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ABSTRACT

Let G, H, and F be smplegraphs. The notation F — (G, H) meansthat any red-blue coloring of all edgesof F contains
ared copy of G or ablue copy of H. The graph F satisfying this property is called a Ramsey (G, H)-graph. A Ramsey
(G, H)-graph is called minimal if for each edge e € E(F), there exists a red-blue coloring of F —e such that F — e
contains neither a red copy of G nor a blue copy of H. In this paper, we construct some Ramsey (3K,, Ps)-minimal
graphs by subdivision (5 times) of one cycle edge of a Ramsey (2K,, Ps)-minimal graph. Next, we aso prove that for
any integer m > 3, the set R(mK,, Ps) contains no connected graphs with circumference 3.

Keywords. Ramsey minimal graph, 3-matching, Path.

1. INTRODUCTION

Given simple graphs G and H, any red-blue coloring
of the edges of F is called a (G, H)-coloring if it has
neither red copy of G nor blue copy of H. The notation
F - (G,H) means that in any red-blue coloring of F
there exists a red copy of G or a blue copy of H as a
subgraph. A graph F is said to be a Ramsey (G, H) -
minimal if F — (G, H) but for any e € E(F) there exists
a (G, H)-coloring on graph F — e. The set of all Ramsey
(G,H)-minima graphs is denoted by R(G,H). Burr,
Erdés, Faudree, and Schelp [1] proved that if H is an
arbritary graph then R(mK,, H) is a finite set. One of
challenging problems in Ramsey Theory is to
characterize all graphsin the set R(mK,, H) for a given
graph H. As usua, K, C,, and B, denote a complete
graph, acycle, and a path on n vertices, respectively. For
any connected graph G, and m > 2, the notation mG
means a digoint union of m copies of a graph G. A t-
matching, denoted by tK,, is a graph with ¢ components
where every component isagraph K.

In general, it is difficult to characterize al graphs
belonging to R(mK,, H). However, for some particular
graph H, this set R(mK,, H) has been known. For
instance, Burr, Erdés, Faudree, and Schelp [1] showed
tha R(2K,,2K,) ={Cs,3K,} and R(2K,, K;) =
{Ks, 2K3, G,}, where G, is a graph having the vertex-set

V(G,) = {c,u;,v;,w; | i = 1,2} and the edge-set E(G,)
= {cu;,cv,ew; |i =12} U {uuy,viv,, wiw,} U
{u,v,u;wy,v;w,}. Burr et al. [2] showed that
R(2K,, P;) = {C,, Cs,2P;}. Baskoro and Yulianti [3]
proved that R(2K,, P,) = {Cs, C4, C;, 2P, Ci}, where Cf
is a graph formed by a cycle on 4 vertices C, and two
pendants vertices so that two vertices of degree 3 in the
cycle C, are adjacent. Furthermore, they [3] aso proved
that R(2K,, Ps) = {Cs, C;, Cg,Co, 2Ps} U {4;] i € [1,7]},
where A;s are the graphs depicted in Figure 1. Wijaya,
Baskoro, Assiyatun, and Suprijanto [4] showed that the
cycle C, belongsto R(mK,, B,) if and only if s € [mn —
n+1<s<mn-—1]. Other results on characterizing
al Ramsey minimal graphs for the pair of a matching
versus apath can be seenin[5 - §].

. . A
A5 . d N
v e
. |\ Ag
- "‘-‘. .
. T .

Figurel Some Ramsey (2K,, Ps)-minimal graphs.
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In[1], Burr, Erdds, Faudree, and Schelp gave afamily
of (”Zﬁ non-isomorphic graphsin R(2K,, K,,) for n > 4.
These graphs are constructed from a complete graph
K,+1. In the same paper, Burr, Erdés, Faudree, and
Schelp also gave a family of (n — 2) non-isomorphic
graphs belonging to R(2K,, K, ,,). Motivated by them,
Wijaya, Baskoro, Assiyatun, and Suprijanto [9]
constructed some graphs in R(mK,, P;) by subdivision
(3 times) on any non-pendant edge of a connected graph
in R((m — 1)Ky, P;). Furthermore, Wijaya, Baskoro,
Assiyatun, and Suprijanto [10] constructed a family of
Ramsey (mK,, P,) minimal graphs from any Ramsey
((m — 1DK,,P,) minima graph by the subdivision
process on any cycle-edge (4 times).

In this paper, we focus on constructing Ramsey
(3K,, P;) minimal graphs for 3-matching versus a path
with five vertices. We aso prove that there is no graph
with circumference 3 belonging to R(mKs,, Ps) for any
integer m = 3. A circumference of agraph isthe length
of the longest cycle in that graph.

