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Abstract: In this paper we consider the problem of how to construct directed graphs
with given maximum out-degree and diameter. To deal with this problem, we describe
several construction techniques. These fall into three broad categories, namely, algebraic
specification, expansion and reduction methods.
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1. Introduction

One of the best known problems in extremal directed graphs is the so-called degree/diameter
problem: For given numbers d and k, construct a digraph of maximum out-degree d and di-
ameter ∑ k, with the largest possible number of vertices nd,k. In other words, find

N(d, k) = max{n : G(n, d, k) 6= ;}.

A straightforward general upper bound on the maximum order nd,k of a directed graphs
(digraph) of maximum degree d and diameter k is the Moore bound Md,k for directed graphs.

nd,k ∑ Md,k = 1 + d + d2 + · · · + dk

=

(
dk+1°1

d°1 if d > 1
k + 1 if d = 1

The equality nd,k = Md,k holds only when d = 1 or k = 1 [19][17], and hence in all other
cases the upper bound can be lowered by 1.

Case k = 2. It is well known that the bound Md,2°1 can be achieved for all d ∏ 2 by line
digraphs of complete digraphs of order d + 1. The existence of digraphs of Md,2 ° 1 vertices,
other than the line digraphs, has been studied in [8][3][5].

Case k ∏ 3. In general, it is not known whether or not Md,k ° 1 is attainable. The
existence of digraphs of degree d, diameter k ∏ 3 and order Md,k ° 1 has been studied and
several necessary conditions have been given in [3]–[5]. For degree d = 2, it was shown in [13]
that M2,k ° 1 is not attainable. For degree d = 3, it was proved that digraphs with M3,k ° 1
nodes do not exist [7]. Moreover, it was shown in [15] that M2,k ° 2 cannot be attained for
k ∏ 3.

Hence in many cases (depending on k and d) the upper bound on nd,k is actually 2 or 3
less than the Moore bound. But apart from that, no other upper bounds on nd,k are known.



A general lower bound on the largest order nd,k for the degree/diameter problem is given
by Kautz digraphs K(d, k) [20] of order dk +dk°1; these digraphs can be obtained by (k° 1)-
fold iteration of the line digraph construction applied to the complete digraph of order d + 1.
It is also known that n2,4 = 25 (which implies that n2,j ∏ 25£ 2j°4 for j ∏ 4 by the iterated
line digraph construction); the corresponding digraph of order 25 was found by Alegre.

In view of the huge gap between the Moore bound and the best lower bound, much eÆort
has been spent in generating large digraphs of given degree and diameter. In the next section
we give an overview of construction techniques for large digraphs. Finally, in the last section
we list open problems in the degree/diameter problem area for digraphs.

2. Construction Techniques for Large Directed Graphs

In general, Slamin [18] classified the techniques of constructing large digraphs into three
classes.

• Algebraic specification. By algebraic specification we mean that a digraph is ob-
tained by using a construction technique specified by some algebraic formula. Con-
struction techniques that can be classified as algebraic specifications include generalised
de Bruijn digraphs and generalised Kautz digraphs.

• Expansion method. By expansion method we mean that a new digraph is obtained
from another digraph of smaller order according to some specified rules. In this way,
we start from a base digraph, then follow the procedure to obtain a new digraph with
order larger than that of the original digraph. The construction techniques that can be
classified as expansion methods are line digraphs and partial line digraphs, de Bruijn
and Kautz digraphs on alphabets and voltage assignments.

• Reduction method. Using a reduction method, we start from a digraph then follow
some procedure to obtain a new digraph with order smaller than that of the original
digraph. The construction techniques that can be classified as reduction methods are
digon reduction and vertex deletion scheme.

2.1 Generalised de Bruijn and Kautz Digraphs

Imase and Itoh [11] constructed digraphs for given arbitrary order n and out-degree d,
1 < d < n, by the following procedure. Let the vertices of digraphs be labeled by 0, 1, ..., n°1.
A vertex u is adjacent to v, if

v ¥ du + i (mod n), i = 0, 1, ..., d° 1.

For example, Figure 1 shows the digraph of order n = 9, out-degree d = 3 and diameter
k = 2, obtained from this construction. Note that when n = dk, the digraphs obtained from
this construction are isomorphic to the de Bruijn digraphs of degree d and diameter k.

