Indonesian Jourrial of Chemiistry

$$
\begin{aligned}
& \Theta_{0} \mathrm{O}_{3} \rightarrow \text { Googe D04. }= \\
& \text { ©sinta } \ / \infty
\end{aligned}
$$

Hephat I Phm	Mat 5	N03	PPrathew	Yeyshint Aupritsply	$2 n+4 y$

Editorial Team

Editor-in-Chief

Nuryono Nuryono, Laboratory of Inorganic Chemistry, Department of Chemistry, Universitas Gadjah Mada, Indonesia

Vice Editor in Chief

Dwi Siswanta, Laboratory of Analytical Chemistry, Department of Chemistry, Universitas Gadjah Mada, Indonesia

Editorial Board

Alkhmad Syoufian, Laboratory of Physical Chemistry, Department of Chemistry, Universitas Gadjah Mada
Hideaki Hisamoto, Department of Applied Chemistry, Osaka Prefecture University, Japan
Hendrik Oktendy Lintang, Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Indonesia
Indriana Kartini, Laboratory of Inorganic Chemistry, Department of Chemistry, Universitas Gadjah Mada, Indonesia
Iqmal Tahir, Laboratory of Physical Chemistry, Department of Chemistry, Universitas Gadjah Mada, Indonesia
Joe da Costa, Department of Chemical Engineering, University of Queensland, Australia
Dr. Maurizio Barbieri, Department of Earth Science, Sapienza University, Italy
Ming Cai, Tongii University, China
Muhammad Idham Darussalam Mardjan, Laboratory of Organic Chemistry, Department of Chemistry, Universitas Gadjah Mada, Indonesia
Pornthep Sompornpisut, Department of Chemistry, Chulalongkorn University, Thailand
Praveen Kumar Sharma, Department of Chemistry, Lovely Professional University, Punjab, India
Assoc. Prof. Dr. Roswanira Abdul Wahab, Department of Chemistry, Universiti Teknologi Malaysia, Malaysia
Saprizal Hadisaputra, Department of Chemistry Education, Faculty of Science and Education, University of Mataram, Indonesia
Satya Candra Wibawa Sakti, Laboratory of Inorganic Chemistry, Department of Chemistry, Universitas Airlangga, Indonesia Tutik Dwi Wahyuningsih, Laboratory of Organic Chemistry, Department of Chemistry, Universitas Gadjah Mada
Tri Joko Raharjo, Department of Chemistry, Universitas Gadjah Mada, Indonesia
Winifred Uduak Anake, Department of Chemistry, College of Science and Technology, Covenant University, Nigeria

Administration Support

Djoko Prihandono, Department of Chemistry, Universitas Gadjah Mada, Indonesia
Aulia Sukma Hutama, Laboratory of Physical Chemistry, Department of Chemistry, Universitas Gadjah Mada, Indonesia
Aulia Ratri Hapsari, Department of Chemistry, Universitas Gadjah Mada, Indonesia

Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
01070503 View The Statistics of Indones. J. Chem.

Table of Contents

Articles

```
Thermal and Dynamics Mechanical Analysis of Polypropylene Blown Films with Crude Palm Oil as
Plasticizer
33 Siti Hasnah Kamarudin, Emiliana Rose Jusoh, Luqman Chuah Abdullah, Mohd Halim Shah Ismail, Min
    Min Aung, Chantara Thevy Ratnam
d 10.22146/ijc.30460 willil Abstract views:452| views:413
```

Synthesis and Characterization of Molybdenum Phthalocyanine as Target Material for High Specific
Activity Molybdenum－99 Production
Muhamad Basit Febrian，Duyeh Setiawan，Hilda Hidayati
© $10.22146 /$ Iic． 33218 inilil Abstract views： 330 ｜皿 views： 248

Three Dimensional Structural Modelling of Lipase Encoding Gene from Soil Bacterium A／caligenessp．565－574 JG3 Using Automated Protein Homology Analysis

33 Dilin Rahayu Nataningtyas，Tri Joko Raharjo，Endang Astuti
© $10.22146 /$ ijc． 34152 而ilil Abstract views： 406 ｜四 views： 262
Synthesis of Mesoporous Carbon from Merbau Wood（Intsia spp．）by Microwave Method as Ni Catalyst 575－582 Support for α－Cellulose Hydrocracking
33 Andaru Dena Prasiwi，Wega Trisunaryanti，Triyono Triyono，lip Izul Falah，Darma Santi，Muhammad Fajar Marsuki
d $10.22146 / i j c .34189$ 符ill Abstract views： 409 ｜views： 253

Microwave Assisted Synthesis and Evaluation of Toxcity and Antiocoidant Activity of Pyrazoline 583－591 cmis Derivatives

3 Jasril Jasril，Hilwan Yuda Teruna，Aisyah Aisyah，Nurlaili Nurlaili，Rudi Hendra
d $10.22146 / \mathrm{ijc}$ c． 34285 箨il Abstract views： 373 ｜国 views： 236
Effect of Free Fatty Acid Pretreatment to Yield，Composition and Activation Energy in Chemical
Synthesis of Fatty Acid Methyl Ester
Nor Saadah Mohd Alias，Harumi Veny，Fazlena Hamzah，Noorhaliza Aziz
5． 10.22146 ／ijc． 34492 篂ill Abstract views： 571 ｜views ： 310
Estimating Factors Determining Emulsification Capability of Surfactant－Like Peptide with Coarse－
Grained Molecular Dynamics Simulation
33 Tegar Wijaya，Rukman Hertadi
（8） 10.22146 ／ijc．34547 inilil Abstract views： 438 ｜views： 309

