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Abstract
This research had been conducted in Sampean Baru Watershed, Bondowoso-Situbondo 
Regency, Indonesia. The National Disaster Management Agency (BNPB) categorizes this 
watershed as an area that has a very high level of drought. This condition is likely to get 
worse and will have a broad impact on people’s lives if global warming continues for the 
next few years, therefore, future drought assessment is needed to assist in decision mak-
ing. This study aims to assess future drought using General Circulation Model data. The 
GCM data contains future climate change scenarios called the Representatives Concen-
tration Pathway (RCP) as results of the Fifth Assessment Report-Intergovernmental Panel 
on Climate Change (IPCC-AR5) report. GCM data containing coarse-resolution climate 
parameters are processed using downscaling techniques, so predictive rainfall data with 
the fine resolution, and local scale are obtained. The rainfall data is used in Soil and Water 
Assessment Tools (SWAT) modelling to simulate discharge at Sampean Baru watershed. 
Furthermore, the Standardized Runoff Index (SRI) method with simulated discharge used 
as input data to assess the drought severity. The results showed that the drought severity 
using SRI gives high accuracy and can be used for predictions of drought in the future. 
The drought prediction results showed that increased greenhouse gas concentrations while 
earth’s temperature on RCP scenarios have an influence the intensity of drought events and 
drought-affected areas. Scenarios of climate change based on the temperature increase con-
tained in the RCP will have a real effect on the severity of drought.
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DEM	� Digital Elevation Model
GHG	� Greenhouse gases
IPCC	� The Intergovernmental Panel on Climate Change
PDAM	� The Regional Water Supply Company
RCP	� The Representative Concentration Pathway
SD	� Statistical Downscaling
SPI	� Standardized Precipitation Index
SRES	� The Special Report on Emission Scenarios
SRI	� Standardized Runoff Index
USGS	� The United States Geological Survey

1  Introduction

Climate change should be the main concern of every human being on earth. Today, 
human sensitivity in maintaining the condition of the earth has diminished. Greenhouse 
gases (GHG) resulting from human activities (anthropogenic) are getting more and more 
numerous (Anderson et  al. 2016). It changes the composition of the GHG that make up 
the atmosphere so that in the process, sunlight that should be reflected outside the earth 
through the atmosphere becomes trapped on the earth (Kweku et  al. 2018). Sunlight 
trapped on the earth increases the earth’s temperature from its normal conditions so that 
the earth becomes warmer (global warming) (Sudarma and As-syakur 2018). Also, global 
warming affects the intensity, frequency, and duration of the rainy season and dry season in 
tropical climates (Chowdhury et al. 2016).

Global warming is predicted to continue into the next few years. In the projection of 
future climate change by IPCC-AR5, the earth’s temperature will increase along with the 
increasing concentration of GHG emissions, especially CO2 gas (IPCC 2014). Projec-
tions of future climate change are modeled in a climate change scenario which is called 
the Representative Concentration Pathway (RCP). The RCP model is divided into four 
climate change scenarios based on changes in GHG emissions and earth temperature, 
including: RCP 2.6 (CO2 concentration = 490  ppm, temperature anomaly = 1.5°); RCP 
4.5 (CO2 concentration = 650  ppm, temperature anomaly = 2.4°); RCP 6.0 (CO2 con-
centration = 850  ppm, temperature anomaly = 3.0°); and RCP 8.5 (CO2 concentra-
tion = 1370 ppm, temperature anomaly = 4.9°) (Moss et al. 2010).

As a result of climate change, drought disasters will become increasingly extreme and 
difficult to detect. In Indonesia, drought has increased in terms of intensity and distribution 
over time (Surmaini and Faqih 2016). It is consistent with the increasing concentration of 
CO2 (by 10 ppm from 2004 to 2010) and air temperatures in Indonesia (Samiaji 2011). 
Based on data from the National Disaster Management Agency (BNPB), the Sampean 
Baru watershed located in Bondowoso and Situbondo Regencies is categorized as regions 
that have very high levels of drought. Drought in this region has had an impact on water 
management in the Sampean Baru watershed. In recent years, the Regional Disaster Man-
agement Agency (BPBD) and the Regional Water Supply Company (PDAM) Bondowoso 
have collaborated in supplying clean water using water trucks in several areas experiencing 
drought. Based on clean water dropping data from BPBD and PDAM Bondowoso in 2018, 
the dropping of clean water has increased both in terms of volume and demand.

