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INTRODUCTION

In the early days of computer networks, interprocessor communication and scala-

bility of applications was hampered by the high latency and the lack of bandwidth

of the network. The IBM supercomputing project, which was begun in 1999, has

proposed a new solution to the problem and built a new family of supercomputers

optimizing the bandwidth, scalability and the ability to handle large amounts of

transferring data. One of the world’s fastest supercomputers was officially inaugu-

rated at IBM’s Zurich Research Laboratory (ZRL). The so-called BlueGene system,

which is the IBM supercomputing project solution, has the same performance as

the computer ranked 21st on the current list of the world’s top 500 supercomputers

(for more detail, see [46]). It will be used to address some of the most demanding

problems faced by scientists regarding the future of information technology, such

as, how computer chips can be made even smaller and more powerful. However, in

massive parallel computers, the robustness of supercomputers is not the only fac-

tor. One of the most significant factors is the design of parallel processing systems

circuits and, more precisely, the construction of their interconnection networks.

Therefore, there has been a growing interest in the study of the design of large

interconnection networks.

A communication network can be modelled as a graph or a directed graph (digraph,

for short), where each processing element is represented by a vertex and the con-

nection between two processing elements is represented by an edge (or, in the case

of a digraph, by a directed arc). The number of vertices is called the order of

the graph or digraph. The number of connections incident to a vertex is called

the degree of the vertex. If the connections are one way only then we distinguish

between in-coming and out-going connections and we speak of the in-degree and

1
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the out-degree of a vertex. The distance between two vertices is the length of the

shortest path, measured by the number of edges or arcs that need to be traversed in

order to reach one vertex from another vertex. In either case, the largest distance

between any two vertices, called the diameter of the graph or digraph, represents

the maximum data communication delay in a communication network.

In communication network design, Fiol and Lladó [38] identified several factors

which should be considered. Some of these factors seem fundamental, for instance,

there must always exist a path from any processing element to another. Also, the

data communication delay during processing must be as short as possible. The

complexity of the network will also increase dramatically if the number of elements

(or computer) that are involved in the network increases, especially if the number of

connections that are connected to a vertex is also getting larger, then the design of a

network which admits a modularity, a good fault tolerance, a diameter vulnerability

and a vertex-symmetric interconnection network properties will always be a major

concern in network topology. One of the important efforts that can be done is to

do labeling to the models of the network.

Graph labelings provide useful mathematical models for a wide range of applica-

tions, such as radar and communication network addressing systems and circuit

design, bioinformatics, various coding theory problems, automata, x-ray crystal-

lography and data security. More detailed discussions about applications of graph

labelings can be found in Bloom and Golomb’s papers [16] and [17].

Many studies in graph labeling refer to Rosa’s research in 1967 [61] and Golomb’s

research in 1972 [42]. Rosa introduced a kind of labeling, called β-valuation and

Golomb independently studied the same type of labeling and called this labeling

graceful labeling. Surprisingly, in 1963 Sedláček [62] had already published a paper

which introduced another type of graph labeling, namely, magic labeling. Stewart

[66] called magic labeling supermagic if the set of edge labels consists of consecutive

integers.

Motivated by Sedláček and Stewart’s research, many other labelings of graphs have

been studied since then, and many new results have been published. However, there

still exist many interesting open problems and conjectures. No polynomial time
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bounded algorithm is known for determining whether or not the various types

of graph labelings exist for particular classes of graphs. Therefore, the question

of whether a specific family of graphs admits a property of a specific labeling is

still widely open. In this book we present new results in super graph labeling for

disjoint unions of multiple copies of special families of graphs. These results have

been published in either proceeding conference or international journal. Since there

are a lot of beginners and professional researchers searching a reference on graph

labeling especially disjoint unions of disconnected graphs, we finally decide to write

these collection of results in a book. Finally, I gratefully expect that this book will

give a benefit to all readers.