Miller [12] gave a construction technique which is generalised Kautz digraph for given
arbitrary order n and out-degree d, for 1 < d < n. The technique is using the following
procedure. Let the vertices of digraphs be labeled by 0, 1, ..., n° 1. A vertex u is adjacent to
v, if

v ¥ °du + i (mod n), i = 0, 1, ..., d° 1.
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Figure 1: Generalised de Bruijn digraphs G 2 G(9, 3, 2).

The digraph in Figure 2 is obtained from the construction for n = 9 and d = 2. Note that
when n = dk + dk°1, the digraphs obtained from this construction are isomorphic to the
Kautz digraphs of degree d and diameter k.
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Figure 2: Generalised Kautz digraphs G 2 G(9, 2, 3).

2.2 Line Digraphs and Partial Line Digraphs

Let G = (V,A) and let N be the multiset of all walks of length two in G. The line digraph
of a digraph G, L(G) = (A,N), that is, the set of vertices of L(G) is equal to the set of arcs
of G and the set of arcs of L(G) is equal to the set of walks of length two in G. This means
that a vertex uv of L(G) is adjacent to a vertex wx if and only if v = w.

The order of the line digraph L(G) is equal to the number of arcs in the digraph G. For a
diregular digraph G of out-degree d ∏ 2, the sequence of line digraph iterations L(G), L2(G) =
L(L(G)), ..., Li(G) = L(Li°1(G)), ... is an infinite sequence of diregular digraphs of degree d.
Figure 3 shows an example of a digraph and its line digraph.

Line digraphs do not have expandability properties since the order of resulting digraph
comes out with a composite number. To resolve this drawback of the line digraph technique,
Fiol and Llado [10] presented a revised technique, namely, the partial line digraph.

Let G be a digraph with vertex-set V and arc-set A. Let A0 Ω A be a subset of arcs which
are incident to all vertices of G. A digraph LG is said to be a partial line digraph of G if
its vertices represent the arcs of A0 and a vertex uv is adjacent to the vertices v0w, for each
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Figure 3: Digraphs G 2 G(3, 2, 1) with its line digraphs L(G) 2 G(6, 2, 2) and L2(G) 2
G(12, 2, 3).

w 2 N+(v) in G, where

v0 =

8
>><

>>:

v, if uw 2 V (LG)

v00, for any v00 2 N°(w) in G

such that v00w 2 V (LG) otherwise

For example, Figure 4(a) shows the digraph G with a vertex-set V = {0, 1, 2, 3, 4, 5} and
an arc-set

A = {01, 03, 12, 15, 20, 23, 34, 35, 40, 41, 52, 54}.

Let A0 = {01, 03, 12, 15, 20, 23, 34, 35, 41, 52, 54} (shown as solid lines in Figure 4(a)) is a
subset of A. Then a partial line digraph LG of the digraph G has the vertex-set

V (LG) = {01, 03, 12, 15, 20, 23, 34, 35, 41, 52, 54}

as shown in Figure 4(b). In this example, vertices 34 and 54 are adjacent to vertex 20 because
the arc 40 /2 A0.
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Figure 4: Digraph G and one of its partial line digraphs.



2.3 Generalised de Bruijn and Kautz Digraphs on Alphabets

Fiol, Llado and Villar [9] constructed generalisations of de Bruijn digraphs using their
representation as digraphs on alphabets, that is, digraphs whose vertices are represented by
words from a given alphabet and whose arcs are defined by an adjacency rule that relates
pairs of words. Let Br(d, k) be a de Bruijn digraph of degree d and diameter k, then Br(d, k)
has the set of vertices V (Br) = ≠k where ≠ = {x|x 2 words} and |≠| = d and the adjacency:
a vertex x1x2 . . . xk adjacent to the vertices x2 . . . xkxk+1 for xk+1 2 ≠.