Prediction of drought due to the earth’s climate change is a necessity to be able to esti-
mate the impact and policies that will be taken in the future. Drought prediction can be 
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made by utilizing the data of the General Circulation Model (GCM) (Wigena et al. 2015). 
GCM has been widely used in conducting research related to climate change, including for 
the assessment of drought (Bayissa et al. 2018; Belayneh et al. 2014; Hwan et al. 2019), 
assessment of the hydrological cycle (Shamir et  al. 2019), predicting reservoir inflow 
(Halik et  al. 2015) and forecast rainfall in an area (Tang et  al. 2016). GCM is data that 
contains parameters of world climate (Mekonnen and Disse 2018). The weakness of GCM 
is that data is still global and has a coarse-resolution so that it cannot be used directly in 
simulations (Le et  al. 2018). The relationship between global climate and local climate 
needs to be determined in advance by using empirical functions, so that global climate data 
can be used at regional/local scale simulations.(Halik and Anwar 2017).

Downscaling techniques have been developed to overcome the problem of the resolution 
roughness of GCM data. Downscaling techniques are classified into three types, namely: 
(1) Statistical downscaling, (2) Dynamical downscaling, and (3) Mixed Statistical–Dynam-
ical Downscaling (Wilby and Dawson 2007). Statistical downscaling is a type of downscal-
ing whose processing is cheap and does not require large computational memory (Chen 
et al. 2011). Besides, spatial and temporal variations in climate variables, especially rain-
fall, can be effectively explained through statistical downscaling (Sharma et al. 2017). Sev-
eral statistical downscaling methods have been used in research on climate change, one 
of which is the Artificial Neural Network (ANN). ANN is very effective in making fore-
casts that are non-linear when compared to ARIMA (Nayak et  al. 2013), SDSM (Cam-
pozano et al. 2016), Multiple Linear Regression (MLR) (Riad et al. 2004) and K-Nearest 
(Eskandarinia et al. 2010). ANN has been used in research on drought prediction (Halik 
and Anwar 2017).

The Standardized Runoff Index (SRI) is one of the hydrological drought indexes that 
is needed to determine drought severity (Shukla and Wood 2008). SRI is used to meas-
ure the severity of drought based on surface runoff in a watershed and is very suitable 
in describing the effects of global climate change and land use (Maskey and Trambauer 
2015). The drought model based on surface water runoff can complement and improve 
existing drought indices and future drought levels.

Based on the problems discussed earlier, the purpose of this study is to assess the 
impact of climate change on drought in the Sampean Baru watershed based on GCM data. 
This research is expected to be able to contribute to overcoming drought problems in the 
Sampean Baru watershed and as input for relevant agencies in making policies related to 
mitigation and adaptation to climate change in the future.

2 � Data and method

2.1 � Study area

This research was conducted in the Sampean Baru watershed in Bondowoso Regency, 
East Java. Geographically, the Sampean Baru watershed which has an area of 1260 Km2, 
is located between 7° 48′–7° 58′S and 114° 40′–114° 48′E. The watershed’s altitude is 
between 5 and 2444  m above sea level. The watershed is around the Equator so that it 
directly affects the climate conditions. It is a tropical area which is influenced by mon-
soon climate. The dry season occurs from June to October and the rainy season occurs 
from November to May. The average temperature ranged from 27 to 30 °C. The average air 
humidity ranges from 62 to 69%. The average rainfall in Bondowoso Regency is 5058 mm/
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year. Sampean baru reservoir is the main outlet of watershed. This reservoir and the weirs 
provide irrigation water in the dry season for rice fields with an area of 8613 Ha. 
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2.2 � Data

2.2.1 � Observation data

This study uses observational data managed by agencies in Bondowoso Regency. The daily 
rainfall and discharge data for 30-year period starting from 01/01/1988 to 31/12/2018 man-
aged by the Water Resources Public Works Office of Bondowoso are used to predict rainfall 
from GCM output. This rainfall data is available at 28 recording stations spread across the 
study area. The rainfall area is processed and analyzed using aritmethic average method. 
The observed monthly temperature data was obtained from Meteorology Climatology and 
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Geophysics Council (BMKG) Banyuwangi. This data is used as an input in any stages of 
discharge simulation. Digital Elevation Model (DEM) data, soil characteristics, and land 
use are used to simulate river flow rates. ASTER 30 M DEM data obtained from the United 
States Geological Survey (USGS) website is used to perform earth surface relief imaging. 
Land use data were obtained from the Geospatial Information Agency (BIG) of Indone-
sia. Clean water-dropping data for 2018 obtained from the BPBD are used to control the 
drought simulation.

