ISBN: 978-602-96426-0-5

 $595 - 606$

PROCEEDING of

IndoMS International Conference on Mathematics and Its Applications (IICMA) 2009 Yogyakarta - Indonesia, October 12th 13th 2009

Published by IndoMS (Indonesian Mathematical Society)

Secretariat : **Department of Mathematics Faculty of Mathemathics & Natural Sciences Gadjah Mada University** Kampus Sekip Utara-
Yogyakarta - Indonesia, 55281 Phone: +62 - 274 - 552243; 7104933 Fax.: +62 - 274 555131

Copyright © 2010

Super Edge-antimagic Total Labeling of Disjoint Union of Triangular Ladder and Lobster Graphs

Dafik Mathematics Education Department FKIP University of Jember d.dafik@gmail.com

Slamin, M Fuad, Riris R.R. Mathematics Education Department FKIP University of Jember {slamin, fuad, riris}@gmail.com

Abstract

A graph G of order p and size q is called an (a, d) -edge-antimagic total if there exist a bijection $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., p+q\}$ such that the edge-weights, $w(uv) = f(u) + f(v) + f(uv), uv \in E(G)$, form an arithmetic sequence with first term a and common difference d. Such a graph G is called *super* if the smallest possible labels appear on the vertices. In this paper we study super (a, d) -edgeantimagic total properties of disconnected graphs triangular ladder and lobster.

Keywords : (a, d) -edge-antimagic total labeling, super (a, d) -edge-antimagic total labeling, triangular ladder, lobster graph.

1 Introduction

By a labeling we mean any mapping that carries a set of graph elements onto a set of numbers, called *labels*. In this paper, we deal with labelings with domain the set of all vertices and edges. This type of labeling belongs to the class of total labelings. We define the *edge-weight* of an edge $uv \in E(G)$ under a total labeling to be the sum of the vertex labels corresponding to vertices u, v and edge label corresponding to edge uv.

An (a, d) -edge-antimagic total labeling on a graph G is a bijective function $f: V(G) \cup$ $E(G) \rightarrow \{1, 2, \ldots, p+q\}$ with the property that the edge-weights $w(uv) = f(u)+f(uv)+$ $f(v), uv \in E(G)$, form an arithmetic progression $\{a, a+d, a+2d, \ldots, a+(q-1)d\},\$ where $a > 0$ and $d \ge 0$ are two fixed integers. If such a labeling exists then G is said to be an (a, d) -edge-antimagic total graph. Such a graph G is called super if the smallest possible labels appear on the vertices. Thus, a super (a, d) -edge-antimagic total graph is a graph that admits a super (a, d) -edge-antimagic total labeling.

The concept of (a, d) -edge-antimagic total labeling, introduced by Simanjuntak at al. in [12], is natural extension of the notion of edge-magic labeling defined by Kotzig and Rosa [10] (see also [1], [8], [11] and [15]). The super (a, d) -edge-antimagic total labeling is natural extension of the notion of super edge-magic labeling which was defined by Enomoto et al. in [7].

In this paper we investigate the existence of super (a, d) -edge-antimagic total labelings for disconnected graphs. Some constructions of super $(a, 0)$ -edge-antimagic total labelings for $nC_k \cup mP_k$ and $K_{1,m} \cup K_{1,n}$ have been shown by Ivančo and Lučkaničová in [9] and super (a, d) -edge-antimagic total labelings for $P_n \cup P_{n+1}$, $nP_2 \cup P_n$ and $nP_2 \cup P_{n+2}$ have been described by Sudarsana *et al.* in [13]. Dafik *et al* also found some families of graph which admits super (a, d) -edge-antimagic total labelings, namely $mC_n, mP_n, mK_{\underbrace{n, n, \ldots, n}}$ and m caterpilars in $[4, 5, 6]$.

We will now concentrate on the disjoint union of m copies of triangular ladder and lobster, denoted by $m\mathcal{L}_n$ and $m\mathcal{L}_{i,j,k}$.

2 Some Useful Lemmas

s

We start this section by a necessary condition for a graph to be super (a, d) -edgeantimagic total, providing a least upper bound for feasible values of d.

Lemma 1 If a (p, q) -graph is super (a, d) -edge-antimagic total then $d \leq \frac{2p+q-5}{q-1}$ $\frac{q+q-5}{q-1}$.

Proof. Assume that a (p, q) -graph has a super (a, d) -edge-antimagic total labeling $f: V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p+q\}.$ The minimum possible edge-weight in the labeling f is at least $1+2+p+1=p+4$. Thus, $a \geq p+4$. On the other hand, the maximum possible edge-weight is at most $(p-1) + p + (p+q) = 3p + q - 1$. So we obtain $a + (q - 1)d \leq 3p + q - 1$ which gives the desired upper bound for the difference d. \Box

The following lemma, proved by Figueroa-Centeno et al. in [8], gives a necessary and sufficient condition for a graph to be super edge-magic (super $(a, 0)$ -edge-antimagic total).

