 does not exist, since equation ( *) can not be solved. So the line M does
not exist.
(b) t.b — ts=0.
In this case any value of 6 satisfies equation (*). This means that any line passing
through b and intersecting L is perpendicular to L.

Since there are p" pointson L. there are exactly p" lines passing through b and intercect-
ing L perpendicularly. &

In comparision with the corresponding theorem in ordinary Affine geometry, this
is unexpected and of course not beautiful. It is due to the fact that the pseudo inner
product does not necessarily statisfy the property X.x ¥ 0 when x # 0. But in an aniso-

tropic space the corresponding theorem is still valid. So we have the following :

COROLLARY 24.8

In an anisotropic space AFG(k, p"), given a line L and a point b not on L. there exists
one and only one line containing b and intersecting L perpendicularly.

EXAMPLES

Example 1

Take the Galois Field Zs (the integers modulo 5) and set up the Affine Finite Plane
AFG(2,5) = V2(Zs). On that plane take the line L = 2 (1,1), in which £ =Zs. Further let b
be the point (4,0). Clearly b does not lie on L, since L contains only the points (0,0), (1,1)
(2,2), (3,3), and (4,4).

Let x be a point on L then x = u(1,1). Now let M be the line passing through b and x,
then its direction vector dy = b — x = (4,0) — u(1,1). While the direction vector of L is
dr =(1,1). Choose now u such that dv.dr =0.

dm.dL = {(4,0) — u(1.1)}.(1,1) =0,
or (4,0).(1,1) — u(1,1).(1,1)=0,
4 - 2u=0
2u=4
p=42) 1=4x3=2
Hence x = 2(1,1)=(2,2)
Then the line M =b + Z(b — x) = (4,0) + ((4,0) — (2,2))
= SUT¥YZ(2 =2)
=(4,0) + £ (2,3).
Since L is anisotropic there exists one and only one line M passing through b and intersecting
L perpendicularly.

’
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Example 2

Take again the plane AFG(2,5). Further take the line L = 3(1 ,2) and the point
b=(2,1).

The point b does not lie on L since L contains only the points (0,0), (1,2), (2,4), (3.1)
and (4,3). The direction vector of L is (1.2). So L is isotropic

Let x € L. then x can be written as x = 6(1.2). Consider the line M passing through b
and x. Hence M=b + Z(b - x).

I[ts direction vectorisdMy=b  x =(2.1) — (1,2). Now 6 must be chosen such that
M1L ordy.di =0.

dm.dL = {(2,1) - 6(1.2)}.(1,2) =0 (%
Hence 6 must be solved from equation (*). After computation it gives.
6 (1,2).(1.2) =(2,1).(1,2) =4 { )

Since (1.2).(1,2)=12+22=1+4= 0. while the right hand side of equation (**) is
not zero. this equation can not be solved.

Hence according to theorem 2.4.7 there does not exist a line passing through b and
intersecting L perpendicularly

Example 3

Let £ =Z5 and consider the space AFG(3,5) = V3(Z) = V3(Zs).
Let L be the line represented by

L =(2,2.1) + Z(1,2,0) and let b be the point (2,2.0).
It can be easily checked that b does not lie on L.

Now we determine a line M passing through b and intersecting L perpendicularly.
Let x €L, hence x = (2,2,1) + u(1,2,0) for some uEZ. Let M be the line containing both
b and x. then-

M=b+Z(b- x)
=(22,00+Z[(22,0) - {(2,2,) + u(1,2,0)} ]
=(2,2,0)0+ Z[(0,04) - u(1,2,0)].
The direction vector of L is di. =(1,2,0) and the direction vector of M is
dMm =(0,0,4) — i 1,2,0).
Choose now u such that di .dy =0 g

dL.dMm = (1,2,0).[(0,0,4) - u(1,2,0) ]
=(1,2,0).(0,0,4) — u(1,2,0).(1,2,0)
=0 -- u0 =0 for any u.
Hence any value of u satisfies equation (***).
This means that any line passing through b and intersecting L is perpendicular to L. Since
there are five points on L, and thus there are five such lines, there exist exactly five lines
passing through the point b = (2,2,0) and intersecting the line L = (2,2,1) + £(1,2,0)
perpendicularly.
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REMARKS
I. Incase L L L, itseems that the point s from the expression L = s + Zt discussed in the
proof of theorem2.4.7 plays an important role in the determination of the line M In reality
this is not essential.
Since if t.(b s)=0thent.(b x)=0 for any point x€L. for an x on L can be
written as
X =s+ ut
hence t.(b x)=t(b (s+ut))=
=1(b 4y 120  0=20

Il Speaking about isotropic lines. we also have met such a thing in the classical analytic

geometry with complex coefficients. namely the line y=ix.wherei=/ - |

[T1.  Observing theorem 2.4.7 we can mention a somewhat related situation in a non
Euclidean (elliptic) Geometry. 1.e the geometry on the sphere.

Given a line L (great circle) and a point b not on L. then there exists one and only
one line passing through b and intersecting L perpendicularly, if b is not a pole of L.

However if b is a pole of L. there are infinitely many lines passing through b and
intersecting L perpendicularly
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CHAPTER III

THE AFFINE FINITE PLANE AFG(2, p")

3.1 Points and lines

We are dealing here with an Affine Finite Geometry of dimension two. namely the
geometry AFG(k, p™) with k = 2. According to a previous theorem the total number of
pointsin the Affine finite plane AFG(2, p") is equal to p2". Further we have the

following list about the number of lines.

I.~ The number of lines through a point is equal to

2. The number of parallel lines in a given direction is equal to p"

3. The total number of lines is equal to

1
pn([%]_ =) ) =p" (p" + 1) = p2N + pn

3.2 Parallelism

In general two lines are said to be parallel if they are similar and their intersection is
empty. On the plane however we have a special characterization of parallel lines.

THEOREM 321
Two lines in AFG(2, p") are parallel if and only if they do not intersect.

PROOF
(i) necessity:
I[f L / M then according to the definition of parallelism LN M =0.

(i1) sufficiency:

Suppose there are given two lines L and M such that LN\ M = [/

Let L=q+ Zrand M =s + Zt. Since L N M = 0, there do not exist scalar u and 6
satisfying the following equation

qtur=s+0t (%
This means that the following system of linear equations

Hp| —Or] *uy =y ()

up2 — 012 =032 — ¢

where q = (¢1,¢2); r=(p1,p2); s=(01,02)and t = (71, 72) has no solution.

15
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Hence =0 orpim =p27]

'y SR

Since t = (7], 72) is a direction vector, at least one of the Ti s is not zero.

Suppose 772 # 0. Then we distinguish two cases, j.e 71 = 0 and 71# 0. In the first
case one has

p2 = arbitrary,
and p| = 0.
This means that r »t.
The same conclusion will be got by supposing 71 #0and 2 =0

In the second case, where both 7] and 73 are not zero, we have from p172 = p21] the
relation

piri! =pyry!
Putting p 7 b ,oz-rz"l = A
one has P1=AT)
and P2 = AT2

This means thatr=Atorr v t.

In any case we haver v t. Thus L «»» M. Since LN M = ¢, we have L / M. »

3.3 Orthogonality

In the previous chapter, we discussed the determination of a line M passing through a
point b not on a given line L and intersecting L perpendicularly. Such a line always exists
if the line L is anisotropic. In that case M is unique. If L is isotropic such a line might not
exist. In the case k = 2 we can state the following theorem.

THEOREM 33.1

Given a line L on AFG(2. p") and a point b there exists one and only one line passing

through b and perpendicular to L.