2.2.2 � Climate projection data

The scenario of future climate change projections has been mathematically modelled. 
Projections of future climate change are modelled in a climate change scenario which 
is called the Representative Concentration Pathway (RCP). The RCP model is divided 
into four climate change scenarios based on changes in GHG emissions and earth tem-
perature, including: RCP 2.6 (CO2 concentration = 490 ppm, temperature anomaly = 1.5°); 
RCP 4.5 (CO2 concentration = 650  ppm, temperature anomaly = 2.4°); RCP 6.0 (CO2 
concentration = 850  ppm, temperature anomaly = 3.0°); and RCP 8.5 (CO2 concentra-
tion = 1370 ppm, temperature anomaly = 4.9°) (Moss et al. 2010). These RCPs contained 
in GCM data. The General Circulation Model (GCM) is a representation of important 
processes of the climate system on earth (IPCC 2014). GCM has an output form of grids 
measuring 100–250  km, according to latitude and longitude (Halik and Anwar 2017). 
GCM is used to simulate weather, climate understanding, and climate change studies due 
to changes in CO2 (Mechoso et al. 2015). According to Smith and Dennis (1989), GCM 
has advantages with the scenario approach, namely: (1) The model can be used to estimate 
global climate change in response to an increase in GHG. (2) Estimation of climate vari-
ables (such as rainfall, temperature, and humidity) physically according to physical models. 
(3) Estimates of weather variables (such as wind, radiation, cloud cover, and soil moisture) 
are sufficient to enter the model. (4) It can simulate the diversity of the daily cycle climate. 
However, this GCM model also has limitations, including (1) Spatial resolution on a global 
scale, resulting in gaps between global, regional, and local climate simulation results. (2) 
This model is difficult to match with ocean circulation models. (3) Atmospheric-biosphere 
feedback processes are not fulfilled.

In the fifth assessment report, the IPCC has succeeded in overcoming GCM’s weak-
nesses in coupling the ocean circulation model (IPCC 2014). Various developed countries 
have developed GCM models with different spatial resolutions. This study uses GCM 
CSIRO Mk 3.6.0 with a resolution of 1.9° × 1.9° developed by Australia because it had 
been applied to assess meteorological drought in Sampean Baru watershed and gave a good 
result (Anwar et al. 2014). It also has a coarse spatial resolution. The spatial resolution of 
GCM data can be overcome using downscaling techniques.

The downscaling model is a method developed to bridge between global/large-scale 
atmospheric data (temperature, humidity, wind speed, etc.) with local climatic conditions 
(rainfall) at specific intervals (ARCC 2014). This model is based on the view that global-
scale climate influences regional/local-scale climate (Berliana and Sutikno 2007). The 
problem of low resolution in GCM data can be overcome by using downscaling techniques 
(Jadmiko and Murdiyarso 2017). Downscaling models are divided into two types, namely: 
Dynamic Downscaling (DD) Model and Statistical Downscaling (SD) Model (Sharma 
et  al. 2017). DD model is a downscaling process that is carried out on a regional scale 
grid following changes in the same predictor variables on a global scale grid (GCM) to 
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simulate a local scale climate (Shamir et al. 2019). The limitation of the DD model is that 
it requires a long computational time to get results with good resolution (Le et al. 2018). 
The SD model is a downscaling approach based on empirical relationships between several 
variables (predictors) on a global/large-scale grid (GCM) and smaller-scale local (predic-
tor) variables (Chen et al. 2011). Predictors used in this study are shown in Table 1. One of 
the advantages of the SD model compared to the DD model is the fast computing process 
in assessing the impact of local climate change (Wilby 2002). Therefore, this study uses the 
SD model.