Lemma 2 A (p, q) -graph G is super edge-magic if and only if there exists a bijective function $f: V(G) \to \{1, 2, \ldots, p\}$ such that the set $S = \{f(u) + f(v) : uv \in E(G)\}\$ consists of q consecutive integers. In such a case, f extends to a super edge-magic labeling of G with magic constant $a = p + q + s$, where $s = min(S)$ and $S = \{a - (p +$ 1), $a - (p + 2), \ldots, a - (p + q)$.

In our terminology, the previous lemma states that a (p, q) -graph G is super $(a, 0)$ edge-antimagic total if and only if there exists an $(a - p - q, 1)$ -edge-antimagic vertex labeling.

Next, we restate the following lemma that appeared in [14].

Lemma 3 [14] Let \mathfrak{A} be a sequence $\mathfrak{A} = \{c, c+1, c+2, \ldots c+k\}$, k even. Then there exists a permutation $\Pi(\mathfrak{A})$ of the elements of \mathfrak{A} such that $\mathfrak{A} + \Pi(\mathfrak{A}) = \{2c + \frac{k}{2c}\}$ $\frac{k}{2}$, 2c + $\frac{k}{2}$ + $1, 2c + \frac{k}{2} + 2, \ldots, 2c + \frac{3k}{2} - 1, 2c + \frac{3k}{2}$ $\frac{3k}{2}\}$.

3 Disjoint Union of Triangular Ladder

Disjoint union of m copies of triangular ladder denoted by $m\mathcal{L}_n$ is a disconnected graph with vertex set $V(m\hat{\mathcal{L}}_n) = \{u_i^j\}$ $\frac{j}{i}v_i^j$ $i_i^j : 1 \leq i \leq n, 1 \leq j \leq m$ and edge set $E(m\mathcal{L}_n) =$ ${u_i^j}$ $i^{j}u^{j}_{i+1}, v^{j}_{i}$ $i^{j}v^{j}_{i+1}, u^{j}_{i}$ $i_j^j v_{i+1}^j : 1 \leq i \leq n-1, 1 \leq j \leq m$ $\frac{J}{\cdot}$. ${u_i^j}$ $i\,v_i^j$ $i_i^j : 1 \leq i \leq n, 1 \leq j \leq m$. Thus $|V(m\pounds_n)| = p = 2mn$ and $|E(m\pounds_n)| = q = m(4n - 3)$.

If the disjoint union of m copies of a triangular ladder $m\mathcal{L}_n$, has a super (a, d) -edgeantimagic total labeling then, for $p = 2mn$ and $q = m(4n - 3)$, it follows from Lemma 1 that the upper bound of d is $d \leq 2 + \frac{3m-3}{4nm-3m}$ or $d \in \{0, 1, 2\}.$

The following theorem describes an $(a, 1)$ -edge-antimagic vertex labeling for disjoint union of m copies of a triangular ladder.

Theorem 1 If $m \geq 3$ is odd and $n \geq 2$, then the graph $m\mathcal{L}_n$ has an $(a, 1)$ -edgeantimagic vertex labeling.

Proof. Define the vertex labeling $\alpha_1 : V(m\mathcal{L}_n) \to \{1, 2, ..., 2mn\}$ in the following way: $\overline{}$ \ddotsc

$$
\alpha_1(v_i^j) = \begin{cases}\n\frac{j+1}{2} + (i-1)2m, & \text{for } i \equiv 1 \text{(mod3), } j \text{ odd} \\
\frac{m+j+1}{2} + (i-1)2m, & \text{for } i \equiv 1 \text{(mod3), } j \text{ even} \\
3m+1-j+(i-2)2m, & \text{for } i \equiv 2 \text{(mod3), any } j \\
4m + \frac{m+j}{2} + (i-3)2m, & \text{for } i \equiv 3 \text{(mod3), } j \text{ odd} \\
4m + \frac{j}{2} + (i-3)2m, & \text{for } i \equiv 1 \text{(mod3), } j \text{ even}\n\end{cases}
$$

$$
\alpha_1(u_i^j) = \begin{cases} m + \frac{m+j}{2} + (i-1)2m, & \text{for } i \equiv 1 \text{(mod3), } j \text{ odd} \\ m + \frac{j}{2} + (i-1)2m, & \text{for } i \equiv 1 \text{(mod3), } j \text{ even} \\ 3m + \frac{j+1}{2} + (i-2)2m, & \text{for } i \equiv 2 \text{(mod3), } j \text{ odd} \\ 3m + \frac{m+j+1}{2} + (i-2)2m, & \text{for } i \equiv 2 \text{(mod3), } j \text{ even} \\ 6m + 1 - j + (i-3)2m, & \text{for } i \equiv 3 \text{(mod3), any } j \end{cases}
$$

