




On diregularity of digraphs of
defect two

Dafik 1,2, Mirka Miller 1,3, Costas Iliopoulos 4 and Zdenek Ryjacek 3

1School of Information Technology and Mathematical Sciences
University of Ballarat, Australia

2Department of Mathematics Education
Universitas Jember, Indonesia
3Department of Mathematics

University of West Bohemia, Plzeň, Czech Republic
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Abstract: Since Moore digraphs do not exist for k 6= 1 and d 6= 1, the problem

of finding the existence of digraph of out-degree d ≥ 2 and diameter k ≥ 2 and

order close to the Moore bound becomes an interesting problem. To prove the

non-existence of such digraphs, we first may wish to establish their diregularity.

It is easy to show that any digraph with out-degree at most d ≥ 2, diameter

k ≥ 2 and order n = d + d2 + . . . + dk − 1, that is, two less than Moore bound

must have all vertices of out-degree d. However, establishing the regularity or

otherwise of the in-degree of such a digraph is not easy. In this paper we prove

that all digraphs of defect two are out-regular and almost in-regular.
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1 Introduction

By a directed graph or a digraph we mean a structure G = (V (G), A(G)), where
V (G) is a finite nonempty set of distinct elements called vertices, and A(G) is a
set of ordered pair (u, v) of distinct vertices u, v ∈ V (G) called arcs.

1 This research was supported by the Australian Research Council (ARC) Discovery
Project grant DP04502994.



The order of the digraph G is the number of vertices in G. An in-neighbour (respec-
tively, out-neighbour) of a vertex v in G is a vertex u (respectively, w) such that
(u, v) ∈ A(G) (respectively, (v, w) ∈ A(G)). The set of all in-neighbours (respec-
tively, out-neighbours) of a vertex v is called the in-neighbourhood (respectively,
the out-neighbourhood) of v and denoted by N−(v) (respectively, N+(v)). The in-
degree (respectively, out-degree) of a vertex v is the number of all its in-neighbours
(respectively, out-neighbours). If every vertex of a digraph G has the same in-degree
(respectively, out-degree) then G is said to be in-regular (respectively, out-regular).
A digraph G is called a diregular digraph of degree d if G is in-regular of in-degree
d and out-regular of out-degree d.

An alternating sequence v0a1v1a2...alvl of vertices and arcs in G such that ai =
(vi−1, vi) for each i is called a walk of length l in G. A walk is closed if v0 = vl. If
all the vertices of a v0 − vl walk are distinct, then such a walk is called a path. A
cycle is a closed path. A digon is a cycle of length 2.

The distance from vertex u to vertex v, denoted by δ(u, v), is the length of a shortest
path from u to v, if any; otherwise, δ(u, v) = ∞. Note that, in general, δ(u, v) is not
necessarily equal to δ(v, u). The in-eccentricity of v, denoted by e−(v), is defined
as e−(v) = max{δ(u, v) : u ∈ V } and out-eccentricity of v, denoted by e+(v), is
defined as e+(v) = max{δ(v, u) : u ∈ V }. The radius of G, denoted by rad(G), is
defined as rad(G)= min{e−(v) : v ∈ V }. The diameter of G, denoted by diam(G),
is defined as diam(G)= max{e−(v) : v ∈ V }. Note that if G is a strongly connected
digraph then, equivalently, we could have defined the radius and the diameter of
G in terms of out-eccentricity instead of in-eccentricity. The girth of a digraph G

is the length of a shortest cycle in G.

The well known degree/diameter problem for digraphs is to determine the largest
possible order nd,k of a digraph, given out-degree at most d ≥ 1 and diameter
k ≥ 1. There is a natural upper bound on the order of digraphs given out-degree
at most d and diameter k. For any given vertex v of a digraph G, we can count the
number of vertices at a particular distance from that vertex. Let ni , for 0 ≤ i ≤ k,
be the number of vertices at distance i from v. Then ni ≤ di, for 0 ≤ i ≤ k, and
consequently,

nd,k =
k∑

i=0

ni ≤ 1 + d + d2 + . . . + dk. (1)



The right-hand side of (1), denoted by Md,k, is called the Moore bound. If the
equality sign holds in (1) then the digraph is called a Moore digraph. It is well
known that Moore digraphs exist only in the cases when d = 1 (directed cycles of
length k+1, Ck+1 , for any k ≥ 1) or k = 1 (complete digraphs of order d+1,Kd+1,
for any d ≥ 1) [2, 11].

Note that every Moore digraph is diregular (of degree one in the case of Ck+1 and
of degree d in the case of Kd+1). Since for d > 1 and k > 1 there are no Moore
digraphs, we are next interested in digraphs of order n ‘close’ to Moore bound.