Mesh－Assisted Laser－Induced Plasma Spectroscopy Using Pulse Carbon Dioxide Laser for Analysis of	606－614
Powder Material by Confining the Powder in a Hole and Employing a Condensation Technique	
33 Ali Khumaeni，Asep Yoyo Wardaya，Heri Sugito，Nasrullah Idris，Kïchiro Kagawa	
¢ 10．22146／ijc． 34778 桄lil Abstract views： 366 ｜且 views： 265	

Effect of Salinity and Oxygen Condition on Phosphate Release from Marine Sediment Measured Using Diffusive Gradient in Thin Film（DGT）Technique

33 Askal Maimulyanti，Budiawan Budiawan，Asep Saefumillah，Heny Suseno
© 10．22146／ijc．35233 出ilil Abstract views： 529 ｜views： 377

Congo Red Azo Dye Removal and Study of Its Kinetics by Aloe Vera Mediated Copper Oxide
626－637 드
Nanoparticles
3 Madiha Batool，Muhammad Zahid Qureshi，Farwa Hashmi，Nida Mehboob，Abdul Salam Shah
© $10.22146 / \mathrm{ljc} .35626$ 篂ill Abstract views：503｜皿 views： 279

A Simple Pre－concentration Method for the Determination of Nickel（II）in Urine Samples Using UV－Vis

33 Ahmed Fadhil Khudhair，Mouyed Khudhair Hassan，Hasan F．Alesary，Ahmed S．Abbas
© 10．22146／ijc．35681 箱il Abstract views：683｜皿 views： 587

```
P84/Zeolite-Carbon Composite Mixed Matrix Membrane for CO
33 Triyanda Gunawan, Retno Puji Rahayu, Rika Wijiyanti, Wan Norharyati Wan Salleh, Nurul Widiastuti
d 10.22146/ijc.35727箱il Abstract views:386| views:375
```

Preparation and Characterization of a Novel Cocrystal of Atorvastatin Calcium with Succinic Acid 660－667 둔 Coformer
3 Yudi Wicaksono，Dwi Setyawan，Siswandono Siswandono，Tri Agus Siswoyo
d 10．22146／ijc．35801 出而lil Abstract views：709｜views： 574
Fast Analytical Method for Authentication of Chili Powder from Synthetic Dyes Using UV－Vis
Spectroscopy in Combination with Chemometrics
33 Eti Rohaeti，Khoirotul Muzayanah，Dewi Anggraeni Septaningsih，Mohamad Rafi
d $10.22146 /$ ijc． 36297 箱il Abstract views： 1145 ｜皿 views ： 666

Synthesis，Characterization and Catalytic Activity of NiO－CoO－MgO Nano－Composite Catalyst 675－683 6as
33 Salih Hadi Kadhim，Tariq Hussein Mgheer，Hussein Idrees Ismael，Khudheyer Jawad Kadem，Ahmed Saadon Abbas，Abbas Jasim Atiyah，Iman Jassim Mohamad
© 10．22146／ijc．38119而illil Abstract views： 394 ｜views： 274
Alginate－Graphene Oxide Biocomposite Sorbent for Rapid and Selective Extraction of Non－Steroidal Anti－Inflammatory Drugs Using Micro－Solid Phase Extraction
33 Mohammad Salim Tabish，Nor Suhaila Mohamad Hanapi，Wan Nazihah Wan Ibrahim，Nor＇ashikin Saim， Noorfatimah Yahaya
© 10.22146 ／ijc．38168 箨il Abstract views： 670 ｜ 国 views： 450

Combustion Synthesis Ironmaking：Investigation on Required Carbon Amount in Raw Material from the 696－702 Viewpoint of Adiabatic Flame Temperature Calculation
33 Keisuke Abe，Ade Kurniawan，Masafumi Sanada，Takahiro Nomura，Tomohiro Akiyama
d 10．22146／ijc．38359榇llil Abstract views： 372 ｜views： 190
Valuable Chemicals Derived from Pyrolysis Liquid Products of Spirulina platensis Residue
703－711
3 Siti Jamilatun，Budhijanto Budhijanto，Rochmadi Rochmadi，Avido Yuliestyan，Arief Budiman
© 10.22146 ／ijc． 38532 出illil Abstract views： 552 ｜views： 476
Pyrolusite Bioleaching by an Indigenous Acidithiobacillussp KL3 Isolated from an Indonesian Sulfurous
712－719
River Sediment
33 Endah Retnaningrum，Wahyu Wilopo
© 10．22146／ijc． 38898 出ilil Abstract views： 358 ｜views： 225
Development and Validation of a Four－Tier Diagnostic Instrument for Chemical Kinetics（FIDICK）
33 Habiddin Habiddin，Elizabeth Mary Page
d 10.22146 ／ijc．39218而illil Abstract views：1117｜views： 529 ｜views： 176

Corrosion Inhibition of Carbon Steel Using Palm Oil Leaves Extract
747－752
3 Nor Insyirah Hairul Salleh，Arman Abdullah
d $10.22146 / \mathrm{Ijc} .39707$ 箱ill Abstract views： 435 ｜views ： 297

Effect of Torrefaction Temperature，Residence Time and Particle Size on the Properties of Torrefied

33 Ruwaida Abdul Rasid，Thye Mei Chin，Mazni Ismail，Nahsya Nur Udzaifah Abdul Rahman
© 10．22146／ijc．39718 箱il Abstract views：373｜views： 272