The vertex labeling α_1 is a bijective function. The edge-weights of $m\ell_n$, under the labeling α_1 , constitute the following sets

$$
W_{\alpha_1}^1(u_i^j v_i^j) = \begin{cases} \frac{3m+2j+1}{12m-2j+3} + (i-1)4m, & \text{for } i \equiv 1 \text{(mod3) and any } j \\ \frac{13m-2j+3}{13m-2j+3} + (i-2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\ \frac{21m-2j+2}{2} + (i-2)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \\ \frac{20m-2j+2}{2} + (i-3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ odd} \\ \frac{20m-2j+2}{2} + (i-3)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \end{cases}
$$

$$
W_{\alpha_1}^2(u_i^j u_{i+1}^j) = \begin{cases} \frac{9m+2j+1}{18m-2j+3} + (i-1)4m, & \text{for } i \equiv 1 \text{(mod3) and any } j \\ \frac{18m-2j+3}{2} + (i-2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\ \frac{27m-2j+2}{2} + (i-3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ odd} \\ \frac{26m-2j+2}{2} + (i-3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \end{cases}
$$

$$
W^3_{\alpha_1}(v_i^j v_{i+1}^j) = \begin{cases} \frac{6m-j+3}{2} + (i-1)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ odd} \\ \frac{7m-j+3}{2} + (i-1)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \\ \frac{15m^2-j+2}{2} + (i-2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\ \frac{14m^2-j+2}{2} + (i-2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ even} \\ \frac{21m^2+j+1}{2} + (i-3)4m, & \text{for } i \equiv 3 \text{(mod3) and any } j \end{cases}
$$

$$
W^4_{\alpha_1}(u_i^j v_{i+1}^j) = \begin{cases} \frac{9m-j+2}{2} + (i-1)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ odd} \\ \frac{8m^2-j+2}{2} + (i-1)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \\ \frac{24m^2-j+3}{2} + (i-2)4m, & \text{for } i \equiv 2 \text{(mod3) and any } j \\ \frac{24m^2-j+3}{2} + (i-3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ odd} \\ \frac{25m^2-j+3}{2} + (i-3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \end{cases}
$$

It is not difficult to see that the set $\bigcup_{r=1}^{4} W_{\alpha_1}^r = \{\frac{3m+3}{2}$ $\frac{n+3}{2}, \frac{3m+5}{2}$ $\frac{n+5}{2}, \ldots, \frac{8mn-3m+1}{2}$ $\frac{2^{3m+1}}{2}$ consists of consecutive integers. Thus α_1 is a $\left(\frac{3m+3}{2},1\right)$ -edge antimagic vertex labeling. \Box

Theorem 2 If $m \geq 3$ odd and $n \geq 2$ then the graph $m\mathcal{L}_n$ has a super $\left(\frac{3m(4n-1)+3}{2}\right)$ $\frac{1}{2}^{(n-1)+3}(0)$ edge-antimagic total labeling and a super $\left(\frac{m(4n+3)+5}{2}\right)$ $\frac{+3+5}{2}$, 2)-edge-antimagic total labeling.

Proof.

Case 1. $d = 0$

We have proved that the vertex labeling α_1 is a $(\frac{3m+3}{2}, 1)$ -edge antimagic vertex labeling. With respect to Lemma 2, by completing the edge labels $p+1, p+2, \ldots, p+q$, we are able to extend labeling α_1 to a super $(a, 0)$ -edge-antimagic total labeling, where, for $p = 2mn$ and $q = m(4n - 3)$, the value $a = \frac{3m(4n-1)+3}{2}$ $\frac{(b-1)+3}{2}$.

Case 2. $d=2$

Label the vertices of $m\pounds_n$ with $\alpha_2(v_i^j)$ i^j) = $\alpha_1(v_i^j)$ i) and $\alpha_2(u_i^j)$ i^j) = $\alpha_1(u_i^j)$ i_j , for $i = 1, 2, ...n$ and $1 \leq j \leq m$; and label the edges with the following way.

$$
\alpha_2(u_i^j v_i^j) = \begin{cases}\n2mn + j + (i - 1)4m, & \text{for } i \equiv 1 \text{(mod3) and any } j \\
\frac{m(4n+9)-j+2}{2m(2n+5)-j+2} + (i - 2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\
\frac{2m(2n+5)-j+1}{2} + (i - 2)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \\
\frac{m(4n+17)-j+1}{2} + (i - 3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ odd} \\
\frac{m(4n+17)-j+1}{2} + (i - 3)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \\
\alpha_2(u_i^ju_{i+1}^j) = \begin{cases}\n\frac{m(2n+3)+j+(i-1)4m}{2m(2n+3)-j+2} + (i - 2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\
\frac{4m(n+4)-j+2}{2} + (i - 2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\
\frac{2m(2n+12)-j+1}{2} + (i - 2)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ odd} \\
\frac{m(4n+23)-j+1}{2} + (i - 3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \\
\frac{m(4n+3)-j+2}{2} + (i - 1)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \\
\frac{4m(n+1)-j+2}{2} + (i - 1)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \\
\frac{4m(n+3)-j+1}{2} + (i - 2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ even} \\
\frac{2m(4n+1)-j+1}{2} + (i - 2)4m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ even} \\
\frac{2m(4n+1)-j+1}{2} + (i - 2)4m, &
$$

$$
\alpha_2(u_i^j v_{i+1}^j) = \begin{cases} \frac{2m(2n+3)-j+1}{2} + (i-1)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ odd} \\ \frac{m(4n+5)-j+1}{2} + (i-1)4m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \\ 2mn+6m+j+(i-2)4m, & \text{for } i \equiv 2 \text{(mod3) and any } j \\ \frac{m(4n+21)-j+2}{2} + (i-3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ odd} \\ \frac{2m(2n+11)-j+2}{2} + (i-3)4m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \end{cases}
$$