PROOF

Let L be a line on AFG(2, p") and let b be a point.

Write L=s+Zt=(01,02)+Z (11, 7).

Let M be a line through b, then M can be written as:
M=b+Zm=(B1,82) + Z(u1, #2)

Choose m such that m.t = 0.

l'his is an equation in two unknowns which is linear and homogenous. Up to similarity
its solution is unique. This completes the proof of our theorem, since two similar lines with
a point in common coincide (see Lemma 2.1.12) "
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Such a line always exists. even if L is isotropic. In that case M coincides with L if b
ison L, while if b is not on L then M 7 L, so the line M does not intersect L.
[f bis not on L. we have a special case of theorem 2.4.7 with k = 2. As a consequence

of this theorem we have the following theorem on the plane.

THEOREM 332

[f a line L is anisotropic and M is a line perpendicular to L then M intersects L.

PROOF
Assume L "M = ¢. Then according to theorem 3.2.1 L 7/ M. This means that the direction

vectors of L and M are similar Let di and dy be the direction vectors of L and M
respectively. thendy v dy or dy =6dy forsome € X

But L 1L M, hence
dp.dm =0
or dp.(6dp)=6dp.dr =0
Since 6 # 0, one has df .d| = 0. which means that L is isotropic. This contradicts our

hypothesis and completes the proof of our theorem. ®

Theorem 3.3 | which sounds like one of the fundamental theorems in the ordinary
Affine plane might have been expected to be true.

PROPOSITION 3 3.3
[fLIMand LI Nand M# NthenM 7/ N.

PROOF

Let L=a+ 2b.
M=c+Zd

and N=¢e + Xf.

L1Mleadstob.d=0
L1 Nleadstob.f=0
Further put b= (81.62): d =(81.82) and f = (g1, ¢2).

Then b.d =0 leadsto 816] +8262 =0 (I
and b.f = 0 leads to 1] +B2¢2 =0 (IT)

Since b is direction vector. then at least one of the §; ’s, say . is not zero. After

multiplying equation II by 6 and equation I by ¢; we have:
B1d191 + 426241 =0 (Ia)
B1o161 *+P2y2d1 =0 (I1a)
Subtracting equation Ia from equation Ila we get:

B262¢1 =B2¢2061.
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From 7 # 0 we conclude that:

6201 =928
Consider three cases:
(i) 6;=0;
(i) 62 =0;
(iii) both &) and &7 are unequal zero.
(61 and 67 cannot both zero simultaneously, since d = (81, §-) is a direction vector).
In case (i) we have 1 = 0 and @2 arbitrary.
This means that d v»» f. Hence M / N, since M # N.
In case (ii) we have 97 = 0 and ¢ arbitrary which means M /7 N similarly.
In case (iii) we have:
0161 ' =267
Putting
0187 =265 =9
we get 9] =66) and 97 = 66>
which means f = 6d hence fxnd and N 7 M. -

This proposition which can be considered as the converse of proposition 2.4.4 is no longer
true in spaces of dimension higher than two.

3.4 Illustrations

To get a more concrete picture of these finite geometries, we can draw a diagram of
such a geometry by plotting all the points, especially for the Affine finite plane. In fact
those points may be plotted arbitrarily without any arrangement. Then a real line can be
drawn through points which lie on one line.

But if we plot those points in a square array some advantages will be gained. It can be
seen easily for instance how many lines go through one point, how many lines there are
in a given direction, what is the total number of lines, whether two lines are prependicular
a.s.o. It looks like a coordinate system (Cartesian coordinate system) in RZ.

ILLUSTRATION 1

The plane AFG(2, 2) contains 4 points and six lines. There are three lines through each
point and in a given direction there are two lines. See figure 1a, 1b and figure 2.

figure 1 a figure 1 b figure 2
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The plane AFG(2, 2) = V3 (Z3) where Z is the field of integers module 2.

LetZ; = {0.1] = £ and call the points (0.0)= a: (0. 1) = d: (1. 1) = ¢ and (1, 0) = b,
Further call the line ac = L. then we have L = ¢ = (1. 1)={(0.0).(l. l)} = {a.cl.
Call the line bd =M. then M=d+ Z(b - d)=(0. )+ Z(1. 1) = {(0. 1). (1. 0)| = |d. b}.

L and M are parallel but mutually orthogonal. since they do not intersect and dp .dy =
=cc=(L 1(1.0))=0.

Here k = 2.p=2and n = |. therefore
(1)  the total number of points is equal to 22 = 4.

(i1) the total number of lines through one point is equal to

nk 2
I " ol
p___- U I N N =3
g g <
pnk 1
(1i1) the number of lines = p“(k ) -n—~—i— )=2.3=6,
p
(iv) the number of parallel lines in a given direction is equal to p"(k e >

ILLUSTRATION 2

Take the Galois Field £ = GF[3!| = Z3 = the field of integers module 3 and set up the

finite geometry AFG(2, 3) = V5(Z5). i.e the Affine finite plane of order 3.

Here k = 2. p =3 and n = 1. After computation we have.

(i) the number of points = 9:

(i1) the number of lines through or.e points = 4;

(ii1) the number of parallel lines in a given direction = 3:

(iv) total number of lines = 12

See figure 3. Call (0. 0) = o then on figure 3 we can see the four lines through o. They are
K= Z(0,1)={(0. 0). (0. 1), (0, 2)} .

K L=2(1,1)={(0,0). (1. 1) (2. 2)}:

p M=2(2, 1)={0.0).(2,1).(1,2)}

and N = Z(1. 0) = {(0. 0). (1. 0), (2. 0)}.

Further the line P through a = (0, 2) and b = (2. 0)

can be written as:

a=1(0,2)

P=a+2Z(b-a)=(0.2)+2(2. :2)=
=(0,2)+Z(2. 1)
={(0,2), (1, D, 2. 0)}.

0, 1) |

N On the other hand P / M, since they do not
o — intersect ( according to theorem 3.2.1). In fact

direction vectors are dp = (2, 1) and dy = (2, 1)
figure 3

respectively.
Furthermore P 1 L, since dp. dp. = (2, 1). (1, 1) = 0.
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Looking at figure 3 it seems that P is “really” perpendicular to L. On figure 4 it can be seen
the three parallel lines in the direction (1, 1), namely the lines L, R and S.
As we have seen before, the Affine finite
o g ~ plane AFG(2, 3) is anisotropic. So given a line
¢ d and a point not on that line, there always exists a

line through that point and intersecting the given
line perpendicularly.
R Let us take the line P in figure 4 and the
points
c=(1,2),d=(2,2) and e=(2, 1)
No one of these points lies on P. Then:

ln

* = Sis the line through c and intersecting P
perpendicularly.;
** L is the line passing through d and intersecting
P perpendicularly;
figure 4 *** R is the line passing through e and intersecting
P perpendicularly.

ILLUSTRATION 3

Take the Galois Field T = GF[22] obtaining from Z, by root adjunction of the
equation x2+x+1=0. If one of the roots is called  we have :
Z=GF[221={0, 1,6, 6+1}.
Build up the Affine finite plane AFG (2,22) =V, (2).
See ﬁgure S
There are 16 points on this plane. Through each
point there are 22 + 1 = 5 lines.
In a given direction there are 4 parallel lines
\ and the total number of lines is equal to
*+2%=20.
(0, 0) Let L be the line Z(1, 1). It is isotropic.
Through each point outside L there does not exist

x
> §

0,6+ 1)

(0.1) a line which intersect L perpendicularly.
: Through o = (0, 0) there are five lines, namely
the lines
K=2Z0,1); L=2Z(1,1); M=Z(1, 6); -
figure 5 N=2(1,0);and P=Z(6, 1).