Responsive Photocatalyst
33 Katarina Rachma Andita，Rian Kurniawan，Akhmad Syoufian
d $10.22146 /$ ijc． 39778 而ilil Abstract views： 422 I views： 226
Effect of Immobilization Method on the Growth of Chlorella vulgaris and Fatty Acid Profile for Biodiese

Production

33 Nur Hanani Rushan，Nur Hidayah Mat Yasin，Noor Raihana Abu Sepian，Farhan Mohd Said，Nurafifah Izzati Shafei
d $10.22146 / \mathrm{Ijc}$ c 39800 篂lil Abstract views：290｜views： 205
Docking of New Designed Compounds Derived from 1，6－Dihydro－1，3，5－triazine－2，4－diamine Toward
Quadruple Mutant Plasmodium Dihydrofolate Reductase
Imam Siswanto，Harno Dwi Pranowo，Mudasir Mudasir
d． $10.22146 /$／ijc．39943 willil Abstract views： 3781 views： 227

Inhibitive Determination of $\mathrm{Hg}(\mathrm{II})$ in Aqueous Solution Using Urease Amperometric Biosensor 786－795
33 Dhony Hermanto，Bambang Kuswandi，Dwi Siswanta，Mudasir Mudasir
d $10.22146 / i j c .40617$ 筷ill Abstract views： 333 ｜views： 266

Extraction of Phytosterol Concentration in Different Legume Pods by Using Microwave－Assisted 796－803 Hydrodistillation

33 Noormazlinah Noormazlinah，Norlaili Hashim，Abdurahman Hamid Nour，Mimi Sakinah Abdul Munaim， Maria Pilar Almajano，Nurul Bahirah
d $10.22146 / \mathrm{Ijc} .40865$ 简lil Abstract views： 335 ｜views： 273

The Potentials of an Integrated UltrasonicMembrane AnaerobicSystem（IUMAS）in Treating Sugar 804－810 Cane Wastewater
33 Abdurahman Hamid Nour，Yasmeen Hafiz Zaki，Hybat Salih Mohamed，Hesham Hussein Rassem
© 10．22146／ijc．40866 出ilil Abstract views： 372 ｜views： 268

Statistical Modelling of Ultrasonic－Aided Extraction of Elaeis guineensis Leaves for Better－Quality Yieldand Total Phenolic Content

33 Nissha Bharrathi Romes，Mariani Abdul Hamid，Siti Ernieyanti Hashim，Roswanira Abdul Wahab
© 10．22146／ijc．41603 箨il Abstract views：377｜views： 325

Indonesian Journal of Chemisty（ISSN 1411－9420／2460－1578）－Chemistry Department，Universitas Gadjah Mada，Indonesia．
01870506 View The Statistics of Indones．J．Chem．

Preparation and Characterization of a Novel Cocrystal of Atorvastatin Calcium with Succinic Acid Coformer

Yudi Wicaksono ${ }^{1.2}$, Dwi Sctyawan ${ }^{3}$, Siswandono ${ }^{3}$, and Tri Agus Siswoyo ${ }^{24 .}$.
${ }^{1}$ Fecuity of Pharmacy, Universily of Jember, Ih. Kalimantan I/2, Jember 68121, Indonesia
${ }^{2}$ Center for Dewlopment of Ad wanced Sience and Technology, University of /ember, Il. Kalimantan No. 37, Jenber 68121, Indonesia
${ }^{3}$ Focuity of Tharmacy, Airkargga Ciniversity, Ih. Darmawangsa Dadan: 4-6, Survbaya 60286, Indones as
${ }^{4}$ Focuity of Agriculture, University of Jember, Il. Kolimantan No. 37, kember 68121, Irdonesia

${ }^{*}$ Corresponding author:
tel: +62-331-321825
email: triagus.faperta@unej.ac.id
Revened:May, 25, 2018
Accepted:July 20, 2018
DOI: 10.22146:ije 35801

Abstract

Ahstract: Proparation and chavacterization of a novel corrstal of atruvastatin calcium with swccinic acid coformor wore succsesfully performed. This resaarch aims to mulify the crystulline form of ator withatin ukiun tivrught cerrytallizution with succintc acti coformer. The conrystal wos prepared by a so'vent evaporatlon method and characterized by Powder X-Ray Diffraction (PXRD), Diferential Sanning Colorimetry (DSC), Fourier Transform Infrared Spectroscop) (FTIR) and Scanning Electron Microicopy (SEM). The atorvastatin calcium-succinic acid cocrystal has new crystalline peaks at 2θ of $12.9,18.2$ and 26.7° indicaiing the formation of a new crystalline phase. The corrystal showed the melting point at $205.7^{\circ} \mathrm{C}$ with an et thalpy offusion $302 \mathrm{~J} / \mathrm{g}$ which is different from the i, itial components. The FTIR spectry of carystal showsd the shiftiag of absorftion peaks of groups of initial ccmponents indicatirg of formation of atomastatin calcium-swceinic acid coorystal through acidandde Internolecwlat hydrogen bona In eractlon. The :olvbilly and dissolution test showed thar the cocrystal has solubility and dissoiution rate significantiy higher than the sclukility and dis:olution rate of pure atornastatin calciam.