The total labeling α_2 is a bijective function from $V(m\mathcal{L}_n) \cup E(m\mathcal{L}_n)$ onto the set $\{1, 2, 3, \ldots, 6mn - 3m\}$. The edge-weights of $m\mathcal{L}_n$, under the labeling α_2 , constitute the sets

$$
W_{\alpha_2}^1(u_i^j v_i^j) = \begin{cases} \frac{m(4n+3)+4j+1}{2} + (i-1)8m, & \text{for } i \equiv 1 \text{(mod3) and any } j \\ \frac{m(4n+2i)-2j+5}{2} + (i-2)8m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\ \frac{m(4n+3i)-2j+3}{2} + (i-2)8m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \\ \frac{m(4n+3i)-2j+3}{2} + (i-3)8m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \\ \frac{m(4n+3i)-2j+3}{2} + (i-3)8m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \\ \frac{m(4n+3i)-2j+5}{2} + (i-2)8m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ even} \\ \frac{m(4n+3i)-2j+5}{2} + (i-2)8m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\ \frac{m(4n+3i)-2j+5}{2} + (i-2)8m, & \text{for } i \equiv 2 \text{(mod3) and } j \text{ odd} \\ \frac{m(4n+3i)-2j+3}{2} + (i-3)8m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \\ \frac{m(4n+4i)-2j+3}{2} + (i-3)8m, & \text{for } i \equiv 3 \text{(mod3) and } j \text{ even} \\ \frac{m(4n+4i)-2j+5}{2} + (i-1)8m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ even} \\ W_{\alpha_2}^3(v_i^j v_{i+1}^j) = \begin{cases} \frac{m(4n+2i)-2j+5}{2} + (i-1)8m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ odd} \\ \frac{m(4n+2i)-2j+3}{2} + (i-1)8m, & \text{for } i \equiv 1 \text{(mod3) and } j \text{ odd} \\ \frac{m(4n+2i)-2j+3}{2} + (i-2
$$

It is not difficult to see that the set $\bigcup_{r=1}^{4} W_{\alpha_2}^r = \{\frac{m(4n+3)+5}{2}$ $\frac{+3+5}{2}, \frac{m(4n+3)+9}{2}$ $\frac{+3)+9}{2}, \ldots, \frac{20mn-9m+1}{2}$ $\frac{-9m+1}{2}\}$ contains an arithmetic sequence with the first term $\frac{m(4n+3)+5}{2}$ and common difference 2. Thus α_2 is a super $(\frac{m(4n+3)+5}{2}, 2)$ -edge-antimagic total labeling. This concludes the \Box

Theorem 3 The graph $m\mathcal{L}_n$ has a super $(4mn+2, 1)$ -edge-antimagic total labeling for $m \geq 2$ and $n \geq 2$.

Proof. Construct the bijective function of total labeling $\alpha_3 : V(m\mathcal{L}_n) \cup E(m\mathcal{L}_n) \longrightarrow$ $\{1, 2, 3, \ldots, 6mn - 3m\}$, for $i = 1, 2, 3, \ldots n$ and $1 \le j \le m$, as follows:

$$
\alpha_3(u_i^j) = m + j + (i - 1)2m,
$$

$$
\alpha_3(v_i^j) = j + (i-1)2m,
$$

\n
$$
\alpha_3(u_i^j v_i^j) = (6n-3)m + 1 - j - (i-1)2m,
$$

\n
$$
\alpha_3(u_i^j u_{i+1}^j) = (4n-3)m + 1 - j - (i-1)2m,
$$

\n
$$
\alpha_3(v_i^j v_{i+1}^j) = (4n-2)m + 1 - j - (i-1)2m,
$$

\n
$$
\alpha_3(u_i^j v_{i+1}^j) = (6n-4)m + 1 - j - (i-1)2m.
$$

The total labeling α_3 is a bijective function from $V(m\mathcal{L}_n) \cup E(m\mathcal{L}_n)$ onto the set $\{1, 2, 3, \ldots, 6mn - 3m\}$. The edge-weights of $m\mathcal{L}_n$, under the labeling α_3 , constitute the sets

$$
W^1_{\alpha_3}(u^j_i v^j_i) = 2m(3n - 1) + j + 1 + (i - 1)2m,
$$

\n
$$
W^2_{\alpha_3}(u^j_i u^j_{i+1}) = m(4n + 1) + j + 1 + (i - 1)2m,
$$

\n
$$
W^3_{\alpha_3}(v^j_i v^j_{i+1}) = 4nm + j + 1 + (i - 1)2m,
$$

\n
$$
W^4_{\alpha_3}u^j_i v^j_{i+1}) = m(6n - 1) + j + 1 + (i - 1)2m.
$$

Hence, the set $\bigcup_{r=1}^{4} W_{\alpha_3}^r = \{4nm+2, 4nm+3\ldots, 8mn-3m+1\}$ consists of consecutive integers. Thus α_3 is a super $(4nm + 2, 1)$ -edge-antimagic total labeling.

Apart from those cases, we do not have the complete answer. Therefore we propose the following open problem.