It is easy to show that a digraph of order n, Md,k−Md,k−1+1 ≤ n ≤ Md,k−1, with
out-degree at most d ≥ 2 and diameter k ≥ 2 must have all vertices of out-degree
d. In other words, the out-degree of such a digraph is constant (= d). This can be
easily seen because if there were a vertex in the digraph with out-degree d1 < d

(i.e., d1 ≤ d− 1), then the order of the digraph,

n ≤ 1 + d1 + d1d + . . . + d1d
k−1

= 1 + d1(1 + d + . . . + dk−1)

≤ 1 + (d− 1)(1 + d + . . . + dk−1)

= (1 + d + . . . + dk)− (1 + d + . . . + dk−1)

= Md,k −Md,k−1

< Md,k −Md,k−1 + 1,

However, establishing the regularity or otherwise of in-degree for an almost Moore
digraph is not easy. It is well known that there exist digraphs of out-degree d and
diameter k whose order is just two or three less than the Moore bound and in
which not all vertices have the same in-degree. In Fig. 1 we give two examples of
digraphs of diameter 2, out-degree d = 2, 3, respectively, and order Md,2 − d, with
vertices not all of the same in-degree.

Miller, Gimbert, Širáň and Slamin [7] considered the diregularity of digraphs of
defect one, that is, n = Md,k − 1, and proved that such digraphs are diregular. For
defect two, diameter k = 2 and any out-degree d ≥ 2, non-diregular digraphs always
exist. One such family of digraphs can be generated from Kautz digraphs which
contain vertices with identical out-neighbourhoods and so we can apply vertex
deletion scheme, see [8], to obtain non-diregular digraphs of defect two, diameter
k = 2, and any out-degree d ≥ 2. Fig. 2(a) shows an example of Kautz digraph G of
order n = M3,2− 1 which we will use to illustrate the vertex deletion scheme. Note



Fig. 1. Two examples of non-diregular digraphs.

the existence of identical out-neighbourhoods, for example, N+(v11) = N+(v12).
Deleting vertex v12, together with its outgoing arcs, and then reconnecting its
incoming arcs to vertex 11, we obtain a new digraph G1 of order n = M3,2 − 2, as
shown in Fig. 2(b).
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Fig. 2. Digraphs G of order 12 and G1 of order 11.

We now introduce the notion of ‘almost diregularity’. Throughout this paper, let
S be the set of all vertices of G whose in-degree is less than d. Let S′ be the



set of all vertices of G whose in-degree is greater than d; and let σ− be the in-
excess, σ− = σ−(G) =

∑
w∈S′(d

−(w) − d) =
∑

v∈S(d − d−(v)). Similarly, let R

be the set of all vertices of G whose out-degree is less than d. Let R′ be the set
of all vertices of G whose out-degree is greater than d. We define the out-excess,
σ+ = σ+(G) =

∑
w∈R′(d

+(w) − d) =
∑

v∈R(d − d+(v)). A digraph of average in-
degree d is called almost in-regular if the in-excess is at most equal to d. Similarly,
a digraph of average out-degree d is called almost out-regular if the out-excess is
at most equal to d. A digraph is almost diregular if it is almost in-regular and
almost out-regular. Note that if σ− = 0 (respectively, σ+ = 0) then G is in-regular
(respectively, out-regular). In this paper we prove that all digraphs of defect two,
diameter k ≥ 3 and out-degree d ≥ 2 are out-regular and almost in-regular.

2 Results

Let G be a digraph of out-degree d ≥ 2, diameter k ≥ 3 and order Md,k − 2. Since
the order of G is Md,k − 2, using a counting argument, it is easy to show that for
each vertex u of G there exist exactly two vertices r1(u) and r2(u) (not necessarily
distinct) in G with the property that there are two u → ri(u) walks, for i = 1, 2, in
G of length not exceeding k. The vertex ri(u), for each i = 1, 2, is called the repeat
of u; this concept was introduced in [5].

We will use the following notation throughout. For each vertex u of a digraph G

described above, and for 1 ≤ s ≤ k, let T+
s (u) be the multiset of all endvertices

of directed paths in G of length at most s which start at u. Similarly, by T−s (u)
we denote the multiset of all starting vertices of directed paths of length at most
s in G which terminate at u. Observe that the vertex u is in both T+

s (u) and
T−s (u), as it corresponds to a path of zero length. Let N+

s (u) be the set of all
endvertices of directed paths in G of length exactly s which start at u. Similarly,
by N−

s (u) we denote the set of all starting vertices of directed paths of length
exactly s in G which terminate at u. If s = 1, the sets T+

1 (u) \ {u} and T−1 (u) \
{u} represent the out- and in-neighbourhoods of the vertex u in the digraph G;
we denote these neighbourhoods simply by N+(u) and N−(u), respectively. We
illustrate the notations T+

s (u) and N+
s (u) in Fig. 3.
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We will also use the following notation throughout.