Keywords: novel cocnstals atomastatim calcium; crystalline phascy solubility clisolution rule

- INTRODUCTION

Atorvastatin calcium is one of the drug members of the statin group used to lower cholesterol levels in the blood. It is considered ore of the most effective syathetiz: agents for lowering low-density lipoprotein cholesterol, triglycerides and total cholesterol [1-2]. The highly effective chclesterol-lowering effect of atorvastatin cakium makes it one of the most common cholesterollowenng drugs used workdwide [2-3].

Patent protection for atorvastatin calcium has expired in 2011, so the research to modify the physicochemical properties of atorvastatin calcium is an exciting opportanity in the field of phermaceutical research. The most common ways to modify the
atorvastatin calcium is by the formation of new polymorphs, solvates and crystalline forms [4-5]. The formation of a new form from atorvastatin calcium is known to improve the anlubility [6], dissolution rate [7] and stability [8].

Coorystallization is an alternative strategy for the formation of a new crystaline form of drug3. It is carried out by cryssallizing together the drug with a coformer agent in the same crystal lattice [9]. The intermolecular interactions between the drug and the coformer in the new crystal lattice fcrm different packing arrangements that trigger a change in physizochemizal properties [10]. It is a potential method to improve the physicochemical properties of a drug in solubility [11-13], dissolution rate

[^0][14], stability [15-16], bioavailability [17], compressibility and hygroscopicity [18].

In the present work, we investigated the formation of a novel cocrystal of atorvastatin calcium using succinic acid coformer. Succinic acid is a member of the generally regarded as safe compounds, so it is often used as coformer for cocrystallization of drugs [19-21]. The cocrystal was prepared via solvent evaporation method using methanol. The characterization was performed by Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), Fourier Transforms Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The solubility test of cocrystal was performed in distilled water and dissolution behavior of cocrystal was evaluated by dissolution test in phosphate buffer pH 6.8 .

- EXPERIMENTAL SECTION

Materials

Atorvastatin calcium in trihydrate form (purity \geq 99.5\%) was kindly donated by PT Dexa Medica (Indonesia). Succinic acid (purity $\geq 99.5 \%$), disodium hydrogen phosphate dihydrate (purity $\geq 99.5 \%$) and sodium dihydrogen phosphate monohydrate (purity \geq 99.0\%) were purchased from Merck (Darmstadt, Germany). Methanol (purity $\geq 99.8 \%$) was purchased from Smart Lab Indonesia (Tangerang, Indonesia).

Instrumentation

The instruments for preparation of cocrystal were analytical balance (Precisa ES 225SM-DR) and a magnetic stirrer (Scilogex MS7-H550-Pro). The instruments for the characterization of cocrystal included powder X-ray diffractometer (Philip Xpert), differential scanning calorimeter (Rigaku DSC 8230), Fourier Transform Infrared Spectrophotometer (Alpha Bruker), Scanning Electron Microscope (Hitachi TM 3000), sputter coater ion (Hitachi E-1045), orbital incubator (Stuart S1600), USP dissolution test apparatus II (Logan UDT-804) and UV-Vis spectrophotometer (Hitachi U-2900).

Procedure

Preparation of atorvastatin calcium-succinic acid cocrystal

The 1:1 molar ratio of atorvastatin calcium and
acid was dissolved with methanol in a beaker glass. The resulting solution allowed to slowly evaporating at an ambient temperature. The resulted crystal was crushed in a pestle to reduce the particle size and then sifted through a sieve no. 80 mesh (ASTM no. 80).

Powder X-ray diffraction

PXRD patterns were collected at room temperature using a Philip Xpert diffractometer system. The radiation source is $\mathrm{Cu}-\mathrm{K} \alpha \lambda=1.54060 \AA$. The voltage and current were respectively maintained at 45 kV and 40 mA . The data were collected by a continuous scan over an angle range from $5-50^{\circ}$ in 2θ.

Differential scanning calorimetry

Thermal behavior of the samples was analyzed using differential scanning calorimeter (Rigaku DSC 8230). The pre-useinstrument was calibrated for the accuracy of temperature and heat flow with indium. The samples of $2-3 \mathrm{mg}$ were accurately weighed in hermetic aluminum pan and scanned at the temperature range $50-250{ }^{\circ} \mathrm{C}$ with a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. The experiments were performed on the atmosphere of dry nitrogen gas (flow rate $50 \mathrm{~mL} / \mathrm{min}$).

Fourier transform infrared spectroscopy

The FTIR spectra of samples were obtained by Fourier transform infrared spectrophotometer (Alpha Bruker). Measurements were recorded over a range $4000-500 \mathrm{~cm}^{-1}$ at a resolution of $4 \mathrm{~cm}^{-1}$.

Scanning electron microscopy

The morphology and shape of samples were characterized using scanning electron microscope (Hitachi Tabletop Microscope TM 3000). Approximately 10 mg of sample was placed on a specimen stub previously given a two-sided adhesive and then coated with platinum for 10 sec by sputter coater ion (Hitachi E -1045). The samples were inserted into the sample chamber holder base on the microscope and observed at 15 kV and 500 x magnification value.

Solubility test

The samples were tested for solubility in distilled water by the shake-flask method. An excess of the sample was placed in a 250 mL Erlenmeyer flask and added distilled water. Erlenmeyer flask was continuously shaken

[^1]using an incubstor orbital (Stuat S1600) at 150 rpm and $37 \pm 0.5^{\circ} \mathrm{C}$ for 12 h . The amount of dissolved atorvastatin calcium was determined by UV-Vis spectrophctometer (Hitachi U-2900) at $\lambda 300 \mathrm{~nm}$. Testing was conducted with hree repetitions.