Open Problem 1 For the graph $m\mathcal{L}_n$, $m \geq 2$ even and $n \geq 2$, determine if there is a super (a, d) -edge-antimagic total labeling with $d \in \{0, 2\}$.

4 Disjoint Union of Lobster Graph

Lobster graph is a *tree* in which if we omit the leaves then it forms a caterpillar. Now, we will study super edge-antimagicness of a disjoint union of m copies of lobster, denoted by $m\pounds_{i,j,k}$. It is a disconnected graph with vertex set $V(\pounds_{i,j,k}) = \{x_i^s \cup x_{i,j}^s \cup x_{i,j,k}^s, 1 \leq j \leq k\}$ $i \leq n, 2 \leq j \leq p, 1 \leq k \leq l, 1 \leq s \leq m\}$ and edge set $E(\mathcal{L}_{i,j,k}) = \{x_i^s x_{i+1}^{s^s} : 1 \leq i \leq n\}$ $n-1, 1 \leq s \leq m$ } $\cup \{x_i^s x_{i,j}^s \cup x_{i,j,k}^s : 1 \leq i \leq n, 1 \leq j \leq p, 1 \leq k \leq l, 1 \leq s \leq m\}.$ Thus $|V(m\pounds_{i,j,k})| = p = 5mn$ and $|\tilde{E}(m\pounds_{i,j,k})| = q = 5mn - m$.

If the disjoint union of m copies of a lobster $m \mathcal{L}_{i,j,k}$, has a super (a, d) -edge-antimagic total labeling then, for $p = 5mn$ and $q = 5mn - m$, it follows from Lemma 1 that the upper bound of d is $d \leq 3 + \frac{2m-2}{5nm-m-1}$ or $d \in \{0,1,2,3\}$. We concentrate on the super edge-antimagicness of $m\mathcal{L}_{i,j,k}$ for $1 \leq i \leq n, 1 \leq j \leq 2$ and $k = 1$.

The following theorem describes an $(a, 1)$ -edge-antimagic vertex labeling for disjoint union of m copies of the lobsters.

Theorem 4 If $m \geq 3$ is odd and $n \geq i \geq 2$ is even, then the graph $m \mathcal{L}_{i,j,k}$ has an $(a, 1)$ -edge-antimagic vertex labeling, for $1 \leq j \leq 2$ and $k = 1$.

Proof. Define the vertex labeling $\alpha_4 : V(m\mathcal{L}_{i,j,k}) \to \{1, 2, ..., 5mn\}$ in the following way: \overline{a}

$$
\alpha_4(x_i^s) = \begin{cases}\n\frac{m(5i-3)}{2} + s, & \text{for } i \text{ odd}, 1 \le s \le m \\
\frac{m(5n+5i-3)-s}{2} + 1, & \text{for } i \text{ even}, s \text{ odd} \\
\frac{5m(n+i)-s}{2} + 1 - m, & \text{for } i \text{ even}, s \text{ even}\n\end{cases}
$$
\n
$$
\alpha_4(x_{i,j}^s) = \begin{cases}\n\frac{5mi}{2} + s - 2m, & \text{for } j = 1, i \text{ even}, 1 \le s \le m \\
\frac{5mi(n+i)-s}{2} + 1 - 2m, & \text{for } j = 2, i \text{ even}, 1 \le s \le m \\
\frac{5m(n+i)-s}{2} + 1 - m, & \text{for } j = 2, i \text{ odd}, s \text{ odd} \\
\frac{m(5n+5i-3)-s}{2} + 1, & \text{for } j = 1, i \text{ odd}, s \text{ even} \\
\frac{m(5n+5i-1)-s}{2} + 1, & \text{for } j = 2, i \text{ odd}, s \text{ even}\n\end{cases}
$$
\n
$$
\alpha_4(x_{i,j,k}^s) = \begin{cases}\n\frac{5m(\frac{i-1}{2})}{2} + s, & \text{for } j = 1, i \text{ odd}, 1 \le s \le m \\
\frac{m(5i-1)-s}{2} + 1, & \text{for } j = 2, i \text{ odd}, 1 \le s \le m \\
\frac{5m(n+i-1)-s}{2} + 1, & \text{for } j = 1, i \text{ even}, s \text{ odd} \\
\frac{5m(n+i)-s}{2} + 1 - 2m, & \text{for } j = 2, i \text{ even}, s \text{ even}\n\end{cases}
$$
\n
$$
\frac{5m(n+i)-s}{2} + 1, & \text{for } j = 2, i \text{ even}, s \text{ even}
$$

The vertex labeling α_4 is a bijective function. The edge-weights of $m\mathcal{L}_{i,j,k}$, under the labeling α_4 , constitute the following sets

$$
W_{\alpha_4}^1 = \{ w_{\alpha_1}^1(x_i^s x_{i+1}^s) : \text{for } 1 \le i \le n-1 \text{ and } s \text{ odd} \}
$$

\n
$$
= \{ \frac{5mn+10mi-m+s}{2} + 1 : \text{for } 1 \le i \le n-1 \text{ and } s \text{ odd} \},
$$

\n
$$
W_{\alpha_4}^2 = \{ w_{\alpha_1}^1(x_i^s x_{i+1}^s) : \text{for } 1 \le i \le n-1 \text{ and } s \text{ even} \}
$$