Only four of them are drawn in figure 5. The line P
is not drawn in the figure. It can be seen in this figure that M = Z(1, 0) contains the points

o (0.1 1(68.0) 0%y 0
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(0,0),(1,6),(6,06 +1)and (0 + 1, 1);

while K =Z(0, 1) contains the points (0, 0), (0, 1), (0, 6), (0, 6 + 1);
L =2Z(1, 1) contains the points (0, 0), (1, 1), (§,6)and (8 + 1,6 + 1);
N = Z(1, 0) contains the points (0, 0), (1, 0), (8, 0), (6 + 1, 0);

and P=2(6, 1) contains the points (0, 0), (8, 1),(6 +1,8) and (1,6 + 1).

3.5 A note on theorem 2.4.7

From theorem 2.4.7 it is known that in AFG(k, p") if L is an anisotropic line, and b
a point not lying on L, then there exists one and only one line through b and intersecting L
perpendicularly.

If L is isotropic and b a point not lying on L, then either there does not exist a line
through b and intersecting L perpendicularly or any line passing through b and intersecting
L is perpendicular to L. This is true for k # 2. But on the plane we have only one possibility,
which can be stated as follows :

THEOREM 3.5.1

Given an isotropic line on the Affine finite plane AFG(2, p") and a point b not lying
on L, then there does not exist a line passing through b and intersecting L perpendicularly.

PROOF
According to theorem 3.3.1 there exists one and only one line passing through b and
perpendicular to L. Let M be the unique line given by the theorem. It remains to be proved
that M does not intersect L.

Since b L and bEM we have M # L. By hypotesis L 1 L then we have

L1k

L1M

Hence onaccount of L # M one has, according to theorem 3.3.3, the property L IM.
Therefore L "M =0, or M does not intersect L. Since M is the only line perpendicular to
L, this means that there does not exist a line through b and intersecting L perpendicularly =
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CHAPTER V

TRANSFORMATIONS

5.1 Translations

Take the vector space Vi (Z), where Z is a Galois Field GF[p" ]. For shortness we use
the notation Ekinstead of Vk(2).
Consider this space as an Affine finite geometry of dimension k, namely AFG(k, p™).

A mapping f : Zk—> Zkof the form f(x) = x + a, in which a is a fixed vector is called

a translation in AFG(k, p™). If we denote such a translation by T,, then we have
T, 0P L+
The set of all translations under succesive mapping forms an abelian group, which is

k
obviously nothing but the left (or right) regular representation of the additive group (Z. +).
Hence we have the following theorem.
THEOREM 5.1.1
The set of all translations in AFG(k, p™) under succesive mapping forms a group which is
isomorphic to the additive group (Zl.( +).
THEOREM 5.1.2

Under a translation a line is transformed either into a parallel line or into itself.

PROOF
Let L be a line and let T, be a translation. Since L is a line. it can be represented by :
L=s+Zq, withq # 0;
this means
L={s+60qlocZ}.
Hence Ta(L) = {(s +0q) +a |8 € Z)
=((s+a)+6q l9€Z )
= (s+a) ¥y ,
and this isa representation of a line, with direction vector q. Therefore T4(L) is either a
line parallel to L or the line L itself. ®

Clearly if a v»» d then Ta(L) = L and if aw» d; then T,(L) LL:

THEOREM 5.1.3
If L and M are two lines such that L L M and T a translation then T(L) L T(M).
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PROOF

This is obvious, since under a translation the direction vector of a line does not change ®

REMARK

In AFG(k, p™) with k > 3, a plane can be defined in a way similar to what we have done
in AFG(3, »™) namely as follows:
A subset A of AFG(k, p") is said to be a plane if there exist a, b, cEAFG(k, p") with b # 0,
c#0and bs csuchthat A=a+Zb+Zc.

Then it can be shown easily that under a translation a plane is carried either into
another parallel plane or into itself.

5.2 Linear transformations

The space AFG(k, p™) is the vector space Vk(Z) = Ek.
Hence a linear transformation in AFG(k, p™) is a linear transformation in Vk(Z). Such a
transformation can be represented by a k X k matrix with entries in Z.

We are dealing here with finite sets. Therefore any injective mapping is surely

surjective and thus bijective. In this case the adjectives injective, surjective and bijective are
equivalent.

DEFINITION 5 2.1

An injective linear transformation in AFG(k, p™) is called nonsingular.

THEOREM 5.2.2

The set of all nonsingular transformations in AFG(k, p”) constitutes a group under
successive mapping. This group is called the full linear groups and is detoned by Lk (Z).

PROOF

The set of all bijective mapping from Ekonto itself under successive mapping constitutes a
group. which is called the group of transformations of AFG (k, p™).
Let us call this group G, then it is sufficient to prove that Lx(Z) is a subgroup of G.

Let f, g € L, (Z), then for any X,y € Z* and any a, § € £ we have
(fg)(ox + By) = flg(ox + By)] = flag(x) +pg(y)], since g is linear
af{ g(x)] + Bf[g(y)], since f is linear,

ol fg)(x) + B(fg)(y).

Therefore fg€ Lk (Z).
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Further we want to show that f~! € L, (Z) whenever f € £, (¥) by showing that
f~lux + 0y)=puf"1(x)+6f !(y)forany x,y EZ*and any u, 0 € .

Take the element uf~ ! (x) + 0f (y) and consider f{ puf~1(x) + 6f l(y)} ;
Since f is lineas, f{uf~1(x) +0f~ 1(y)) = uff~ 1 (x) + 0ff~ ' (y) =
= ul(x) + 0I(y) where I is the identity map,
= ux + 0y.

Hence £~ ! (ux +0y) = £~ L [f{uf~ 1(x) + 0f~ L(y)}] =
=I{uf'(x) + 6f ()}
= iyt of ' ()

This means that

f~! € Lx(Z) whenever fesk ().
Hence Lg(Z) is a subgroup of G. 5

NOTE

This theorem is well known, Further more the full linear group Lx(Z) is isomorphic to the
group of all nonsingulark X k matrices with entriesin X.
This is the reason why this group is denoted by

Lk(Z).

5.3 Affine Transformations

A nonsingular linear transformation followed by a translation is called an affine
transformation. If T is a linear transformation and a a fixed vector in Vi (Z), then an
affine transformation is a mapping of the form:

f(x) =T(x) + a.

Affine transformations include the nonsingular linear transformations (a = 0) as well
as all translations, namely an affine transformation in which T is the identity mapping.
The following theorem is also well known in the ordinary Affine Geometry.

THEOREM 5.3.1

The set of all affine transformations in AFG(k, p™) constitutes a group, called the affine
group and it is denoted by A, (). It contains as subgroups the full linear group and the
group of translations.

PROOF

Let f and g be two affine transformations. Then each of them is a mapping of the form
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f(x)=T(x)+a
and
g(x)=8S(x)+b
where T and S are nonsingular linear transformations.
Hence, by using column matrix notation for vectors, we have
(fg) (x)=f(S(x) + b) = T(S(x) +b) + a
=T(S(x))+T(b) +a
= (TS) (x) + T(b) + a.

So the product of two affine transformations is an affine transformation.
Furthermore the inverse of an affine tranformation is also an affine transformation.

In fact if y = f(x), where f € ﬁk(E),

theny = T(x) + a,

hence x =T l(y —a) =T 1(y) - T L(a)

and this means that f~! e Ak(2).

The group of translations in 5.1 is also .called the translation group. It is'denoted by

k
T(Z ).

THEOREM 5.3.2

The translation group is a normal subgroup of the affine group.