Artificial Neural Networks (ANN) is the development of an empirical relationship 
or transfer function of SD between predictor and predictand variables by the non-linear 
regression method (Halik and Anwar, 2017). ANN is often used in modelling downscal-
ing of precipitation data because of ANN’s ability to overcome the non-linear relationship 
problems of each meteorological–climatological parameter and the nonlinearity of time 
series data (Retalis et al. 2017; Taiwo et al. 2018; Salimi et al. 2019). ANN gives better 
downscaling results compared to the SD model linear regression method such as ARIMA 
(Nayak et al. 2013), SDSM (Campozano et al. 2016), Multiple Linear Regression (MLR) 
(Riad et al. 2004) and K-Nearest (Eskandarinia et al. 2010) (Fig. 1).

The concept of ANN is designed to resemble the work system of the human brain. It 
makes ANN have the ability to learn and adapt to new things (Retalis et al. 2017). Like 
the structure of neurons in the human brain, ANN has artificial neurons, which are simple 
mathematical models. In the process, the information will be received by the input of the 
neuron and given weight. Then the artificial neuron body processes the input data through 
the transfer function. The results of processing are displayed in the neuron output section 
(Krenker et al. 2011). The ANN approach is performed on MATLAB software. The ANN 
Architecture is shown in Fig. 2. A simple mathematical model in the process of artificial 
neurons is expressed in the equation below:

where xi = input value, wi = weight value, b = bias, F = transfer function, y(k) = output value.

2.3 � Drought indices

Drought is a natural disaster that occurs slowly. It raises obstacles in determining the 
beginning and end of a drought, the area affected, and the severity (Wilhite 2000). Over 
time, several drought indexes have been developed to be applied to various types of 

(1)y(k) = F

(

m
∑

t=0

wi(k) ⋅ xi(k)+b

)

Table 1   GCM parameters 
as predictors in statistical 
downscaling

No. Predictor Surface Atmosphere height

500 hPa 850 hPa

1 Relative humidity – rhum 500 rhum850
2 Specific humidity – shum500 rhum850
3 Precipitation water prec_wtr – –
4 Zonal velocity component uwd uwd500 uwd850
5 Meridional velocity component vwd vwd850
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drought (Hwan et al. 2019). One of the drought indices used in this study is the Standard-
ized Runoff Index (SRI). This drought index is used to determine the severity of hydrologi-
cal drought types. SRI applies the concept of the Standardized Precipitation Index (SPI), 
where the accumulated surface flow discharge data for a certain period recorded on a dis-
charge station is used as input data. There are some steps to calculate SRI: (1) The time 
series of runoff is obtained from the simulation. Simulation runoff has the same probability 

(c)

(a)

(b)

Fig. 1   a Sampean Baru watershed map as a research location; b the complex geometry of the sampean 
river; and c The Sampean Baru watershed outlet is the Sampean Baru Dam

Fig. 2   ANN Architecture
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distribution as observation runoff; (2) Data with the same distribution are used to calculate 
the cumulative probability of runoff under study; (3) The cumulative probability is con-
verted into a normal distribution using the gamma distribution (Shukla and Wood 2008). 
The SRI-6 value on each discharge station were mapped using the IDW spatial interpola-
tion method. The SRI and SPI drought categories are similar. It is shown in Table 2. Arc-
SWAT 2012.10.3.19 model is used to simulate surface flow discharge. The Soil and Water 
Assessment Tool (SWAT) is a comprehensive, semi-distributed, continuous-time, process-
based model (Abbaspour et al. 2015; Neitsch et al. 2005). Model calibration and validation 
are needed to determine the accuracy of the model. The calibration process is carried out 
by determining the value of the model parameters so that the simulation results can approx-
imate the observation data. In this study, manual calibration of SWAT parameter model 
was applied. The validation process is based on a model with calibrated parameters by 
entering other data that is not the same as the calibration data, then the simulation results 
are compared with the observation data (Arnold et al. 2012). The purpose of validation is 
to prove that the model provides accurate results according to research standards, so that 
the model can be used to perform simulations with different scenarios (Marek et al. 2016). 
The accuracy of the model in this study is based on the values of R2 and NSE (Almeida 
et al. 2018) is shown in Table 3.