Notation 1 Let G(d, k, δ) be the set of all digraphs of maximum out-degree d and
diameter k and defect δ. The we refer to any digraph G ∈ G(d, k, δ) as a (d, k, δ)-
digraph.

We will present our new results concerning the diregularity of digraphs of order
close to Moore bound in the following sections.

2.1 Diregularity of (d, k, 2)-digraphs

In this section we present a new result concerning the in-regularity of digraphs of
defect two for any out-degree d ≥ 2 and diameter k ≥ 3. Let S be the set of all
vertices of G whose in-degree is less than d. Let S′ be the set of all vertices of G

whose in-degree is greater than d; and let σ be the in-excess, σ− =
∑

w∈S′(d
−(w)−

d) =
∑

v∈S(d− d−(v)).

Lemma 1 Let G ∈ G(d, k, 2). Let S be the set of all vertices of G whose in-degree
is less than d. Then S ⊆ N+(r1(u)) ∪N+(r2(u)), for any vertex u.

Proof. Let v ∈ S. Consider an arbitrary vertex u ∈ V (G), u 6= v, and let N+(u) =
{u1, u2, ..., ud}. Since the diameter of G is equal to k, the vertex v must occur in



each of the sets T+
k (ui), i = 1, 2, ..., d. It follows that for each i there exists a vertex

xi ∈ {u} ∪ T+
k−1(ui) such that xiv is an arc of G. Since the in-degree of v is less

than d then the in-neighbours xi of v are not all distinct. This implies that there
exists some vertex which occurs at least twice in T+

k (u). Such a vertex must be
a repeat of u. As G has defect 2, there are at most two vertices of G which are
repeats of u, namely, r1(u) and r2(u). Therefore, S ⊆ N+(r1(u)) ∪N+(r2(u)). 2

Combining Lemma 1 with the fact that every vertex in G has out-degree d gives

Corollary 1 |S| ≤ 2d.

In principle, we might expect that the in-degree of v ∈ S could attain any value
between 1 and d − 1. However, the next lemma asserts that the in-degree cannot
be less than d− 1.

Lemma 2 Let G ∈ G(d, k, 2). If v1 ∈ S then d−(v1) = d− 1.

Proof. Let v1 ∈ S. Consider an arbitrary vertex u ∈ V (G), u 6= v1, and let
N+(u) = {u1, u2, ..., ud}. Since the diameter of G is equal to k, the vertex v1 must
occur in each of the sets T+

k (ui), i = 1, 2, ..., d. It follows that for each i there exists a
vertex xi ∈ {u}∪T+

k−1(ui) such that xiv1 is an arc of G. If d−(v1) ≤ d−3 then there
are at least three repeats of u, which is impossible. Suppose that d−(v1) ≤ d − 2.
By Lemma 1, the in-excess must satisfy

σ− =
∑

x∈S′
(d−(x)− d) =

∑

v1∈S

(d− d−(v1)) = |S| ≤ 2d.

We now consider the number of vertices in the multiset T−k (v1). To reach v1 from
all the other vertices in G, the number of distinct vertices in T−k (v1) must be

|T−k (v1)| ≤
k∑

t=0

|N−
t (v)|. (2)

To estimate the above sum we can observe the following inequality

|N−
t (v)| ≤

∑

u∈N−
t−1(v)

d−(u) = d|N−
t−1(v)|+ εt, (3)

where 2 ≤ t ≤ k and ε2 + ε3 + . . . + εk ≤ σ. If d−(v1) = d − 2 then |N−(v1)| =
|N−

1 (v1)| = d − 2. It is not difficult to see that a safe upper bound on the sum



of |T−k (v1)| is obtained from inequality (3) by setting ε2 = 2d, and εt = 0 for
3 ≤ t ≤ k. This gives

|T−k (v1)| ≤ 1 + |N−
1 (v1)|+ |N−

2 (v1)|+ |N−
3 (v1)|+ . . . + |N−

k (v1)|
= 1 + (d− 2) + (d(d− 2) + ε2) + (d(d(d− 2) + ε2) + ε3)

(1 + d + · · ·+ dk−3)

= 1 + (d− 2) + (d(d− 2) + 2d) + (d(d(d− 2) + 2d) + 0)

(1 + d + · · ·+ dk−3)

= 1 + d− 2 + d2 + d3(1 + d + · · ·+ dk−3)

= Md,k − 2.