PROOF

Clearly it is a subgroup.
Further let f € £, (Z) and g € T(Z*), then f is mapping of the form f(x) = T(x) + a and g
is a mapping of the form g(x) = x + b.
(fef~ 1)) = () 1 (x) = (f)(T~ 1 (x) - T~ 1 (a))
=f(T"1(x) - T-!(@) +b)
=TT !x) =T l@@)+b) +a
=x—a+T(b) +a=x+T(b).
Hence fgf~! is a translation. This completes the proof. "

THEOREM 533
Lk (2) = Ax(2)/T(ZS

PROOF
Define a mapping ¢ from Ak(Z) into Lk (T) as follows:
if fEAK(Z), then fis of the form

f(x) = T(x) + b;
nowputy(f)=T
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Surely { is surjective. It remains to be proved that y is homomorphic.
Let f, g€ Ax(Z) then there exist T, S € Lk(Z) and 3, bE X such that

f(x)=T(x) +a
and g(x)=S(x)+b.
Then from (fg)(x) = f(S(x) +b) = T(S(x) +b) +ta =

=TS(x) + T(b) +a,

one concludes y(fg) = TS = Y(f) . ¥(8).
For the kernel of ¥ one has

Kemn ¢ = {f.eak(z) | y(f) = I}, where I is the identity mapping. This means that f is
a translation. So we have

Kemn ¢ = T(Ek),
hence Ck(Z) = Ak(Z)/T(Z"). a

The full linear group Lk (Z) is isomorphic to the group of all nonsingular k Xk
matrices with entries in 2.
It is known from linear algebra [13]that the number of all nonsingular k X k matrices with
entries from a field Zwith q element is equal to

@ - 1)(a* - fe* -8 ... @ - ).
Here we have q = p™. Hence the order of the full linear group Lk(Z) is.

"k — 1)(p"k — pM)(p"k — p21) .. (p"k — pr(k — 1)),

COROLLARY 5.3.4

The orderkof the affine group Ak(Z) is equal to the product of the order of the translation
group T(Z) and the order of the full linear group Lk(Z), and therefore equal to

pnk(pnk i 1)(pnk e p")(pnk L pZn) A (pnk & pn(k - 1))_

5.4 Isometry

In abstract algebra we have the concept of isomorphy. Two g_lgebraic structures are
said to be isomorphicif there exists a bijective mapping from the first structure onto the
second one which preserves all operations.

In geometry we have the concept of isometry. We define this notion as follows:
DEFINITION 5.4.1
A geometry G is said to be isometric to a geometry G2 if there exists a bijective mapping
f from G onto G2, such that if L is a line in G then f(L) is a line in G2.
THEOREM 5.4.2

Any plane in AFG(3, p") is isometric to the geometry AFG(2, p™).
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PROOF
Let A be a plane in AFG(3, p™). So A.can be represented by:

A=a+Zb+ Zc, where b #0;
c#0 and bw=c.
Define the mapping

f: A—AFG(2, p") as follows:
f(a+6b+ uc)=0(1, 0) + w0, 1).
Then it remains to be proved that:
(i) fis surjective,
(i1) fis injective,
(iii) f transforms a line into a line.
(i) Clearly f is surjective, since given any point x EAFG(2, p™) then x = a(1, 0) + B(o, 1).
Hence ab + fc is one of its pre-images.
(i1) Suppose that f(x) = f(y)
and letx=a+80;b+ pujc,
y=a+62b+ usc.
Then f(x)=61(1,0) + u1(0, 1)
and f(y)=62(1,0) +u2(0, 1),
hence 61(1, 0) + u1(0, 1) =65(1, 0) +uy(0, 1).
Since (1, 0) and (0 1) are linearly independent this implies that
01=02 and pj =up

hence x = y, thus f is injective.
(iii) Let L be a line in A. Then it can be represented by

L=a+puib+uyc+Z(01b+0620)
with rank (61 62)+#0
Then for any ¢ € T one has
fla+pu1b+uzc+0(61b +602¢)] = fla+ (ug +08;)b+ (w3 + 062)c]
=1 +061)(1,0) + (w2 +062)(0, 1) = p1(1, 0) + u2(0, 1) + 0(81(1, 0) + 62(0, 1)),
ie f(L)=pu1(1,0)+u2(0, 1)+ Z(61(1, 0) + 62(0, 1)).

Hence f(L) is a line in AFG(2, p") since rank (8; 6,)#0.
Therefore A is isometric to AFG(2, p™). &

It can be seen easily that isometry is an equivalence relation.
A plane in AFG(3, p") is also called a subgeometry of AFG(3, p").
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CHAPTER VI

THE PROJECTIVE FINITE PLANE PFG(2, p")

6.1 The geometry PFG(2, p")

In this chapter we want to give the idea of projective finite planes, i.e projective finite
geometries of dimension two which can be built up from 3-dimensional Affine Finite
geometries, namely AFG(3, p™).

Starting with a 3-dimensional Affine finite geometry AFG(3, p") we build up a
new geometry by defining points and lines in the following way.

DEFINITION 6.1.1
Any line through the point o (zero vector) in AFG(3, p™) is called a point.

DEFINITION 6.1.2
Any plane in AFG(3, p") through the point o (zero vector) is called a line.

We call this new geometry a projective finite geometry of dimension two or a projective
finite plane and denote it by PFG(2, p™), a geometry in which the underlying set is V3(Z).
In fact considered as a vector space we have

PFG(2, p") = AFG(3, pM).
It will be shown that the fundamental theorem and the principle of duality are valid
in this new geometry.

6.2 Some theorems in PFG(2, p")

Two lines in PFG(2, p™) are two planes in AF G(3, p™) which are passing through the
point o. Since the intersection of two different planes is a line, we can state the fundamental
theorem in the plane PFG(2, p") as follows:

THEOREM 6.2.1
Two different lines in PFG(2, p") intersect in one and only one point.

On the other hand, according to corollary 4.2.13 we have the following.

THEOREM 6.2.2

Given two different points in PFG(2, p™) there exists one and only one line containing
both points.

Furthermore the total number of points in PF G(2, p") is equal to the number of lines in
AFG(3, p") passing through one point.
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Hence we can state the following.

THEOREM 6.2.3

The total number of points in PFG(2, p") is equal to p2™ + p™ + 1.
Apply theorem 2.3.1 with k =3. a

Since the number of lines in PFG(2, p™) is equal to the number of planes through
one point AFG(3, p™) we can state .

THEOREM 6.2.4

The total number of lines in PFG(2, p™) is equal to p2™ + p™ + 1.
See theorem 4.7.6. "

To determine the total number of points on a line, we look back to corollary 4.2.7.
The total number of points on a line in PFG(2, p™) is equal ‘to the total number of lines
in a plane through one point in the Affine space AFG(3, p™). So we can state

THEOREM 6.2.5

Each line in PFG(2, p") contains p” + 1 points.
See corollary 4.2.7 as it is stated before. =

Finallythe total number of lines through one point in the plane PFG(2, p") is equal
to the total number of planes through one line in the space AFG(3, p"). Then according to
theorem 4.7.5 we can state the following.

THEOREM 6.2.6
Through each point in PFG(2, p™) there are exactly p" + 1 lines. "

Using the word "incident”, the principle of duality can be easily formulated. It says
that interchanging the words point” and “’line” in a true statement gives another true statement.
The latter is called the dual statement of the former and vice versa. The following list of
statements will show this.

STATEMENT 6.2.7

Two points are incident with exactly one line.