Dissolution cest

The dissolution test was performed with the paddle method using a USP dissolution test apparatus Il (Logan UDT-804).The sample equivalent to 50 mg of a torvastatin calcitem was achled to 900 mL of phosphate buffer pH 6.8 medi.m then stirred at 100 rpm and $37 \pm 0.5{ }^{\circ} \mathrm{C}$. Approximately 5 mL of dissolution medium was withdrawn every 15 min for 60 min . New dissolution mednum whth the same amount was added after each withcrawal of sample. The concentrations of atorvastatin calcium in solution were determined by UV-Vis spectrophotometer at $\lambda 300 \mathrm{~mm}$ Dissolution test of each sample was performed in triplicate.

Statistical analysis

The average values of results were analyzed by using the software of one-way analysis of variance (ANOVA) of SPSS versicn 16.0 for windows. The mean value is considered to have a significant difference at $\mathrm{p} \leq 0.05$.

- RESULTS AND DISCUSSION

Powder X-Ray Dlffrāction

The PNRD technique is the primary tool for the stady and chatacterization of crystalline materials. By using PKRD, crystalline phases of material can be distirguished by its unique diffraction pattern which is a finge:print of erystal structures. These phases may represent different materials or different crystalline form of related materials [22]. The overlay of PXRD patterns of atorvastatin calcium, succinic acid, anl atorvastatin calcium-succincc acid cocrystal is stown in Fig. 1

The PXRD pattern of atorvastatin calsium exhibited characteristic peaks at 2θ of $9.2,10.0,11.6,19.2,21.3$ and 23.5°. The PXRD pattern showed that the atorvastatin calcium sample is the crystalline form I of atorvastatin calcium, in agreement with the literature [23]. The PXRD pattern of succinic acid showed characteristic peaks at 2θ of $20.1,26.3,38.6$ and 42.1°, also in agreement with the

Fig 1. PXRD patterns of (a) atorvastatin cilcium, (b) succinic acid and (c) atorvastatin calcium-succinic acid cocrystal
literature [19]. The PXRD pattern of atorvastatin calctum-succiric acid cocrystal showed the difference with the PXRD pattern of the inttal componerts. The PXRD pattern of cocrystal has new crystallme peaks at 27 values of 12.9° and 18.2°, and 26.7°. It indicated that atorvastatio calcrum-succimic acid cocrystal has a ditterent crystal lattice arrangement with the crystal lattice of atorvastatin cakium and succinic acid Atorvastatin calcium-succinic acid cocrystal has 2 cystalline phase differert from the initial components. It showed that atorvastatin cakium and succinic acid formed a new crystalline form with crystal latice arranged by atorvastatin calcium and succinic acid [2425].

The diffraction peaks on the PXFD pattern of atorvastatin calcium-succinic acid cocrystal showed a weaker intensity than the intensity of the initial components. This indicates that the atorvastatin calcium-succinic acid cocrystal hes lower crystallinity campared to the initial component [14]. The decrease of cyystallinity is thought to be due to succinic acid in the cocrystal decreasing the ordering of crystal lattice of cocrystal. The lower crdered crystal lattice causes decreasing of crystallinity of cocrystal compared to the cyystallinity of initial componerts [26].

Differentlal Scanning Calorimetry

DSC. is the most commonly used thermal analysis method, especially since its implementation is relatively quick and easy. This technique is a powerful tool for the detection of new crystalline fomation of materials and also for stability studies of crystalline materials as a function of temperature [22]. The cocrystal has a different melting point from initial materials which was suspected due to the influence of diferences in the crystal lattice and packing arrangement [18,26]. Fig, 2 shows an overlay of the DSC thermogram of atorvastatin calcium, succinic acid, and atorvastatin calcium-succinic acid cocrystal.

The DSC thermogram of atorvastatin calcium showed a broad peak at $108.5^{\circ} \mathrm{C}$ which depicts water loss ard a sharp endothermic peak at $159.4{ }^{\circ} \mathrm{C}$ with an erthalpy of fusion value ($\Delta H_{\mathrm{c}}, 35.9 \mathrm{~J} / \mathrm{g}$ related to its melting point [27]. The DSC thermogram of succinic acid has a melting endothermic peak at $188.5^{\circ} \mathrm{C}$ with an exthalpy of fusion value (ΔH_{i}) $328.6 \mathrm{~J} / \mathrm{g}$, in agreement with the literature [28]. The atorvastatin calcium succinic acid cocrystal showed a melting at $205.7{ }^{\circ} \mathrm{C}$ with an erthalpy of fusion value $\left(\Delta H_{f}\right) \quad 30.2 \mathrm{~J} / \mathrm{g}$. The broad erdothermic peak at $160.1^{\circ} \mathrm{C}$ in the DSC thermogram of cccrystal surpested as the melting point of atorvastatin calcium which is not formed cocrystal with succiaic acid. The atorrastatin calcium-succinic acid cocrystal cxhibited a melting pointhigher than the melting point of the initial components. This result indicated that the crystalline form of atorvastatin calcium-succinic acid cocrystal hes higher stability compared to the initial components [29].

Fourler Transform Infrared Spectroscopy

FTTR spectroscopy is a spectroscopic techrique often used to analyze the interaction tetween molecules in the crystal l_{2} ttice that accompanies the formation of new crystalline solids. In the FTIR spectra of cocrystals the formation of a new crystalline phase is characterized by the shifts of the ahsorption peaks from the functional groups of the iritial components which interacting in the hydrogen bond [10,30$]$. The FTIR spectra of atorvastatin calcinm, succinic acid, and atorvastatin calcinm-snceinic acid cocrystal are presented in Fg. 3.