The following two lemmas provide the necessary and
sufficient conditions for any graph in R(3K,, H) for any

graph H.

Lemma 1.1 [9, 10] For any fixed graph H, the graph
F — (3K,, H) holds if and only if the following four
conditions are satisfied: (i) F — {u,v} 2 H for each
u,veV(F), (i) F— {u}—E(K;) 2 H for eachu €
V(F) and atriangle K5 inF, (iii) F — E(2K;) 2 H for
every two trianglesin F, (iv) F — E(Ss) =2 H for every
induced subgraph with 5 vertices S in F. ]

Lemmal.2 [9,10] Let H beasimplegraph. Suppose F
is a Ramsey (3K,, H)-graph. F is said to be minimal if
foreach e € E(F) satisfies (F — e) +» (3K,, H), thatis,
(i) (F—e)— {u,v} 2 Hfor eachu,v e V(F), (ii) F —
{u} — E(K;) 2 H for eachu € V(F) and atriangle K;
inF, (iii) F — E(2K3) 2 H for every two triangles in
F,(iv) F — E(Ss) 2 H for every induced subgraph with
5verticesSinF. ]

Any graph satisfying al conditions stated in Lemmas 1
and 2 is a Ramsey (3K, H) -minimal graph. The
condition stated in Lemma 1.2 is called the minimality
property of agraphin R(3K,, H).

Next theorem is one of the important properties of a
Ramsey (mK,, H)-minimal graph.

Theorem 1.3 [9] Let H be a graph and m > 1 be an
integer. If F € (mK,, H), then for any v € V(F) and
K; € F, bothgraphs F — {v} and F — E(K;) containa

Advances in Computer Science Research, volume 96

Ramsey ((m — 1)K,, H)-minimal graph. n

2. MAIN RESULTS

In this section, we give some graphs belonging to
R(3K,, Ps). We construct these graphs by the subdivision
process on any cycle edge of a connected graph in
R(2K,, P5) depicted in Figure 1. Before doing this, first
we show that a graph F;, depicted in Figure 2, is a
Ramsey (3K,, Ps)-minima graph. The vertex set of a
graph F, isV(F,) = {vy,v,, ..., v, } and theedge set of a
graph F, is E(F) ={vv;|i=12..,10} u
{v2v5, 3010}

Figure 2 A graph F; and some red-blue colorings of F;
so that F; contains no red 3K, but it contains a blue Ps.

Proposition 2.1 Let F; beagraph on 11 vertices and 12
edges as depicted in Figure 2. The graph F; is a Ramsey
(3K;, P5)-minimal graph.

Proof. First, we prove that for any red-blue coloring of
F; there exists ared 3K, or ablue Ps in F;. We can see
that F, — {v;, v;} always contains a path Ps for any 1 <
i,j <11. It can be verified that F; — E(S;) =2 H for
every induced subgraph with 5 vertices S in F;. Since F;
has no triangle then by Lemma 1.1, F; - (3K,, Ps).
Next, we prove the minimality property of F;. For any
edge e we will show that (F; —e) » (3K,, Ps). If eis
one of dashed edges in Figure 2, then each red-blue
coloring in Figure 2 provides a (3K,, Ps) coloring on
F; — e, namely a coloring that have neither red 3K, nor
blue P;. Therefore F; € R(3K,, Ps). ]

Next, we construct some Ramsey (3K, Ps)-minimal
graphs from previous known Ramsey (2K,, Ps)-minimal
graphs by subdivision process. Consider each of Ramsey
(2K,, Ps)-minimal graphsin Figure 1. By the subdivision
(5 times) on any of its cycle-edges we produce Ramsey
(3K,, P;)-minimal graphsin Figure 3. In total, we obtain
12 non-isomorphic graphs belonging to R (3K,, Ps). Two
non-isomorphic graphs F, and F; are obtained from the
subdivision of A4,. Two non-isomorphic graphs F, and Fs
are formed from A,. Two non-isomorphic graphs Fg and
F, are obtained from A5. One graph called F; is obtained
fromthegraph A,. One graph F, isformed from Az. Two
non-isomorphic graphs F;, and F;; areobtained fromthe
graph A,. Last, two non-isomorphic graphs F,, and F; 5
are formed from 4,. In the following theorem, we will
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prove that these graphs are Ramsey (3K, Ps)-minimal
graphs.

Theorem 2.2 All the graphs F,, F;, ..., F;3 in Figure 3
are Ramsey (3K, P;)-minimal graphs.