Two lines are incident with exactly one point.
Incident with one point there are exactly p™ + 1 lines.
Incident with one line there are exactly p" + 1 points.
The total number of points is equal to p2" + p" + 1.

™o Ee P

The total number of lines is equal to p2™ + p™ + 1. »
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REMARK

We have defined points in PFG(2, p") to be one-dimensional subspaces of Va(2).
While lines are defined to be two-dimensional subspaces of V3(Z).

The role of the origin (the zero vector) is not essential here. We may take an arbitrary
point in AFG(3. p") not necessarily the point zero and define points to be lines through
that point, while lines can be defined to be planes through that point. Then all theorems

remain valid.

6.3 An Example of PFG(2, p")

The famous seven points geometry can be represented by the projective finite plane
PFG(2, 2). Consider as a vector space we have in fact

PFG(2, 2) =AFG(3, 2) = V3(GF[2])
In this geometry there are 2242141=7 points and also 7 lines. Each line contains
2V 1=3 points and through each point there are three lines. See figure 12 as an
illustration. :
Consider the space AFG(3, 2). It consists of the
F=10. 1.1 points 0= (0, 0,0); a=(1,0,0); b=(l, 1, 0):
c=(0,1,0); d=(1,0, D; e=(1,1, 1);
€=(1,1,1) f=(0,1,1) and g= (0, 0, 1).
The points in PFG(2, 2) are the lines in
————>»c= AFG(3, 2) passing through the point o. These are

BRy the lines oa, ob, oc, od, oe, of and og. Seven in
a=1(1,0,0) b=(1,1,0) s
Moreover the lines in PFG(2, 2) are the
figufe 12 planes in AFG(3, 2) passing through o. Those are

oadg, oabc, ocfg, obeg and the other three planes
are obdf. odec, and oaef, also seven in number. Each line in PFG(2, 2) contains 3 points,
which means that each plane through o in AFG(3, 2) contains three lines through o.
From the figure one sees easily the existence of the six planes oadg, oabc, ocfg, odec
and oaef. Further the point f lies in the plane obd.
Since the plane obd can be represented by

obd=Zb+32d={o,b,d,d+b=1},
hence the points o, b, d, and f lie in one plane, the seventh plane through o in our geometry,
i.e the geometry AFG(3, 2).
Through each point there are three lines in PFG(2, 2), which means that through any line
in AFG(3, 2) containing o, there are three planes. For example through the line og we have
the planes oadg, obeg, and ocfg. A similar fact can also be seen easily for the planes through
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oa, through oc and through oe.

But not so easy for the lines od, of and ob. For example the planes through od are
oadg, odec and last but not least odbf.

(see the determination of all points in the plane obd!).
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GENERAL REMARKS

1. Midpoint in AFG(k, p™)

Without using the concept of a distance, the midpoint of two points in the Affine
finite geometry AFG(k, p") can be defined provided that p # 2.

Let a and b be two points in AFG(k, p™) where p # 2. The point (1 + 1)~ 1(a +b) is
called the midpoint of a and b.
Something which should be expected is the following statement.

If a and b are two distinct points, then the midpoint of a and b is lying on the line
through a and b.

In fact this statement is true, since the line passing through a and b can be represented
by a + Z(b — a),while their midpoint is (1 + § l(a+b) =2"la+ b)=2"la+2-1p
(by using the symbol 2 for 1 + 1), which can be written in the form a + u(b— a) with

I , since

Ry
a+27lb-a)=a+21b-2"la=(1 - 27 1)a+2-lp=(2.2-1 _ 2= ha+2-1p=
=27l - +2nle= a4 - lp -l + b): (14 D~ 1@+
Furthermore we can state following theorem similar to the one we have had in the ordinary
Affine geometry :

[f a, b and c are non collinear points in AFG(k, p") with p# 2 and mj is the midpoint of a
and c. then abced is a parallelogram if and only if ma¢ is the midpoint mpq of b and d.

Only the sufficient condition will be proved here.
Let d be the point satisfying the condition stated in the theorem, then

My = 2‘1(a+c)=mbd=2-l(b+d)-

Hence

la=2- NG e el
therefore

d=a+c-b.

Then it remains to be proved that the line Lad, i.e the line passing through a and d is
parallel to Ly (the line passing through b and c) and L, is parallel to Ldc.

Clearly this is true since the direction vector of Lad =d — a=c — b and the direction
vector of L. =c — b.
Similarly the direction vector of Lap is similar to the direction vector of Ldc. QED.
COROLLARY
The diagonals of a parallelogram in AFG(k, 2") do not intersect.

To illustrate what is going on, let us consider figure 13.
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Consider the plane AFG(2, 22), where the
Galois Field Z = GF[22] can be obtained from
Z) by root adjunction of the equation
x% + X + 1 =0. If one of its roots is called U, we
have

z= {O, Lupt 1}.

Take the points o= (0, 0);: b = (u, 0) and
a = (0, u). The vertex c of the parallelogram oacb
can be found by determining the intersection of

the line L passing through a and parallel to ob and

the line M passing through b and parallel to oa. After computation we obtain ¢ = (u, p).

Here tne uragonals oc and ab do not intersect, since
ab=a+Z(b-a)=(0,u) +Z(u, — p) =(0, u) + T(p, p) =
=(0, u) + Z(1, 1), which contains the points
(0, m), (1, u+ 1), (4, 0) and (u + 1, 1) while the line oc=2Zc=Z(u,u)=
= Z(1, 1) contains 4 other points i.e (0,0), (1, 1), (u, wyand (u + 1, E%.1).
In figure 13, if we draw a straight line through a and b, it seems that the diagonals oc and

ab intersect at the point (1, 1).

As a second example consider figure 13a. In the plane

- (4, 4)
.
$= ﬁl'
(0 3) : |
Bl
i
L
0= (0, 0) \q =(3,0)
figure 13 a e g

AFG(2, 5) take the points o = (0, 0); q=(3,0)

r=(3, 3) and s = (0, 3).

Then oqrs is a parallelogram since o + r = q¥s,
Thediagonalor=2r=2(3, 3)= 2(1, 1). It contains
(0,0), (1, 1), (2, 2), (3, 3) and (4, 4). On the

other hand, the diagonal sq can be represented
bysq=s+Z(s—q)=(0,3)+Z(-3,3)=

=(0, 3) + Z(2, 3). So sq contains the points:
(0,3)=s,(2,1),(4,4),(1,2) and (3,0)=q.

In figure 13 a one sees that the line sq does not intersect or.
In fact both diagonals intersect at the point (4, 4). Thus the point (4, 4) is the
midpoint of o and r also the midpoint of s and q.

2. Distance in AFG(k, p™)

A distance can be defined by means of the lenght of a vector.
So the distance of two points a and b in AFG(k, p") will be defined to be the length of the

vector b — a.

If a non-directed distance is required, the concept of the length of a vector must be

defined in such a way that the length of the vector b — a is equal to the length of the

vector a — b.
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[t can be done by means of the standard pseudo inner product. Since \/; does not
always exist in an arbitrary field, we define the length of a vector in a vector space over a
field of characteristic p in the following way:

The length of x = \"/Tx and denote it by Il x |.

Then a circle in the plane AFG(2, 2") with centre at the origin has an equation of the form

tl+e3=0.
It is necessary to be noted that by defining the length in such a way there is no
guarantee that a vector of the form (0, 0, ..., u, 0, 0, 0) in AFG(k, p") has length u. Only

in the case p = 2 this is true, since the length of the vector (0, 0, . . . , 1,0, 0, 0) in
AFG(k, 2") is equal to

v (0,0, . ,4,0 0,0).(0,0,...,0,0,0)= /pu?=p.