The FTIR spectra of the atorvastatin calcium showed characteristic absorption peaks at $3672 \mathrm{~cm}^{-1}$ due to free O-H stretching (belong; to the trihydrate functionality), $3364 \mathrm{~cm}^{-1}$ due to free N-H stretching, $3056 \mathrm{~cm}^{-1}$ cue to $\mathrm{O}-\mathrm{H}$ stretching, $2971 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{H}$ stretching, at $1651 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=0$ stretching and $1216 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{N}$ stretching. The churacteristic peaks of succiric acid occurred at $2931 \mathrm{~cm}^{-1}$ due to -O. H group (stretching-vibrations), $1690 \mathrm{~cm}^{-1}$ due to $-\mathrm{C}=0$ group, at $1419 \mathrm{~cm}^{-1}$ due to C-O-H (in-plane bending) and $1309 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{O}$ stretching vibration. The

Fig 2. DSC thermograms of (a) atorvastatin calcium, (b) succinic acid and (c) atorvastatin calclum-succinic acid cocrystal

Fig 3. The FTIR spectra of (a) atorvastatin calcium (b) succinic acid and (c) atorvastatin calcium-succinic acid cocrystal

Fig 4. SEM images of (a) atorvastatin calcium, (b) succinic acid and (c) atorvastatin calcium-succinic acid cocrystal
atorvastatin calcium and succiniz acid exhibited the FTIR spectra in correspondence with the literature [28,31]

The FTIR spectra of atorvastatin calcium-succinic acid cocrystal showed the shifting of absorption peaks compared to the FIIR spectra of the initial components. The ibsorption peaks of atorvastatin calcium-succinic acid cocrystal were showed the shifting of atorvastatin calcium groups at N-H stretching from 3364 to $3466 \mathrm{~cm}^{-1}$, C-N stretching from 1216 to $1223 \mathrm{~cm}^{-1}$ and $\mathrm{C}=0$ stretching from 1651 to $1712 \mathrm{~cm}^{-1}$. The absorption peaks of succinic acid were showed shifting from 1690 to $1712 \mathrm{~cm}^{-1}$ and 2931 to $2964 \mathrm{~cm}^{-1}$. The shifting of atsorption peaks of FTIR spectra of atorvastatin calcumsuccinic acid cocrystal indicated appearance intermolecular hydrogen bond interactions between functional groups of atorvastatin calcium and succinic acid [28.32]. Eased on the shift of the absorption peaks indicated the formation of atorvastatin calcium-succinic acid cocrystal through intermolecular hydrogen bond interactions as acid-amide heterosyathon. In addition to the FTIR spectra, the atsorption peak of free O-H stretching was notfound in the FTIR spectra of atovastatin calcium-succinic acid cccrystal. It indicated that the storvastatin calciumsuccinic acid cocrystal was an anhydrous crystalline form. Overall, the results of characterization by powder X-ray diffraction, differential scanning calorimetry, and Fourier transiorm infrared spectroscopy have indicated the formation of a nowel cocrystal of atovastatin calciumsuccinic acid encrystal.

Scanning tlectron MIcroscopy

The SEM images of atorvastatin calcium, succinic
acid, and ctorvastatin calcium-succinic acid cocrystal are shown in Fig. 4. The atorvastatin calcium was showed rod-shaped particles with the size of length approximately about $30-100 \mu \mathrm{~m}$, while the succinic acid was showed semi-spherical particles with the average sizes ranging from $20-100 \mu \mathrm{~m}$. These results are in correspondence with previous literature [28,33].

The particles of atorvastatin calcium-succinic acid cocrystal were flaky structures with an irregular shape which the average sizes were ranging from $10 \mu \mathrm{n}$ to several hurdred nicrons. The particles of atorvastatin calcium-succiric acid cocrystal were demonstrated the difference in the morphology and size with the atorvastatin calcium and succinic acid as initial components. The change of the morpbology can be caused by the interaction between atorvastatin calcium and succinic acid molecules, which results in the modification of the crystal faces of iritial components and hence the crystal morphology [14]. The ateration of morphological characteristics was indicated by the formation of a rew crystalline form of atorvastatin calcium-succinic acid cocrystal [10].

Solubility

The solubility of pure atorvastatin calcium and atorvastatin calcium-succinic azid cocrystal in distlled water was 170.86 ± 0.06 and $198.18 \pm 0.79 \mathrm{mg} / \mathrm{L}$, respectively. Atorvastatin calkium-succinic acid cocrystal showed a significant increase in solubility ($p<0.05$) compared to pure atorvastatin calcium. Increasing solubility of cocrystal is often associated with the decrease of the ordered crystal lattice. The decrease of the

Fig 5. The dissolution profile in phosphate buffer pH 68 of (a) atorvastatin calcium and (b) atorvastatin calciumsucciaic acid cccrystal (data are expressed as mean $\pm \mathrm{SD}$. $n=3$)
ordered crystal lattice of cocrystal causes the reduction of packing efficiency in the crystal lattice, which is significantly increased aquenus solubility [26]