The generalisation of Kautz digraphs was defined as follows. Consider the vertex-set
V (Ka(d, k)) of Kautz sequences or words of length k without consecutive letters on an alpha-
bet X, |X| = d + 1. Let u = x1x2...xk 2 V (Ka(d, k)) and ū be a Kautz sequence obtained
from u by deleting the first letter of u, that is, ū = x2x3...xk 2 V (Ka(d, k ° 1)). Let n be
any integer such that dk°1 + dk°2 < n ∑ dk + dk°1. A digraph H(d, k, n) has vertex-set
V Ω V (Ka(d, k)), such that {ū|u 2 V } = V (Ka(d, k ° 1)) and a vertex u = x1x2...xk is
adjacent to the vertices v = x02x3...xkÆ for every Æ 2 X, Æ 6= xk, where

x02 =

8
>><

>>:

x2, if x2x3...xkÆ 2 V

x002, for any x002 such that
x002x3...xkÆ 2 V , otherwise

Figure 5 shows the digraph H(2, 3, 10) with vertex-set

{010, 012, 020, 021, 101, 102, 120, 121, 201, 210}.

In this example, vertices 020 and 120 are adjacent to vertex 102, vertices 021 and 121 are
adjacent to vertex 012 because vertices 202, 212 /2 V .
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Figure 5: Example of generalised Kautz digraph on alphabet.



2.4 Voltage Assignments

Baskoro, Branković, Miller, Plesńık, Ryan and Širáň [2] introduced the use of voltage
assignments to construct large digraphs as described below. Let G be a digraph and A(G)
be the set of arcs of G. Let ° be an arbitrary group. Any mapping Æ : A(G) ! ° is called a
voltage assignment. The lift of G by Æ, denoted by GÆ, is the digraph defined as follows: the
vertex-set V (GÆ) = V (G) £ °, the arc-set A(GÆ) = A(G) £ °, and there is an arc (a, f) in
GÆ from (u, g) to (v, h) if and only if f = g, a is an arc from u to v, and h = gÆ(a).

For example, Figure 6 shows a digraph G and its lift GÆ with ° = Z6 and the voltage
assignment Æ(a) = Æ(d) = 5, Æ(b) = 0, Æ(c) = Æ(f) = 1 and Æ(e) = 2. Informally, voltage
assignment technique enables us to “blow up” a given base digraph G in order to obtain a
larger digraph (called a “lift”) whose incidence structure depends on both G and a mapping
(“voltage assignment”) from the edge set of G into a finite group. Since the lift is completely
determined in terms of the original base digraph G and the voltage assignment Æ, this type
of construction is suitable for handling large digraphs in terms of the properties of the base
digraph and the assignment.
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Figure 6: Digraph G and its lift GÆ.

2.5 Digon Reduction and Vertex Deletion Scheme

Miller and Fris [14] gave a construction technique for digraphs of degree 2 with minimum
diameter using digon reduction scheme which they combined with line digraph iterations. Let
G 2 G(n, d, k) be a digraph of order n, out-degree d = 2 and diameter k which contains p

digons. Then G0 2 G(n° 1, d, k0), for k0 ∑ k, can be obtained from G by ‘gluing’ two vertices
which share a digon. Figure 7 shows the digraph G0 which is obtained from digraph G by
gluing two vertices y and z.

Miller and Slamin [16] also constructed digraphs using vertex deletion scheme. Suppose
that N+(u) = N+(v) for any vertex u, v 2 G. Let G1 be a digraph deduced from G by
deleting vertex u together with its outgoing arcs and reconnecting the incoming arcs of u

to the vertex v. Obviously, the new digraph G1 has maximum out-degree the same as the
maximum out-degree of G. It can be proved that the diameter of G1 is at most k.



Figure 8(a) shows an example of digraph G 2 G(12, 2, 3) with the property that some
vertices have identical out-neighbourhoods. For example, N+(7) = N+(11). Deleting vertex
12 together with its outgoing arcs and then reconnecting its incoming arcs to vertex 7 (since
N+(7) = N+(11)), we obtain a new digraph G1 2 G(11, 2, 2) as shown in Figure 8(b).
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Figure 7: Digraphs G 2 G(12, 2, 3) and G0 2 G(11, 2, 3).
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Figure 8: Digraph G 2 G(12, 2, 3) and G1 2 G(11, 2, 3) obtained from G.