Using the idea of the p-norm in the classical Banach Space LP[19], where
1
Iflp=[ pI£IP 1P
0
we may define the length of a vector in AFG(k, p™) as follows:
k
IxI=( = ¢gP)Up
i=] !
However in a field of characteristic p we have

T k
(Z §)2(CZ §F
i=1 i=1

k
Hence we have [ x = I g, where x = (£, §,, ..., £ )-

i=
Any vector of the form (0,0,...,0,...,0, 0, 0) has length 0, but in general the length
of a vector x is not equal to the length of — x.

So by defining the length of a vector in this way, where the distance between two
points a and b has to be equal to the length of the vector b — a, we have to do with a
directional distance. Therefore we call this a directional distance and we denote the
directional length of the vector x by |l x lgj;.

Especially in a vector space over a field of characteristic 2. both definitions of distances
are equivalent, for

= =( Lil £ = ((é A %fl £ = Ix lgir

It is worth to be noted that over a field of characteristic 2, Il x ly;r = I — x g
This is due to the fact that over a field of characteristic 2, we have

"X":-(Ei,gzw--,sk)=(—51,‘52’---,Ek)=(fl,fz’---,fk)=x-
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The following theorem, which should be true is rather surprising.

THEOREM
Given two points a and b in AFG(k, p") with p # 2 and their midpoint m A then the

distance from a to m,}, is equal to the distance from m,}, to b.

PROOF

The distance from a to m,y, = I m,y, — a |, while the distance from m,}, tob= b — m .

Since My % § 4o l(a + b), hence

m,y —a=27la+¥b)-a=2"1a+2"p-2a
=2 lp+2 e a=2-1p¥ @2 ! = 1
=204 2L 12 any s Tl i
#2227 0 1aY 5 -2
While
b ~ m. =b — 2'"l(a+b)=2-1b— 2_]a=mab — a.
Therefore | m,, —a I=1b- m, I. QED.
Another possible definition of the length of a vector will be the standard pseudo
inner product of that vector with itself.
Then the distance of two points a and b is equal to

(b—-a).(b—-a)=(a—-Db).(a—Db).
IfZ = Zp for some prime p, it is possible to define a real distance in AFG(k, p),
namely in the following way.

The distance of a and b, where a = (@, @y, ..., )and b= (Bl ; 32 ..... 6k) is defined

k
tobe Z (o — 61)2 in which the computation has to be done in Z, not in Zp.

i=
Thus for example the distance of the pointsa=(0, 1, 1,0)and b= (0, 0, 0, 1) in AFG(4, 2)
is not equal to | but equal to 3.

The distance of (3, 4) and (2, 1) in AFG(2, 5) is equal to 10 and no zero,

An application of AFG(k, 2) can be found in coding theory in which a real distance
is defined as we have done in the last case.

SOME EXAMPLES
1. Take the plane AFG(2, 3). Then the equation of the unit circle, namely the circle with
centre at the origin and radius 1 has the form.

(x.x)'P =1
or Xxwil
or E{+E3 =

where x = (¢, §,).
[t consists of the points (0, 1), (1, 0), (2, 0) and (0, 2). See figure 14. On the other hand,
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let us take the points o = (0, 0), a = (1, 0) and
b =(2, 0).
Clearly a lies on the line ob.

However, the distance from o to a is equal to the
distance from a to b but also equal to the distance
from o to b, since ob = I (2, 0) I = (22 + 0%)!/3 =
s S =()P=1.

2. Consider the plane AFG(2, 22) with
E=[O, 1, u, u+ l}.whereu2=u+ 1.
Take the point (u, 0). The distance from o = ( 0, 0) to that point is equal to the lenght of the
vector (u, 0). So we have
distance of (0, 0) and (i, 0) =l (&, 0) II-
= (1, 0).(u, 002 = W) 2= .
We have here Il (u, 0) Il =y, while in example 1 we had | 2,0 I=1+#2.
I (u, 0) | = uin AFG(2, 22) is due to the fact that over a field of characteristic 2 we have
had lIxlIl=1x g |

figure 14

3. Another example that Il (0, 0,..., u,0,0) | # u can be seen in the following one:
Consider the vector x = (0, 6, 0) in V3(Z), where X = GF[32]
={0,1,2,6,0+1,0+2,20,20 +1,20 + 2}, inwhich62 =9 + 1.
Then I x I1=1(0, 6, 0) I = (x.x)!*=(2)13 = 29 +2,
since (20 +2)° =230 + 1) = 2(63 + 1) = 2(620 + 1)
=200+ 1O +11=2002+6+1)=200+1+6+1)
=220 +2)=22(0+1)=0+ 1= 02
Here we have | (0, 6, 0) || # 6.

4. The sphere of radius 2 with centre at (1, 1, 1) in AFG(3, 3) has the equation

&) — D>+ - D2+ — 1)2 =23,
which can be written as

€ - D*+ ¢, - D2+ (¢, —1)2 =2, since 23 = 2,

3. Quadratic forms in AFG(k, p") with k = 2 or 3
InAFG(2, p™) an expression of the form

€], ) = @y 1 £] + )08 8y + ap,83 + B8, + 5.0 Pl
is called a quadratic form, simillarly the expression

2 2 2
A 1ET ok dy + g ks +agsk kst agE] +agabyks + Bik + Bk, + oty
is called a quadratic form in AFG(3, pM).
Using matrix notation, that form can be written as:
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(€) & §3) A (€ &5 £3)" +B (¢, &, £5)' +, where B= (8, B, 6.) and
1 %2 %3 3 1 2 %3 172P3
” =
Gy 4 eths 2 1“13
A= 12V, 92 4 Gl rovided pR9.
-1 -1
¢ By %o, 033

By a coordinate transformation, in this case a translation such a form can be reduced

to the following one:

M M m3) A (74 Ny N3 2 +6 provided A is non-singular.
A similar result holds for a quadratic form in AFG(2, p").

In general such a quadratic form is called a quadratic form over the field £ = GF[p"]
and an equation of the form

xAx' + vy=0
in which x = (El 22 » Ek) will be called a quadratic equation in k variables over ¥ or a
quadratic equation in . In particular if ¥ is a Galois field it is called a quadratic equation in
AFG(k, p"), where T = GF[p"].

G. Birkhoff and S. Mac Lane have derived and proved the following theorem [3] :

By non-singular trnasformations of the variables, a quadratic form xAx! in k variables over any
field of characteristic p # 2 can be reduced to a diagonal form,
8yn7 +8,m3 +. ..+ 8,2, each 5, # 0.
The number r is called the rank of the given quadratic form.
This rank is equal to the rank of the matrix A of the original form.
This theorem can be applied to any quadratic form over any field of characteristic
p # 2, in particular over any Galois field GF [p"] with p # 2.
Then we can define ellipses, hyperbolas and parabolas in the Affine finite plane
AFG(2, p™), but it appears that there is no difference between an ellipse and a hyperbola.
Similarly in AFG(3, p") we can define ellipsoids, paraboloids and hyperboloids, but
also here these notions are not all different.

4. Finite Geometry and a graph

A graph is a non-void set with one or more relations, usually denoted by
(G, E,, Ez, ...) hence (G, El’ Ez) in the case of two relations and (G, E) in the caseof
only one relation.

By a simple graph is meant a finite set with only one relation which is symmetric and
antireflexive, meaning that there exists no point x such that xEx. A simple graph can be
drawn by a diagram which is called the diagram representation of that graph. The points
represent the elements of that graph and the relation is represented by lines. The symmetry
means that the graph is non-directed. The anti-reflexivity means there are no loops.
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Furthermore by a graph is meant a simple graph [12].
Examples of graphs can be seen in figure 15, in which each of them is represented by a
1 diagram.