Dissolution Behavior

Dissolution is a process of the phase transformation from the sclid phase to the liquid phase of solids in a solvent. It kinetics is determined by the thermodynamic ecuilibrium between the strength of the molecular bond incrystal packing of solid with the interaction energies of the solid to solvent. Cocrystal has the ability to increase the dissclution rate by reducing the energy of the crystal latice or changing the solvent affinity [34]. The dissolution profile of atorvastatin calciom and atorvastatin calcimm-snccinicacid cocrystal in phosphate buffer pH 6.8 is presented in Fig. 5. The atorvastatin calcium-succinic acid cocrystal has a dissclution rate significantly higher than atorvastatin calcium ($\mathrm{p}<0.05$) atall time interval. The atorvastatin calcium dissolved only $33.6 \pm 2.3 \%$ within 30 min ; however, the atorvastatin calcium-succinic acid cocrystal has achicred dissolution of $47.1 \pm 1.9 \%$ during the same period Λt the end of the dissolution test, the percentage of drug release during the dissolution of atorvastatin calcium-succiniz acid cocrystal increased approximately 1.5 fold compared to pure atorvastatin calcium.

- CONCLUSION

Atorvastatin cakium-succinic acid cocrystal as a new form of atorvastatin calcium was successfully formed by solvent evaporation method. The results of charncterization have indicated the formation of the new crystalline phase of atorvastatin calcium-succinic acid cocrystal. The cocrystal showed solubility and dissolution rate sigrificantly higher thin the initial components. Furthermore, this work provides insights into the improvement of physicochemical properties of the drus via the formation of cocrystal

- ACKNOWLEDGMENTS

This work is supported by the Ministry of Research, Technclogy and Higher Education of the Republic of Indonesia through Fundamental Research Grart under DIPA rumber $0.42 .06 / 2017$. My grateful thanks also go to PT Dexa Medica for providing a.orvastatin calcium for thisstudy.

- REFERENCES
[1] Kadu, P.J., Kushare, S.S., Thacker, D.D., and Gattani, S.G., 2011, Enhincement of oral bioavalability of atorvastatin calcium by selfemulsifying drug delivery systems (SEDDS), Pherm. Dev. Tecinol., 16 (1), 65-74.
[2] Gao, J, Guo, Y.H., Wang, Y.P., Wang, X.J., and Xiang. W.S., 2011, A novel and efficient route for the preparation of atorvastatio, Chin. Chem. Tett, 22 (10), 1159-1152.
[3] Skcrd3, D., and Kontoyannis, C.G., 2008, Identification and quantitative determination of atorvastatin calcium polymorph in tablets usingFT Raman spectroscopy, Talanta, 74 (4), 10661070
[1] An, SG., Sohn, Y.T., 2009, Crystal forms of atorvastatin, Arch. Pinarmacal. Res, 32 (6), 933-936.
[5] Shayarfar, A., Ghavimi, H., Hamishckar, H., and Jouyban, A., 2013, Coamorphous atorvastatin calciun to improve its physicochemical and pharmacokinetic properties, J. Pharm. Fharm. Sci, 16 (4), 577-587.
[6] Cliaclia, R., Kulad, A., Arora, P., and Kistion, S., 2012, Characterisation and evaluation of
pharmacertical solvates of atorvastarin calciom hy thermoanalytical and spectroscopic studies, Chem. Cent. J. 6 (1), 114.
[7] Kim, J.S., Kim, M.S., Park, H.J., Jin, SJ., Lee, S., and Hwang S.J., 2008, Physicochemical properties and oral bicavsilability of amorphous atorvastatin hemi calcium using spray drying and SAS process, Int. I. Pharm., 359 (1 2), 211219.
[8] Rao V.P.R., Somannavar, Y.S., Kumar N.S.f Reddy, S.B., Islam, A, and Babu BH., 2011, Preparation of stable new polymorphic fcrm of atorvastatin calcum, Pharim. Lett., 3 (5), 4853.
[9] Wicaksono, Y, Sctyawan, D., and Siswandono, 2017, Formation of ketoprofen-malenic acid cocrystal by solvent cvaporation method, Indoncs. I. Chem, 17 (2), 161-166.
[10] Ainurofiq, A, Mauludin, R., Mudhakir, D., and Socwandhi, S.N., 2018, Synthesis charactcrization, end stability study of desloratadir multicomponent crystal formation, Res. PYarm. Sci., 13 (2), 93-102.
[11] Wicaksono, Y., Wisudyaningsih, B., and Siswoyo, T.A., 2017, Enhancement of solubility and dissolution rate of atorvastatin calcium by co-erystallization, Trop. J. Plurm. Res., 16 (7), 1497-1502.
[12] Tsu.sumi, B., Iida, M, Tida, N., Kujina, T., Ikedı, Y., Moriweki, T., Higasli, K, Moribe, K., and Yamamoto, K. 2011, Characterization and evaluation of miconazole salte and co-crystals for inproved physicuchemital properties, Inf. J. Pharm., 421 (2), 230-235.
[13] Surov, O., Volkora, T.V., Churakov, A.V., Proshin, A.N., Tereklova, I.V., and Perlovich, G.L., 2017 , Cocrystal formation, crystal structure, solubility and permeability stuclies for novel 1,2,4-Uniadiazole derivative as a polent neurupretector, Eur. J. Pharrw. Sci., 109, 31-39.
[14] Moradlya, H., Islam, M.T., Woollam, G.R., Sllpper, L.J., Halsey, S., Snowden, M.J., and Douroumis, D., 2014, Continuous co-crystallization for dissolution rate optimization of a poorly water-soluble drug, Cryst. Grovth Des., 14 (1), 189-198.
[15] Shevchenko, A., Eimioo, L.M., Miroshnyk I., Haarale, J., Jelinkova, K., Sys)anen, K., Veen, B.,