\n
$$
= \{ \frac{5mn+s}{2} + 5mi + 1 : \text{for } 1 \le i \le n-1 \text{ and } s \text{ even} \},
$$

$$
W_{\alpha_4}^3 = \{w_{\alpha_1}^1(x_i^s x_{i,j}^s) : \text{ for } j = 1, 1 \le i \le n \text{ and } s \text{ odd}\}\
$$

\n
$$
= \{\frac{m(5n+10i-7)+s}{2} + 1 : \text{ for } j = 1, 1 \le i \le n \text{ and } s \text{ odd}\}\
$$

\n
$$
W_{\alpha_4}^4 = \{w_{\alpha_1}^1(x_i^s x_{i,j}^s) : \text{ for } j = 2, 1 \le i \le n \text{ and } s \text{ odd}\}\
$$

\n
$$
= \{\frac{m(5n+10i-5)+s}{2} + 1 : \text{ for } j = 2, 1 \le i \le n \text{ and } s \text{ odd}\}\
$$

\n
$$
W_{\alpha_4}^5 = \{w_{\alpha_1}^1(x_i,^s x_{i,j}^s) : \text{ for } j = 1, 1 \le i \le n \text{ and } s \text{ even}\}\
$$

\n
$$
= \{\frac{5mn+s}{2} + m(5i-3) + 1 : \text{ for } j = 1, 1 \le i \le n \text{ and } s \text{ even}\}\
$$

\n
$$
W_{\alpha_4}^6 = \{w_{\alpha_1}^1(x_i^s x_{i,j}^s) : \text{ for } j = 2, 1 \le i \le n \text{ and } s \text{ even}\}\
$$

\n
$$
= \{\frac{5mn+s}{2} + m(5i-2) + 1 : \text{ for } j = 2, 1 \le i \le n \text{ and } s \text{ even}\}\
$$

$$
W_{\alpha_4}^7 = \{w_{\alpha_1}^1(x_{i,j}^s x_{i,j,k}^s) : \text{ for } j = 1, 1 \le i \le n \text{ and } s \text{ odd}\}\
$$

\n
$$
= \{\frac{m(5n+10i-9)+s}{2} + 1 : \text{ for } j = 1, 1 \le i \le n \text{ and } s \text{ odd}\}\
$$

\n
$$
W_{\alpha_4}^8 = \{w_{\alpha_1}^1(x_{i,j}^s x_{i,j,k}^s) : \text{ for } j = 2, 1 \le i \le n \text{ and } s \text{ odd}\}\
$$

\n
$$
= \{\frac{m(5n+10i-3)+s}{2} + 1 : \text{ for } j = 2, 1 \le i \le n \text{ and } s \text{ odd}\}\
$$

\n
$$
W_{\alpha_4}^9 = \{w_{\alpha_1}^1(x_{i,j}^s x_{i,j,k}^s) : \text{ for } j = 1, 1 \le i \le n \text{ and } s \text{ even}\}\
$$

\n
$$
= \{\frac{m(5n+10i-8)+s}{2} + 1 : \text{ for } j = 1, 1 \le i \le n \text{ and } s \text{ even}\}\
$$

\n
$$
W_{\alpha_4}^{10} = \{w_{\alpha_1}^1(x_{i,j}^s x_{i,j,k}^s) : \text{ for } j = 2, 1 \le i \le n \text{ and } s \text{ even}\}\
$$

\n
$$
= \{\frac{m(5n+10i)+s}{2} + 1 - m : \text{ for } j = 2, 1 \le i \le n \text{ and } s \text{ even}\}\
$$

It is not difficult to see that the set $\bigcup_{r=1}^{10} W_{\alpha_4}^r = \{\frac{5mn+m+3}{3}$ $\frac{1+m+3}{2}, \frac{5mn+m+5}{2}$ $\frac{1}{2}, \ldots, \frac{15mn-m+1}{2}$ $\frac{-m+1}{2}$ consists of consecutive integers. Thus α_4 is a $(\frac{5mn+m+3}{2},1)$ -edge antimagic vertex labeling. \Box

Theorem 5 If $m \geq 3$ is odd and $n \geq i \geq 2$ is even then the graph $m \mathcal{L}_{i,j,k}$ has a
super $\left(\frac{25mn-m-3}{2},0\right)$ -edge-antimagic total labeling and a super $\left(\frac{15mn+m+5}{2},2\right)$ -edge- $\frac{-m-3}{2}$, 0 $\frac{2}{\sqrt{2}}$ -edge-antimagic total labeling and a super $\left(\frac{15mn+m+5}{2}\right)$ $\frac{+m+5}{2}$, 2)-edgeantimagic total labeling.

Proof.

Case 1. $d=0$

We have proved that the vertex labeling α_4 is a $(\frac{5mn+m+3}{2},1)$ -edge antimagic vertex labeling. With respect to Lemma 2, by completing the edge labels $p+1, p+2, \ldots, p+q$, we are able to extend labeling α_4 to a super $(a, 0)$ -edge-antimagic total labeling, where, for $p = 5mn$ and $q = 5mn - m$, the value $a = \frac{25mn - m - 3}{2}$ $\frac{-m-3}{2}$.