Since ε2 = 2d, εt = 0 for 3 ≤ t ≤ k, and G contains a vertex of in-degree d−2 then
|S| = d. Let S = {v1, v2, . . . , vd}. Every vi, for i = 2, 3, . . . , d, has to reach v1 at
distance at most k. Since v1 and every vi have exactly the same in-neighbourhood
then v1 is forced to be selfrepeat. This implies that v1 occurs twice in the multiset
T−k (v1). Hence |T−(v1)| < Md,k − 2, which is a contradiction. Therefore d−(v1) =
d− 1, for any v1 ∈ S. 2

Lemma 3 If S is the set of all vertices of G whose in-degree is d− 1 then |S| ≤ d.

Proof. Suppose |S| ≥ d + 1. Then there exist vi ∈ S such that d−(vi) = d − 1,
for i = 1, 2, . . . , d + 1. The in-excess σ− =

∑
v∈S(d− d−(v)) ≥ d + 1. This implies

that |S′| ≥ 1. However, we cannot have |S′| = 1. Suppose, for a contradiction,
S′ = {x}. To reach v1 (and vi, i = 2, 3, . . . , d + 1) from all the other vertices in G,
we must have x ∈ ⋂d+1

i=1 N−(vi), which is impossible as the out-degree of x is d.
Hence |S′| ≥ 2.

Let u ∈ V (G) and u 6= vi. To reach vi from u, we must have
⋃d+1

i=1 N−(vi) ⊆
{r1(u), r2(u)}. Since the out-degree is d then |⋃d+1

i=1 N−(vi)| = d. Let r1(u) = x1

and r2(u) = x2. Without loss of generality, we suppose x1 ∈
⋃d

i=1 N−(vi) and x2 ∈
N−(vd+1). Now consider the multiset T+

k (x1). Since every vi, for i = 1, 2, . . . , d,
respectively, must reach {vj 6=i}, for j = 1, 2, . . . , d + 1, within distance at most k,
then x1 occurs three times in T+

k (x1), otherwise x1 will have at least three repeats,
which is impossible. This implies that x1 is a double selfrepeat. Since two of vi, say
vk and vl, for k, l ∈ {1, 2, . . . , d + 1}, occur in the walk joining two selfrepeats then
vk and vl are selfrepeats. Then it is not possible for the d out-neighbours of x1 to
reach vd+1. 2



Theorem 1 For d ≥ 2 and k ≥ 3, every (d, k, 2)-digraph is out-regular and almost
in-regular.

Proof. Out-regularity of (d, k, 2)-digraphs was explained in the Introduction.
Hence we only need to proof that every (d, k, 2)-digraph is almost in-regular. If
S = ∅ then (d, k, 2)-digraph is diregular. By Lemma 2, if S 6= ∅ then all vertices in
S have in-degree d− 1. This gives

σ =
∑

x∈S′
(d−(x)− d) =

∑

v∈S

(d− d−(v)) = |S| ≤ 2d.

Take an arbitrary vertex v ∈ S; then |N−(v)| = |N−
1 (v)| = d− 1. By the diameter

assumption, the union of all the sets N−
t (v) for 0 ≤ t ≤ k is the entire vertex set

V (G) of G, which implies that

|V (G)| ≤
k∑

t=0

|N−
t (v)|. (4)

To estimate the above sum we can observe the following inequality

|N−
t (v)| ≤

∑

u∈N−
t−1(v)

d−(u) = d|N−
t−1(v)|+ εt, (5)

where 2 ≤ t ≤ k and ε2 + ε3 + . . . + εk ≤ σ.

It is not difficult to see that a safe upper bound on the sum of |V (G)| is obtained
from inequality (5) by setting ε2 = σ = |S|, and εt = 0, for 3 ≤ t ≤ k; note that
the latter is equivalent to assuming that all vertices from S \ {v} are contained
in N−

k (v) and that all vertices of S
′

belong to N−
1 (v). This way we successively

obtain:

|V (G)| ≤ 1 + |N−
1 (v)|+ |N−

2 (v)|+ |N−
3 (v)|+ . . . + |N−

k (v)|
≤ 1 + (d− 1) + (d(d− 1) + |S|)(1 + d + · · ·+ dk−2)

= d + d2 + · · ·+ dk + (|S| − d)(1 + d + · · ·+ dk−2)

= Md,k − 2 + (|S| − d)(1 + d + · · ·+ dk−2) + 1.

But G is a digraph of order Md,k − 2; this implies that

(|S| − d)(1 + d + · · ·+ dk−2) + 1 ≥ 0

(|S| − d)
dk−1 − 1

d− 1
+ 1 ≥ 0

|S| ≥ d− d− 1
dk−1 − 1



As 0 < d−1
dk−1−1

< 1, whenever k ≥ 3 and d ≥ 2, it follows that |S| ≥ d. Since
1 ≤ |S| ≤ d. This implies |S| = d. 2

We conclude with a conjecture.

Conjecture 1 All digraphs of defect 2 are diregular for maximum out-degree d ≥ 2
and diameter k ≥ 3.

References
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