3 � Result and discussion

3.1 � Statistical downscaling model

The Rainfall-SD model uses ANN assistance. The purpose of this modelling is to get rain 
predictions for the next 30 years. ANN architecture uses a multilayer perceptron network 
and backpropagation learning methods. Backpropagation is a supervised learning method 
based on input and output values. The average observation rainfall data for the Sampean 
Baru watershed area is used as the target data (predictants), while the atmospheric circu-
lation data for NCEP/NCAR Re-Analysis is used as input data (predictors). In order for 

Table 2   SRI drought categories SRI value Drought category

0 to −0.99 Normal
−1 to −1.49 Moderate dry
−1.5 to −1.99 Severe dry
−2 and less Extreme dry

Table 3   Classification of 
accuracy result (Adapted from 
Almeida et al. 2018)

No. NSE R2 Category

1 0.75 < NSE ≤ 1.00 0.75 < NSE ≤ 1.00 Very good
2 0.65 < NSE ≤ 0.75 0.65 < NSE ≤ 0.75 Good
3 0.36 < NSE ≤ 0.65 0.50 < NSE ≤ 0.65 Satisfactory
4 0.00 < NSE ≤ 0.36 0.25 < NSE ≤ 0.50 Bad
5 NSE ≤ 0.00 NSE ≤ 0.25 Inappropriate
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NCEP/NCAR Re-Analysis data to be processed in a downscaling model, the local scale 
needs to be processed and represented in the form of a grid domain. In determining the 
optimal grid domain there are no special provisions. Correlation results on various NCEP/
NCAR atmospheric circulation data grid domains can be seen in Table 4 and Fig. 3. The 
result of the highest correlation calculation shows that the optimal NCEP/NCAR grid 
domain that can be used in the ANN process is a 4 × 4 grid domain with a correlation value 
of 6.09. Determination of the CSIRO Mk 3.6.0 grid domain is done by adjusting the coor-
dinate position to the NCEP/NCAR 4 × 4 grid domain. The adjustment results show that 
the CSIRO Mk 3.6.0 grid domain used is a 6 × 6 grid domain which can be seen at Fig. 4.

Predictor data contained in the optimal NCEP/NCAR grid is used in the ANN process. 
The ANN training phase was carried out in the monthly rainy period of 1988–2009, while 
the model validation phase was 2010–2014 and the testing phase was 2015–2018. This 
division of training and validation periods is a technique to achieve an optimal solution to 
overfitting. While the testing period is only to test the ability of the resulting ANN. The 
activation functions considered include: linear functions (purelin), non-linear functions 
(log-sigmoid and tan-sigmoid). The selection of the activation function from the input layer 
to the hidden layer and to the output layer as well as the optimal number of units in the hid-
den layer is based on the lowest MSE (Mean Square Error) value. An update of the weights 
using the Levenberg-Marquadt method. The results of ANN running show that the optimal 
ANN architecture is achieved with thirty hidden layer neurons with activation functions of 

Table 4   Correlation results for 
Each NCEP/NCAR Grid domain

No Grid domain Correlation

1 2 × 2 5.99
2 4 × 4 6.09
3 6 × 6 5.07
4 8 × 8 4.98
5 10 × 10 4.29

Fig. 3   Research sites and NCEP/NCAR gid domains

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


1714	 Natural Hazards (2022) 112:1705–1726

1 3

tansig in the hidden layer and purelin in the output layer. The coefficient determination in 
each phase close to 1 that can be seen in Table 5. It means that the artificial rainfall using 
NCEP/NCAR Re-Analysis data during 1988–2018 is approximate to observation rainfall 
data.

The ANN model of rainfall due to climate change uses CSIRO Mk 3.6.0 atmospheric 
circulation data. This GCM data has three climate change scenarios based on an increase in 
greenhouse gas emissions or CO2 gas in the atmosphere by 1% per year, namely RCP 4.5, 
RCP 6.0, and RCP 8.5. The RCPs data are used as predictors. ANN training was carried 
out on monthly rainfall for the 2006–2016 period, while the validation period was 2017 and 
the testing period was 2018. The activation functions considered include: linear functions 
(purelin), non-linear functions (log-sigmoid and tan-sigmoid). The selection of the activa-
tion function from the input layer to the hidden layer and to the output layer as well as the 
optimal number of units in the hidden layer is based on the lowest MSE (Mean Square 
Error) value. The optimal ANN architecture is achieved with 30 hidden layer neurons with 
activation functions of tansig in the hidden layer and purelin in the output layer. An update 
of the weights using the Levenberg-Marquadt method. The results of the ANN process on 
each GCM can be seen in Table 5. In general, the ANN model gives good results. It can 