. '. ’ . . . . ) 1 4 .
e \/ ," s / n I / r ‘\f \ I
e\ & o s/ o ¢ . ../ .
J L « e « . 't R — i e 4
. .
2 F L . F I .
¥ \ % ‘\ . ‘\“

Figure3 Some graphsbelong to R(3K;, Ps).

Proof. Let F be any graph in Figure 3. It is easy to see
that F satisfies all the conditions in Lemma 1.1. Then,
F — (3K,, P5) holds. Now, we will show the minimality
property of F. Let ebeany edgeinF. If eisone of dashed
edges, then a (3K, Ps)-coloring on F — e is provided in

Figures4 and 5 for all casesof F and e. [
. o (R . o N e .
S 4 i .‘\‘\‘\—. "

Fy n

[
Fi \ "I
P . P

Figure 4 The (3K,, Ps)-coloringson F; — e if eisone
of dashed edgesand for i € [2,7].

Actualy, there are two non-isomorphic graphs
obtained by the subdivision (5 vertices) on any cycleedge
of Ag (see Figure 1). One of these two graphsis F;, and
the other is obtained by subdivision (5 vertices) on the
edge incident with a vertex of degree 4 and a vertex of
degree 3. Thelast graph isa Ramsey-(3K,, Ps) graph but
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not minimal sinceit containsagraph F; € R(3K,, P5) (in
Figure 2).
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Fis I I
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- ¥ . v . -~ 7. V.
- ) . 4 ' L
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Figure 5 The (3K,, Ps) -colorings on F; —e for i €
[8,13] if eisone of dashed edges.

In the following theorem, we will give a property of
graphs belonging to R(mK,, Ps).

Theorem 2.3 There is no Ramsey (mK,, Ps)-minimal
graph with circumference 3 for any integer m > 2.

Proof. We will prove the theorem by induction on m. If
m = 2 then it has been shown that thereis no (2K, Ps)-
minimal graph with circumference 3 (see[3)]).

Assumethat thereisno (tK,, Ps)-minimal graph with
circumference 3 for any positive integer t < m — 1. We
will show that thereis no (mK,, Ps)-minimal graph with
circumference 3. Supposeto the contrary that there exists
a graph F which is a Ramsey (mK,, Ps)-minimal graph
with circumference 3. Then, F must be aunicyclic graph.
Let ¢ be the cycle in F with V(C) = {uy, u,, us}.
According to Theorem 1.3, F — {u;} for every i € [1, 3]
containsagraph G € R((m — 1)K,, Ps). By assumption,
the set R((m—1)K;,Ps) has no graph with
circumference 3. So, G must be isomorphic to (m —
1)Ps. It forces that F — E(C) isagraph B, U P, U B,
where n; + n, + n; = 5m =15. It implies that F
contains a graph mPs. Hence, F is not minimal.
Otherwise, without loss of generality, we consider n; +
n,+n; =5m—12> 14 and assumeu, € V(Pnl), u, €
V(P,,), and uz € V(P,,). Suppose w.l.o.g. n; =n, >
ng and V(Pnl) = {ul,vnl_l, Vn, -2 ...,vz,vl} where v,
is the pendant vertex of a path B, and E(P,,) =
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{ulvnl_l,vivi+1| i €[1,n, —2]}. Clearly n, =5. If
n, > 5, we set the vertex vs € V(B,,), then we obtain
that F — {vs} doesnot contain agraph (m — 1) Ps, which
would contradict Theorem 1.3. In the case of n; = 5 we
have n, =5 and n; = 4. We obtain F — {u,} 2 2P;, a
contradiction with Theorem 1.3. Thus, the proof is
complete. ]

3. CONCLUSION

In this paper, we discuss on the construction of
Ramsey (3K,, P;)-minimal graphs. By the subdivision of
any cycle edge of 7 Ramsey (2K, P;)-minima graphs
(in Figure 1) we obtain 13 non-isomorphic Ramsey
(3K;, Ps)-minimal graphs. We also show that thereisno
Ramsey (mK,, Ps)-minimal graph circumference 3 for
any integer m > 2.

For a future work, we pose some open problems below.

Open Problem 1. Characterize al graphs belonging to
R(3K,, Ps) by excluding all graphsresulted in this paper.

Open Problem 2. Are there any connected graphs with
circumference 4 or 5 belonging to R(3K,, Ps)?

Open Problem 3. Isit truethat the subdivision (5 times)
on any cycle-edge of a connected Ramsey ((m—
1)K2,P5)-mi nimal graph always produces a connected
Ramsey (mK,, Ps)- minimal graph?
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