If two elements of a graph have a relation,

in the diagram representation both points are

connected by a line; then they are called adjacent.

(a) (b) A graph is called complete if any two elements are

AN : adjacent. See figure 15c.
There cannot be much said about the relation
between a finite geometry and a graph. In fact in

an Affine finite geometry any two points lie in

(c) (d) a line. Hence some Affine finite geometries
: are complete graphs. But we cannot say in general
figure 15

that any Affine finite geometry is a complete

graph. Why? Because in an Affine finite geometry three different points might be
collinear, and thus only one line goes through those points, while in a complete graph three
different points are connected to each other by three different lines.

A complete graph with m points is denoted by K. Hence we have for instance the
following relation between an Affine finite geometry and a graph.

AFG(1,2) =K,

AFG(2.2)=K 4

But in general it is difficult to say much about AFG(k, p") with k # 2, and p" # 2, even
AFG(1, 3) cannot be considered as K3, since there is only one line through those three points.

A cylcle with m points is denoted by Cm and a path with m points is denoted by Pm.
Hence we have

AFG(1, 2)=K2 =P2
in fact
AFG(], 3) = P3

5. Representation of finite geometries by means of sets

Although very limited, it is not impossible to set up a representation of finite geo-
metries by means of sets. Difficulties are predictable. These arise since there is no struc-
ture.

Begining with a non-empty finite set S with N elements, we define any subset with q
elements as points and any subset with L elements as lines, Evidently L must be greater than
q. We denote this geometry by FG(N, q, L). In case q = 1, which means that any element
of S is defined to be a point, we use the shortened notation
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FG(N, L) instead of FG(N, 1, L).
Then we observe that the finite geometry FG(3, 2) is the smallest, may be unknown,
finite projective geometry, which satisfies the following theorems:

I. Given two distinct points there exists one and only one line passing through both points.
[1. Two different lines intersect in the exactly one point.

On the other hand the finite geometry FG(4, 2) is isometric with AFG(2, 2), while
the finite geometry FG(N, 2) with any number N > 4 is a Lobatsevskian geometry.

A question arises whether such a geometry can be developed with p# 1 and L # 2.
Finally we can write the following relation between these geometries and graphs.

FG(3,2)=C; =K,
FG(2, 2) = AFG(1,2) =P, =K,

In general we can state that

FG(N, N) = Py

and in particular

AFG(1, p™) = FG(p", p™) = Ppn.

6. Quasi Geometry

Instead of a Galois Field we can take a finite commutative ring X with identity and

construct the finite module

N YR x:xkoverx.

Then we may define any element of xX to be a point and any subset of the form a + Xb,

where b # 0 to be a line. Then we have built up what is called a finite quasi geometry
satisfying the following properties:

[. A line contains at most m points, where m is the number of elements of the ring X.
I[I. Given two distinct points, there exists at least one line passing through both points.
III. Two different lines might intersect in two different points.
IV. The total mumber of points is mK.
V. A line might contain another line as a proper subset.

Parallelism between two lines is defined in a similar way like we have done in a
previous chapter in this thesis.
Then in a quasi plane it might happen that two non parallel lines do not intersect.

As an illustration of this so called quasi geometry, let us consider the quasi geometry
built up from Z4 X Z,. See figure 16.

SetZ, = Xx.
Further let L be the line passing through the points o = (0, 0) and a = (1, 0). Then L can be
represented by:



http://repository.unej.ac.id/
http://repository.unej.ac.id/

70

L=0+Xa=Xa=X(l,0)={u(l,0) luex].
It contains the points o =(0, 0), a = (1, 0),
b=1(2,0)and c = (3, 0).

On the other hand, let M be the line passing
through o and b = (2, 0). Then M can be
represented by: M=o+ Xb=Xb=
[6(2,0) 16€x] = {(0, 0), (2, 0)} . Thus M only
contains the points o = (0, 0) and b = (2, 0).

Here we can see that there are two different

lines passing through two different points, namely
figure 16 o and b. As it has been stated before the line M is
a proper subset of the line L.

Consider now the line N passing through d = (1, 2) and e = (2, 1).
It can be represented by: N=d + X(e —d) = (1, 2) + X(1, — 1) = (1, 2) + X(1, 3).
After computations it turned out that N contains the points

d=(1,2),e=(2, 1), (3, 0) = c and the point (0, 3).
Also consider the line P which is passing through o and the poiﬁt (1, 1). Clearly P = X(1, 1)
and it contains the points o = (0, 0), (1, 1), (2, 2) and (3, 3).
Hence P does not intersect N. However. both lines are not parallel since the direction

?vector” of N is (1, 3) and the direction ”vector’ of P is (1, 1) and both are not similar.

NOTE

1. Since a finite integral domain is a field, to buildup a finite quasi geometry, the ring
to be considered must be a ring with zero divisors.

2. Building up a quasi geometry from the ring Z, i.e the ring of integers, we obtain an
infinite quasi geometry. In the quasi plane Z X Z it might happen that two non parallel
lines do not intersect.

Take for example the line L passing through (0, 0) and (1, 1) and the line M passing
through (1, 0) and (0, 1). Clearly both lines do not intersect. However,both lines have
distinct directions (direction vectors™).

The direction of Lis d; = (1, 1) while the direction of Misdy =(1,0) - (0, 1) =
=(1, - 1). Clearly both directions are not similar. Hence L X M.



http://repository.unej.ac.id/
http://repository.unej.ac.id/

GF([p"]

>

V, (GF[p"])
V (Z5or =
AFG(k, p")

k

AFG(2, p")
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PFG(2, p")
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«, ﬁs 0, M, ...

PG bk }
except 2

& O

LIST OF SPECIAL SYMBOLS

A Galois field of characteristic p with p" elements
The Galois field to be considered

Vector space of dimension k over GF[p"]

Vector space of dimension k over the field I

The Affine finite geometry of dimension k and order p", ie. the
geometry in which the underlying set is Vk(GF[p“])

The Affine finite plane of order p®

The Affine finite space of order p”, i.e the Affine finite space of

dimension 3 and order p"

The projective finite plane of order p", i.e the projective finite geometry
whose underlying set is V3(GF[p"])

Small italic letters are used to denote vectors or points, i.e elements of
Vi (2) or points in AFG(k, p™)

Small Greek letters are used to denote elements of T

Greek capitals are used to denote planes in AFG(3, p™)

The zero vector in Vi (2)
zero element of T

small italic letter O to denote the point of origin, i.e the zero vector 0
identity element of X

symbol for 1 + 1

direction vector of the line L
normal vector of the plane I'
similar

parallel

not similar

not parallel

perpendicular to

not perpendicular to

notation for the set {a +ub lu EE}
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a+Zb+Zc

notation for the set {a +ub+0cly e E}
Standard Pseudo Innerproduct of x and y
Ring of integers

Ring of integers modulo m

Field of integers modulo p, where p is prime
Additive group of Ek

Affine group of Vi (2)

Translation group of Vk(E)

Full linear group of Vk(Z)

midpoint of a and b

ordinary length of x

directional length of x

rank of the matrix A

transposed of the matrix x

a mark to indicate the end of a proof
power set of the set S

symmetric difference
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13.

14.

16.
3 7

18.

THEOREMS
(LIST I. Concerning the dissertation)

. Given two distinct points in AFG(k, p™) there exists one and only one line passing

through both points.

. Given a line L in AFG(k, p™) and a point q not lying on L, there exists one and only

one line passing through q and parallel to L.