Fig. 4   CSIRO Mk 3.6.0 grid domains

Table 5   ANN model reliability test on NCEP/NCAR Reanalysis and CSIRO Mk.3.6.0 scenarios

Phase NCEP/NCAR Re-
analysis

CSIRO Mk 3.6.0

RCP 4.5 RCP 6.0 RCP 8.5

R RMSE R RMSE R RMSE R RMSE

Training 0.89 61.27 0.88 61.71 0.87 61.40 0.89 60.91
Validation 0.91 53.04 0.93 70.60 0.96 52.89 0.96 38.51
Testing 0.94 55.01 0.98 28.63 0.81 67.21 0.88 57.83
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be seen from the coefficient of determination in each of RCPs producing values that are 
close to 1. The average monthly rainfall plot ANN model gives results that are close to the 
monthly average rainfall plots of observation can be seen in Fig. 5.

The results of downscaling process for GCM data in 2006–2018 are the basis or refer-
ence for predicting rainfall until 2050. The GCM data in 2019–2050 is used as an input in 
ANN process. The results show that ANN can model rainfall predictions using GCM data. 
Comparison between monthly rainfall prediction results for the next 30 years (2019–2050) 
uses GCM data and monthly observed rainfall data can be seen in Fig. 6. The predicted 
monthly rainfall of RCP 6.0 has a trend-line that resembles the observed monthly rain-
fall compared to the other RCPs. The predicted monthly rainfall of RCP 6.0 has a slightly 
higher intensity than the observed monthly rainfall except for March. In RCP 6.0, the high-
est and lowest predicted monthly rainfall will occur in January and August. The predicted 
monthly rainfall of RCP 4.5 has a different trend from the observed monthly rainfall. Pre-
dictions of the highest and lowest rainfall occur in December and September. The predicted 

Fig. 5   Graphic plot of observation and CSIRO Mk 3.6.0 rainfall in 2006–2018

Fig. 6   Predicted monthly rainfall based on CSIRO Mk 3.6.0 data: a RCP4.5 Scenario; b RCP6.0 Scenario; 
c RCP8.5 Scenario
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monthly rainfall of RCP 8.5 also has a different trend-line from the observed monthly rain-
fall. The increase in rainfall intensity occurred in April where the trend line experienced a 
slope from January to March. Predictions of the highest and lowest rainfall occur in Janu-
ary and September.

3.2 � Drought indices model

In the SRI drought model, hydrological modelling is an important component to get the 
temporal river discharge at each observation station. SWAT modelling divides the Sam-
pean Baru watershed into 21 sub-watersheds with river outlets in the Sampean Baru Dam. 
In the first stage, discharge simulation is carried out using observation rainfall data and 
observed temperature data as an input. The results of the simulation before calibration 
show that discharge simulation is still not close to the observation discharge. This can be 
seen from the low NSE value which can be categorized as bad, even though R2 value has 
good results. The calibration process needs to be carried out through a process of selecting 
a combination of parameters so that the coherence between the observed discharge and the 
simulated discharge increases. The calibration process was carried out on simulated dis-
charge data from 1988 to 2007. Some of the parameters selected in the calibration process 
can be seen in Table 6. Discharge simulation after calibration shows good results that can 
be seen as an increase in the value of R2 and NSE. This also shows that the selected param-
eter values are able to represent the actual conditions in the field and are suitable for use in 
the validation process. The validation process was carried out on simulated discharge data 
from 2008 to 2018. The validation process shows satisfactory results where the value of 
R squared and NSE is above 0.7. It also shows that the model provides consistent results 
according to the established standards. The result of calibration and validation process are 
presented in Table 7 and Fig. 7.

The validated model is used to predict the discharge simulation. The predictive 
discharge simulation uses NCEP/NCAR Reanalysis artificial and GCM rainfall data 
as input data. Discharge simulation using artificial rainfall NCEP/NCAR Reanalysis 
in 1988–2018 gave R Square and NSE results with very good categories. The same 
results were also shown in the discharge simulation using GCM artificial rainfall in 
2006–2018. The discharge simulation on each RCP gives R Square and NSE results 
with very good category. It is shown in Fig. 8 that the model responds well to artificial 
rainfall so that it possible to perform discharge prediction. The reliability test results 
are presented in Table 8. Comparison between predicted monthly discharge results for 
the next 30  years (2019–2050) uses GCM data and monthly observed discharge data 
can be seen in Fig. 9. The predicted monthly discharge of RCP 6.0 has a trend-line that 
resembles the observed monthly discharge compared to the other RCPs. The predicted 