3. Open Problems

A frequent goal in constructions of large digraphs with given properties is to keep the
diameter as small as possible. The voltage assignment technique seems a very promising
technique for finding large digraphs. Preliminary results regarding the voltage assignment
technique are extremely encouraging, see [6] and [1]. In [6] the authors presented an upper
bound on the diameter of lifted digraphs, applicable to a fairly general class of base digraphs
and general groups.

Table 1-4 summarise our knowledge of best current lower bound Nl(d, k) and upper bound
Nu(d, k) for 2 ∑ k ∑ 10 and d = 2, 3, 4 and 5. The tables also show the range of the potential
larger orders nd,k. The huge gap between the upper bound and the best lower bound strongly
represent an open problem.



Using the voltage assignment technique or some other established technique, possibly with
the aid of computers, there is a good chance that a new digraphs with larger order can be
found.

k Lower bound Nl(2, k) Upper bound Nu(2, k) Potensial Larger Order

2 6 6 °
3 12 12 °
4 25 28 26,27,28
5 50 60 n2,k = Nl(2, k) + i, i = 1 . . . 10
6 100 124 n2,k = Nl(2, k) + i, i = 1 . . . 24
7 200 252 n2,k = Nl(2, k) + i, i = 1 . . . 52
8 400 508 n2,k = Nl(2, k) + i, i = 1 . . . 108
9 800 1,020 n2,k = Nl(2, k) + i, i = 1 . . . 220
10 1,600 2,044 n2,k = Nl(2, k) + i, i = 1 . . . 444

Table 1: Potential orders nd,k for out-degree d = 2.

k Lower bound Nl(3, k) Upper bound Nu(3, k) Potensial Larger Order

2 12 12 °
3 36 38 37, 38
4 108 119 n3,k = Nl(3, k) + i, i = 1 . . . 11
5 324 362 n3,k = Nl(3, k) + i, i = 1 . . . 38
6 972 1,091 n3,k = Nl(3, k) + i, i = 1 . . . 119
7 2,916 3,278 n3,k = Nl(3, k) + i, i = 1 . . . 362
8 8,748 9,839 n3,k = Nl(3, k) + i, i = 1 . . . 1, 091
9 26,244 29,522 n3,k = Nl(3, k) + i, i = 1 . . . 3, 278
10 78,732 88,571 n3,k = Nl(3, k) + i, i = 1 . . . 9, 839

Table 2: Potential orders nd,k for out-degree d = 3.

k Lower bound Nl(4, k) Upper bound Nu(4, k) Potensial Larger Order

2 20 20 °
3 80 84 81, 82, 83, 84
4 320 340 n4,k = Nl(4, k) + i, i = 1 . . . 20
5 1,280 1,364 n4,k = Nl(4, k) + i, i = 1 . . . 84
6 5,120 5,460 n4,k = Nl(4, k) + i, i = 1 . . . 340
7 20,480 21,844 n4,k = Nl(4, k) + i, i = 1 . . . 1, 364
8 81,920 87,380 n4,k = Nl(4, k) + i, i = 1 . . . 5, 460
9 327,680 349,524 n4,k = Nl(4, k) + i, i = 1 . . . 21, 844
10 1,310,720 1,398,100 n4,k = Nl(4, k) + i, i = 1 . . . 87, 380

Table 3: Potential orders nd,k for out-degree d = 4.



k Lower bound Nl(5, k) Upper bound Nu(5, k) Potensial Larger Order

2 30 30 °
3 150 155 151, 152, 153, 154, 155
4 750 780 n5,k = Nl(5, k) + i, i = 1 . . . 30
5 3,750 3,905 n5,k = Nl(5, k) + i, i = 1 . . . 155
6 18,750 19,530 n5,k = Nl(5, k) + i, i = 1 . . . 780
7 93,750 97,655 n5,k = Nl(5, k) + i, i = 1 . . . 3, 905
8 468,750 488,280 n5,k = Nl(5, k) + i, i = 1 . . . 19, 530
9 2,343,750 2,441,405 n5,k = Nl(5, k) + i, i = 1 . . . 97, 655
10 11,718,750 12,207,030 n5,k = Nl(5, k) + i, i = 1 . . . 488, 280

Table 4: Potential orders nd,k for out-degree d = 5.
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