. Given an isotropic line L in AFG(k, p™) and a point b not lying on L then either

there does not exist a line passing through b and intersecting L perpendicularly
or
any line passing through b and intersecting L is perpendicular to L.

nk
-1
. The total number of lines passing through one point in AFG(k, p™) is equal to pn :
p e
- In a given direction in AFG(k, p") there exist p"k — 1) parallel lines.
k pnk -1
The total number of lines AFG(k, p™) is equal to pn( - 1) ﬁ

. Given three non-collinear points in AFG(3, p™) there exists one and only one plane

containing those points.

. If L is an isotropic line in AFG(3 p®) and b a point lying on L, then the plane passing

through b and perpendicular to L is containing L.

. The number of planes perpendicular to a given line in AFG(3, p") is equal to p".
10.

£ 5
12.

The total number of planes in AFG(3, p") is equal to p®(p?" + p" + 1).

The number of planes containing a given line in AFG(3. p") is equal to p" + 1.
The number of planes passing through a certain point in AFG(3, p") is equal to
p2n +p0 + 1

The set of all affinetransformations in AFG(k, p") under successive mapping constitutes
a group of order p™K(p™* — 1) (p™K — pn)(ptk _ p2my(puk _ p3n) ook _ (k- 1))
Any plane in AFG(3, p") is isometric to the geometry AFG(2, a
Given two distinct points in the projective finite plane PFG(2, p™), there exists one and
only one line passing through both points.

Two different lines in PFG(2, p") intersect in one and only one point.

In the plane PFG(2, p™) each line contains p" + 1 points and through each point there
exist p™ + 1 lines.

The total number of points in PFG(2, p") is equal to the total number of lines and it
is equal to p?" + pM + 1.
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1.
.

THEOREMS
(LIST II. Not concerning the dissertation)

In finite systems counting theorems are important.
If S is a set and {Al, A2, i An} a finite collection of subsets of S, then
n n

. If{A,}, c » is a collection of subsets of a set S, then (& QA,).©) = (P(A,), ©).

For any set S, with cardinality # 1, the Frattini subgroup of (P(S), ©) is trivial.

. If ais a singleton subset of a set S then (P(S — a), ©) is a maximal subgroup of (¥(S), ©)

of index two.

. Mathematical terminology in this country must be uniformed.

As long as the situation remains unchanged in Indonesia, it is very difficult to receive a
doctor degree in mathematics.
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DALIL — DALIL
(DAFTAR 1. Mengenai disertasi)

1. Melalui dua buah titik yang berlainan dalam AFG(k, p") terdapat satu dan hanya satu garis.

Melalui suatu titik di luar sebuah garis dalam AFG(k, p™) terdapat satu dan hanya satu garis
yang sejajar dengan garis yang pertama.

. Diberikan sebuah garis isotrop L dalam AFG(k, p™) dan suatu titik di luarnya maka:

atau tidak terdapat satu garispun yang melalui titik tadi dan memotong L tegaklurus.
atau setiap garis yang melalui titik tadi dan memotong L tegaklurus pada L.

nk

. Banyaknya garis melalui sebuah titik dalam AFG(k, p™) ada B 1buah

p" — 1

. Dalam AFG(k, p™) banyaknya garis sejajar dengan suatu arah tertentu ada p“(k =1 puah.

nk
Banyaknya garis dalam AFG(k, p") ada phk — 1) p_n_ll buah.
p e

7. Melalui tiga buah titik yang tidak segaris dalam AFG(3, p™) terdapat satu dan hanya satu bidang.
8. Jika L sebuah garis isotrop dalam AFG(3, p™) dan b suatu titik padanya, maka bidang

10.
1t
12.
& 5

14.
15.

16.

yang melalui b dan tegaklurus pada L melalui L.

Banyaknya bidang yang tegaklurus pada suatu garis dalam AFG(3, p™) ada p" buah.
Banyaknya bidang dalam AFG(3, p®) ada pM(p2" + p" + 1) buah.

Banyaknya bidang melalui sebuah garis dalam AFG(3, p™) ada p" + 1 buah.
Banyaknya bidang melalui sebuah titik dalam AFG(3, p™) ada p2™ + p" + 1 buah.
Himpunan semua transformasi afin dalam AFG(k, p") terhadap pemetaan komposisi
membentuk sebuah group yang bertingkat

pnk(pnk & 1)(pnk 3" pn)(pnk & p2n)(pnk i p3n) ol (pnk i pn(k - 1)).

Setiap bidang dalam AFG(3, p") isometrik dengan bidang AFG(2, p™).

Melalui dua buah titik yang berlainan dalam bidang proyektif terhingga PFG(2, p") terdapat
satu dan hanya satu garis.

Dua buah garis yang berlainan dalam PFG(2, p™) berpotongan pada satu dan hanya

- satu titik.

17.

18.

Dalam bidang PFG(2, p") setiap garis memuat p" + | buah titik dan melalui sebuah
titik terdapat p” + | buah garis.

Banyaknya titik dalam PFG(2, p™) sama dengan banyaknya garis dan banyaknya
p2n ¥+ pn & 1
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DALIL — DALIL
(DAFTAR II. Tidak mengenai disertasi)

. Dalam sistem-sistem terhingga dalil-dalil penghitungan adalah penting.
. Jika {Al’ Ay, ..o, An} suatu koleksi terhingga dari anakhimpunan-anakhimpunan dari
suatu himpunan Smaka (®( U A)), @)= ¥ (9(A,), ©.

i=}

i= ]
. Jika { A } « e A Suatu koleksi anakhimpunan-anakhimpunan dari suatu himpunan S

maka (9( 1 A,), ©) = (XP(A, ), ©).

- Untuk setiap himpunan S, dengan kardinal # 1, subgrup Frattini dari grup (P(S), ©) adalah
subgrup trivial.

. Jika a suatu anakhimpunan tunggal dari himpunan S maka (®(S — a), ©) merupakan
suatu subgrup maximal dari (P(S), ©) dengan indeks dua.
. Istilah matematika di negeri kita harus diseragamkan.

. Selama keadaan di Indonesia masih seperti sekarang ini, sulit sekali bagi seseorang untuk

memperoleh gelar doktor dalam matematika.
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beasiswa dari P dan K selama satu tahun. Namun demikian tetap menghadapi kesulitan
karena tidak adanya promotor.

Akhirnya pada tahun 1979, atas usaha almarhum Prof. Surjadi promovendus berhasil
mendapatkan seorang promotor/ resminya co-promotor yaitu Prof. H.J.A Duparc dari
Technische Hoge School di Delft, Negeri Belanda. Tetapi topik risetnya diganti dengan
Geometri Terhingga yang akhirnya menjelma menjadi disertasi ini dengan judul seperti
tertera di depan.

Sejak dari SD kelas enam promovendus sudah tertarik pada ilmu pasti dan sudah
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memulai belajar aljabar sedikit. Sewaktu duduk dj bangku SMP kelas I semua pelajaran
ilmu pasti untuk SMA tiga tahun yaitu aljabar, goniometri, ilmu ukur ruang dan ilmu ukur
melukis telah selesai dipelajari hingga menginjak awal kelas IT SMP. Kemudian di bangku
SMP kelas II sudah belajar sendiri ilmu hitung diferensial dan integral. Dan di SMP

kelas III mulai belajar persamaan diferensial.

Sejak tahun 1957 hingga kini menjadi anggota staf pengajar departemen Matematika
ITB (dulunya fakultas teknik bagian ilmu dasar).

Telah berkeluarga dan mempunyai seorang istri dengan empat orang anak, seorang
wanita dan tiga pria.
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