Table 6   The reliability test of discharge simulation

Model performances Input data

Observation rainfall

Before calibrating After calibrating Validating

Coefficient of performance (R2) 0.7051 0.7528 0.7993
Nash–Sutcliffe Efficiency (NSE) 0.2437 0.7422 0.7782
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Table 7   Parameters used from SWAT Model and its calibrated value

No Parameters Meaning Initial value Fitted value

1 CN2 Moistures condition II number curve 35–98 81.2
2 ALPHA_BF Baseflow reccession constant 0.048 0.048
3 GWDELAY Delay time for aquifer recharge (days) 31 155.3
4 GWQMN Threshold water level in shallow aquifer for baseflow 

(mmH2O)
1000 3366.7

5 RCHRG_DP Aquifer percolation coefficient 0.05 0.045
6 SOL_K Saturated hydraulic conductivity of first layer (mm/hr) 4.93 9.367
7 SOL_AWC​ Available water capacity 0.178 0.1246
8 ESCO Soil evaporation compensation coefficient 0.95 0.665
9 HRU_SLP Average slope steepness (m/m) 0.046 0.0644
10 SLSSUBBSN Average slope length (m) 91.463 100.6093
11 CH_K2 Effective hydraulic conductivity of channel (mm/hr) 0 0
12 CH_N2 Manning’s "n" value for the main channel 0.014 0.0014

Fig. 7   Discharge simulation using observation rainfall as an input a before calibration; b after calibration 
and validation

Fig. 8   Discharge simulation using NCEP/NCAR Reanalysis and CSIRO Mk 3.6.0 rainfall as an input

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


1718	 Natural Hazards (2022) 112:1705–1726

1 3

monthly discharge of RCP 6.0 has a slightly higher intensity than the observed monthly 
discharge. In RCP 6.0, the highest and lowest predicted monthly discharge will occur 
in February and September. The predicted monthly discharge of RCP 4.5 has a differ-
ent trend from the observed monthly discharge. Predictions of the highest and lowest 
discharge occur in February and September. The predicted monthly discharge of RCP 
8.5 also has a different trend-line from the observed monthly discharge. The increase 
in discharge intensity occurred in April where the trend line experienced a slope from 
January to March. Predictions of the highest and lowest discharge occur in January and 
September.

Analysis of the severity of SRI dryness uses a time scale of discharge deficits for six 
months (SRI-6). Based on Fig.  10, the hydrological drought in Bondowoso Regency 
with an extremely dry category (SRI < −2) occurred in 1996, 1998, and 2016. The 
results of the drought index were compared with data on water distribution to drought-
affected areas in 2018 which was obtained from BPBD Bondowoso, so that, it can be 
seen suitability to the actual conditions. Based on BPBD data on the water distribu-
tion data in 2018, several areas in Bondowoso Regency experienced drought, includ-
ing wringin, jatisari, pameton, karangsengon, botolinggo, and gayam villages. It is con-
sistent with the results of the Fig. 11 drought model, wherein the villages of Wringin, 
Jatisari, Pameton, Karangsengon, Botolinggo, and Gayam also experienced drought in 

Table 8   The reliability test of discharge simulation

Model performances Input data

NCEP/NCAR reanaly-
sis rainfall

RCP 4.5 RCP 6.0 RCP 8.5

Coefficient of performance (R2) 0.7817 0.8074 0.8019 0.8068
Nash–Sutcliffe Efficiency (NSE) 0.7521 0.7806 0.7802 0.7872

Fig. 9   Predicted monthly discharge based on CSIRO Mk 3.6.0 rainfall data a RCP 4.5 Scenario; b RCP 6.0 
Scenario; c RCP 8.5 Scenario
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the moderate dry category (−1 < SRI < −1.5). Based on the analysis results, the SRI-6 
drought model can represent the drought that occurred in Bondowoso Regency.