Case 2. $d=2$

Label the vertices of $m\mathcal{L}_{i,j,k}$ with $\alpha_5(x_i^s) = \alpha_4(x_i^s), \alpha_5(x_{i,j}^s) = \alpha_4(x_{i,j}^s)$ and $\alpha_5(x_{i,j,k}^s) =$ $\alpha_4(x_{i,j,k}^s)$, for $1 \leq i \leq n, 1 \leq j \leq 2, k = 1$ and $1 \leq s \leq m$; and label the edges with the following way.

$$
\alpha_5(x_i^s x_{i+1}^s) = \begin{cases} m(5n+5i-1) + (\frac{1+s}{2}), & \text{for } 1 \le i \le n-1, \ s \text{ odd} \\ m(5n+5i) + (\frac{1+s-m}{2}), & \text{for } 1 \le i \le n-1, \ s \text{ even} \end{cases}
$$

For $1 \leq i \leq n$ and $1 \leq j \leq 2$

$$
\alpha_5(x_i^s x_{i,j}^s) = \begin{cases} m(5n+5i-4) + (\frac{1+s}{2}), & \text{for } j = 1, 1 \le s \le n, s \text{ odd} \\ m(5n+5i-3) + (\frac{1+s}{2}), & \text{for } j = 2, 1 \le s \le n, s \text{ odd} \\ 5m(n+i) + (\frac{s+1-7m}{2}), & \text{for } j = 1, 1 \le s \le n, s \text{ even} \\ 5m(n+i) + (\frac{s+1-5m}{2}), & \text{for } j = 2, 1 \le s \le n, s \text{ even} \end{cases}
$$

For $1 \le i \le n, 1 \le j \le 2$ and $k = 1$

$$
\alpha_5(x_{i,j}^s x_{i,j,k}^s) = \begin{cases} 5m(n+i-1) + (\frac{1+s}{2}), & \text{for } j = 1, 1 \le s \le n, s \text{ odd} \\ m(5n+5i-2) + (\frac{1+s}{2}), & \text{for } j = 2, 1 \le s \le n, s \text{ odd} \\ 5m(n+i) + (\frac{s+1-9m}{2}), & \text{for } j = 1, 1 \le s \le n, s \text{ even} \\ 5m(n+i) + (\frac{s+1-3m}{2}), & \text{for } j = 2, 1 \le s \le n, s \text{ even} \end{cases}
$$

The total labeling α_5 is a bijective function from $V(m\pounds_{i,j,k}) \cup E(m\pounds_{i,j,k})$ onto the set $\{1, 2, 3, \ldots, 10mn - m\}$. The edge-weights of $m\mathcal{L}_{i,j,k}$, under the labeling α_5 , constitute the sets

$$
W_{\alpha_{5}}^{1} = W_{\alpha_{4}}^{1} + \alpha_{5}(x_{i}^{s}x_{i+1}^{s})
$$
; for $1 \leq i \leq n-1$, and s odd
\n
$$
= \{\frac{5mn+10mi-m+s}{2} + 1\} + \{5mn + 5mi - m + (\frac{1+s}{2})\}
$$
\n
$$
W_{\alpha_{5}}^{2} = W_{\alpha_{4}}^{2} + \alpha_{5}(x_{i}^{s}x_{i+1}^{s})
$$
; for $1 \leq i \leq n-1$, and s even
\n
$$
= \{\frac{5mn+s}{2} + 5mi + 1\} + \{5mn + 5mi + (\frac{1+s-m}{2})\}
$$
\n
$$
W_{\alpha_{5}}^{3} = W_{\alpha_{4}}^{3} + \alpha_{5}(x_{i}^{s}x_{i,j}^{s})
$$
; for $1 \leq i \leq n, j = 1$, and s odd
\n
$$
= \{\frac{5mn+10mi-7m+s}{2} + 1\} + \{5mn + 5mi - 4m + (\frac{s+1}{2})\}
$$
\n
$$
W_{\alpha_{5}}^{4} = W_{\alpha_{4}}^{4} + \alpha_{5}(x_{i}^{s}x_{i,j}^{s})
$$
; for $1 \leq i \leq n, j = 2$, and s odd
\n
$$
= \{\frac{5mn+10m-5m+s}{2} + 1\} + \{5mn + 5mi - 3m + (\frac{s+1}{2})\}
$$
\n
$$
W_{\alpha_{5}}^{5} = W_{\alpha_{4}}^{5} + \alpha_{5}(x_{i}^{s}x_{i,j}^{s})
$$
; for $1 \leq i \leq n, j = 1$, and s even
\n
$$
= \{\frac{5mn+s}{2} + 5mi - 3m + 1\} + \{5mn + 5mi + (\frac{s+1-7m}{2})\}
$$
\n
$$
W_{\alpha_{5}}^{6} = W_{\alpha_{4}}^{6} + \alpha_{5}(x_{i}^{s}x_{i,j}^{s})
$$
; for $1 \leq i \leq n, j = 2$, and s even
\n
$$
= \{\frac{5mn+s}{2} + 5mi - 2m + 1\} +
$$