Kiesvaara, J. Santoc, H.A., and Ylirunsi, J., 2012, A new cocrystal and salts of itraconazole: Comparison of solid-state properties, stability and dissolution behavior, Int. J. Pharm., 436 (1 2), 103109.
[16] Zeng, Q.Z., Ouyang, J. Zhang, S., and Zhang, L., 2017, Structural characterization and dissolution profile of mycophenolic acid cocrystals, Eur. J. Pharm. Sci., 102, $140 \quad 146$.
[17] Chadha, R., Bhandari, S., Haneef, J., Khullar S., and Mandsl, S., 2014, Cocrystals of telmisartan: Characterization, structure elucidation, in vivo and toxicity studies, CrystEnsComm, 16 (35), 83758389.
[18] Qiao, N., Li, M., Schlindwcin, W., Malck, N, Davics A., and Trappitt, G., 2011, Pharmaccutical co-srystals: An cvervicw, Int. I. Pharm., 41 (1-2) 1-11.
[19] Fćlix-Sonda, B.C., Rivera-Islas, J., Herrera-Ruiz, D., Morales-Rojas, H., and Höpfl, H., 2013, Nitazoxanide cocrystals in combination with succinic, glutaric, and 2,5-dilydroxybeazoic acid, Cryst. Growth Dcs., 14 (3), 1086-1102.
[20] Jung, S., Ha, J.M., and Kim, W.I. 2014, Phase transformation of adeiovirdipivoxil'succinic acid cocrystals regulated by polymeric additives, Polymers, 6 (1), 1-11.
[21] Lallinen, M., Koledmineen, E., Hiarala, J., and Shevclenko, A., 2013, Evidence of weak halogen bonding: New insights on itraconazole and its succinic asid cocrystal, Crysi. Gruwh Des., 13 (1) 346-351.
[22] Pindelska, E., Sokal, A., and Kolodziejski, W., 2017,
 Advanied claracterization techniques, Ad". Drug Delivery Rev., 117, 111-14c.
[23] Shete, G., Puri, V., Kunar, L., and. Bansal, A., 2010 , Soldal statecharacterication of commercial arystaline and amorphous atorvastatin calclum simples, AAPS Pharm5ctTech, 11 (2), 598-609.
[24] Chadha, R., Bhalla, Y., Nandar, A., Chadha, K., and Karan, M., 2017, Chrysin cozrystals: Charecterization and evaluation, J. Pharm. Btoned. Anal., 134, 361371.
[25] Sangeetha, M., and Mathammal, R., 2017, Establishment of the structural and enhanced physicochemical properties of the cocrystal-2-benzyl amino pyridine with oxalic acid, J. Mol. Struct.,1143, 192203.
[26] Thomas, V.H., Bhattachar, S., Hitchingham, L., Zocharski,P., Naath, M., Surendran, N., Stoner, C.L. and El Kattan, A., 2006, The road map to oral bioavaiabilityı An industrial perspective, Expert Opin. Drug Metab. Toxicol., 2 (1), 591608. Silva, E.P., Fcrcira, M.A.V., Lima, I.P.B, Lima, N.G.P.B., Barbosa, EU, Aragao, C.F.S., and Gomes, A.P.B., 2016, Compatibility study betwecn etorvastatin and excipients using DSC and FTIR, I. Therm. Anal. Calorim., 123 (2), 433-439.
[27] Obcr, C.A, and Gupta, RB., 2012, Formation of itraconazole-succinic acid cocrystals by ges entisolvent cocrystallizetion, AAPS PhermSciTcch, 13 (4), 1395-1406.
[28] Gao, Y, Gao, J., Liu, Z., Kan, H., Zu, H., Sun, W., Zhang, W, and Qian, S., 2012, Coformer selection based on degradation pathway of drugs: A case study of adefovirdipivoxil-saccharin and adefovirdipivoxil-
nicotinamide cocrystals, Int. J. Pharm., 438 (1 2) 327335.
[29] Babu, N.]. Sanphui, P., and Nangia, A., 2012, Crystal engineering of stable temozolomide co crystals, Chen. Asian J., 7 (10), 22742285.
[30] Kinn, M.S., Jin, S.J., Kim, J.S., Fark, H.J., Song, H.S., Neubert, R.H.H., and Hwang, SJ., 2008, Preparaticn, characterization and in vivo evvluation of amorphous atorvastatin calcium nanopartcles using supercritical antisolvent (SAS) process, Eur. J. Pherm. Biopharn., 69 (2), 454-465.
[31] Hsu, P.C., Lir, H.L., Wang, S.L, and Lin, S.Y., 2012, Solid-state thermal behavior and stability studies of thoophylline-citric acid co-crystals prepared by neat cogrinding or thermal treatmen:, J. Solid State Chem., 192, 238-245.
[32] Jahan, R., Islam, M.S., Tanwir, A., and Chowdhury, I.A, 2013, In vitro dissolution study of atorvastatin binary solid dispersion, J. Alv. Pharm. Technol. Res, 4(1), 18-24.
[33] Thakuria, R., Delori, A., Jones, W., Liper!, M.P., Roy, L., and Rulrigues-Hornelo, N., 2013, Plicrnaceutical co-crystals and poorly solable drugs, Int. J. Phurm., 453 (1), 101-125.

[^0]: YudiWitaksonoet al.

[^1]: YudiWicaksono et al.