The prediction of the SRI drought in Sampean Baru watershed is based on the cli-
mate change scenario contained in the GCM CSIRO Mk 3.6.0 data. Predictive discharge 
data on various RCPs obtained from rainfall-flow simulation are then used as input data 
on the drought model. The results of drought predictions on various RCPs are shown 
in Fig. 12. The RCP 4.5 is a scenario that does not have extreme drought severity. The 

Fig. 10   Plotting of SRI-6 drought index in the Sampean Baru watershed

Fig. 11   Spatial map of SRI-6 drought severity in 2018
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average drought index of RCP 4.5 is 0.48 which categorizes as a normal. The RCP 6.0 
and RCP 8.5 have extreme drought levels. Extreme drought in RCP 6.0 will occur in 
2028. At RCP 8.5, extreme drought will occur in 2028, 2031, 2046, and 2047. The aver-
age drought index of The RCP 6.0 and RCP 8.5 are 0.49 and 0.36. Both of them are 

Fig. 12   The SRI drought prediction based on CSIRO Mk 3.6.0 data a RCP4.5; b RCP6.0; c RCP8.5
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categorized as a normal. In Table 9, it shows number of drought event in each category. 
There is no extreme dry event at RCP 4.5. The RCP 6.0 has one extreme dry event. 
There are eight extreme drought events at RCP 8.5.

The effect of the increase in the GHG concentration found in each RCP scenario can 
be seen in the graph of the drought severity distribution in 2028 in Fig. 13. The area 
affected by extreme drought has increased by 15 and 77% in RCP6.0 and RCP8.5. It is 
in line with the increasing number of districts affected by extreme drought, which can 
be seen in Fig. 14. On the RCP 4.5 output drought distribution map in 2028, extreme 
drought conditions occurred in 2 districts, namely Tegalampel and Klabang. On the RCP 
6.0 output drought distribution map in 2028, extreme drought conditions occurred in 
9 districts, namely Wringin, Tegalampel, Klabang, Sukosari, Tlogosari, Sumberjambe, 
Pujer, Maesan, and Grujugan. On the map of RCP 8.5 drought distribution in 2028, 
extreme drought conditions occurred in 15 sub-districts, namely Pakem, Curahdami, 

Table 9   Number of drought event in each category

No. Category RCP 4.5 RCP 6.0 RCP 8.5

Drought 
event

Percentage Drought 
event

Percentage Drought 
event

Percentage

1 Extremely 
wet

28 7% 26 7% 17 4%

2 Severe wet 35 9% 37 10% 33 9%
3 Moderate wet 57 15% 52 14% 55 14%
4 Normal 240 63% 246 64% 248 65%
6 Moderate 

dDry
19 5% 18 5% 16 4%

7 Severe dry 5 1% 4 1% 7 2%
8 Extremely 

dry
0 0% 1 0% 8 2%

Total 384 1 384 1 384 1

Fig. 13   Percentage of drought severity area for RCPs in 2028

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


1722	 Natural Hazards (2022) 112:1705–1726

1 3

Fig. 14   Spatial drought map in 2028 a RCP4.5; b RCP6.0; c RCP8.5
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Wringin, Tegalampel, Klabang, Prajekan, Cerme, Tapen, Sukosari, Tlogosari, Sumber-
jambe, Pujer, Tamanan, Maesan, and Grujugan.

4 � Conclusions

The statistical downscaling (ANN) to simulate monthly rainfall using NCEP/NCAR and 
CSIRO Mk 3.6.0 shows a good result. It can be seen that the simulated monthly rainfall 
value resembles the observed monthly rainfall value. The ANN also simulate the predicted 
monthly rainfall in each RCPs. The result of downscaling shows that the trend of predicted 
monthly rainfall at RCP 6.0 is closer to monthly observed rainfall than the other RCPs. It 
gives impact on the result of predicted discharge that shows the trend of RCP 6.0 is closer 
to monthly observed discharge than the other RCPs. Assessing impact of climate change on 
drought using GCM successfully represented the predicted drought conditions in the Sam-
pean Baru Watershed. A 6-month time scale of SRI (SRI-6) was chosen to assess drought. 
It is based on good correlation between drought severity map in 2018 and clean water dis-
tribution data in 2018. Increased greenhouse gas concentrations (GHG) influence the inten-
sity of drought events and drought-affected areas in future. The number of extreme drought 
events has increased in each RCP. RCP 8.5 has the highest number of extreme drought 
events, followed by RCP 6.0. RCP 4.5 has no extreme drought events. The area of extreme 
drought has also increased quite significantly.

Fig. 14   (continued)
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