It is not difficult to see that the set $\bigcup_{r=1}^{10} W_{\alpha_5}^r = \{\frac{15mn+m+5}{\alpha^2}\}$ $\frac{15mn+m+9}{2}$, $\frac{15mn+m+9}{2}$ $\frac{1+m+9}{2}, \ldots \frac{35mn-3m+1}{2}$ $\frac{-3m+1}{2}\}$ contains an arithmetic sequence with the first term $\frac{15\tilde{m}n+m+5}{2}$ and common difference 2. Thus α_5 is a super $\left(\frac{15mn+m+5}{2}, 2\right)$ -edge-antimagic total labeling. This completes the \Box

Theorem 6 The graph $m\mathcal{L}_{i,j,k}$ has a super $(10mn+2, 1)$ -edge-antimagic total labeling for $m \geq 3$ odd and $n \geq i \geq 2$ even.

Proof. For $m \geq 3$ odd and $n \geq i \geq 2$ even, consider the vertex labeling α_4 of the graph $m\pounds_{i,j,k}$ from Theorem 4 which is a $(\frac{5mn+m+3}{2},1)$ -EAV labeling. Let a sequence $\mathfrak{A} = \{c, c+1, c+2, \ldots, c+k\}$ be the set of edge-weights of the vertex labeling α_4 for $c = \frac{5mn+m+3}{2}$ $\frac{2^{m+3}}{2}$ and $k = 5mn - m - 1$. In light of Lemma 3, there exists a permutation $\Pi(\mathfrak{A})$ of the elements of \mathfrak{A} such that $\mathfrak{A} + [\Pi(\mathfrak{A}) - c + 5mn + 1] = \{c + \frac{15mn-m+1}{2}$ $\frac{-m+1}{2}, c +$ $\frac{15mn-m+1}{2}$ + 1, ..., $c + \frac{25mn-3m-1}{2}$ $\left[\frac{-3m-1}{2}\right]$. If $\left[\Pi(\mathfrak{A})-c+5mn+1\right]$ is an edge labeling of

 $m\mathcal{L}_{i,j,k}$ then $\mathfrak{A}+[\Pi(\mathfrak{A})-c+5mn+1]$ gives the set of the edge-weights of $m\mathcal{L}_{i,j,k}$, which implies that the resulting total labeling is super $(10mn + 2, 1)$ -EAT. This concludes the \Box

Apart from those cases, we have not found any super (a, d) -edge-antimagic total labeling. Therefore we propose the following open problems.

Open Problem 2 For the graph $m \mathcal{L}_{i,j,k}$, $m \geq 3$ odd and $n \geq i \geq 2$ even, determine if there is a super (a, d) -edge-antimagic total labeling with $d = 3$.

Open Problem 3 For the graph $m \mathcal{L}_{i,j,k}$, either $m \geq 3$ odd and $n \geq i \geq 2$ odd; or $m \geq 3$ even and $n \geq i \geq 2$, determine if there is a super (a,d) -edge-antimagic total labeling with $d \in \{0, 1, 2, 3\}.$

References

- [1] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Math. 60 (2001), 229–239.
- [2] M. Bača and L. Brankovic, Edge-antimagicness for a class of disconnected graphs, Ars Combin., in press.
- [3] M. Bača, Dafik, M. Miller and J. Ryan, On super (a, d) -edge antimagic total labeling of caterpillars, J. Combin. Math. Combin. Comput., 65 (2008), 61–70.
- [4] Dafik, M. Miller, J. Ryan and M. Bača, Super edge-antimagic total labelings of $mK_{n,n,n}$, Ars Combinatoria (2006), in press.
- [5] Dafik, M. Miller, J. Ryan and M. Bača, Antimagic total labeling of disjoint union of complete s-partite graphs, J. Combin. Math. Combin. Comput., 65 (2008), 41–49.
- [6] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d) -edge antimagic total labeling of disconnected graphs, Discrete Math., 309 (2009), 4909-4915.
- [7] H. Enomoto, A.S. Llad´o, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), 105–109.
- [8] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001), 153–168.
- [9] J. Ivančo and I. Lučkaničová, On edge-magic disconnected graphs, SUT Journal of Math. 38 (2002), 175–184.
- [10] A. Kotzig and A. Rosa, Magic valuations of finite graphs, *Canad. Math. Bull.* 13 (1970), 451–461.
- [11] G. Ringel and A.S. Lladó, Another tree conjecture, *Bull. Inst. Combin. Appl.* 18 (1996), 83–85.
- [12] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d) -antimagic graph labelings, Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms (2000), 179–189.
- [13] I.W. Sudarsana, D. Ismaimuza, E.T. Baskoro and H. Assiyatun, On super (a, d) edge-antimagic total labeling of disconnected graphs, JCMCC 55 (2005), 149–158.
- [14] K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d) -edge-antimagic total labelings of caterpillars, Lecture Notes in Computer Science 3330 (2005), 169–180.
- [15] W. D. Wallis, E. T. Baskoro, M. Miller and Slamin , Edge-magic total labelings, Austral. J. Combin. 22 (2000), 177–190.
- [16] W.D. Wallis, *Magic Graphs*, Birkhäuser, Boston Basel Berlin, 2001.