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Abstract: An antimagic labeling of a graph G is a bijection f : E(G) — {1,...,|E(G)|} such that the
weights w(x) = ¥y, f(y) distinguish all vertices. A well-known conjecture of Hartsfield and Ringel
(1990) is that every connected graph other than K, admits an antimagic labeling. For a set of distances
D, a D-antimagic labeling of a graph G is a bijection f : V(G) — {1,...,|V(G)|} such that the weight
w(x) = Lyeny(x) f(y) is distinct for each vertex x, where Np(x) = {y € V(G)|d(x,y) € D} is the
D-neigbourhood set of a vertex x. If Np(x) = r, for every vertex x in G, a graph G is said to be
(D, r)-regular. In this paper, we conjecture that a graph admits a D-antimagic labeling if and only
if it does not contain two vertices having the same D-neighborhood set. We also provide evidence
that the conjecture is true. We present computational results that, for D = {1}, all graphs of order
up to 8 concur with the conjecture. We prove that the set of (D, r)-regular D-antimagic graphs is
closed under union. We provide examples of disjoint union of symmetric (D, r)-regular that are
D-antimagic and examples of disjoint union of non-symmetric non-(D, r)-regular graphs that are
D-antimagic. Furthermore, lastly, we show that it is possible to obtain a D-antimagjic graph from a
previously known distance antimagic graph.

Keywords: antimagic labeling; D-antimagic labeling

1. Introduction

Let G = G(V, E) be a finite, simple, and undirected graph with v vertices and e edges.
The notion of antimagic labeling of a graph G was introduced in Hartsfield and Ringel’s
book Pearls in Graph Theory [1] as a bijection f:E(G) — {1,...,e} such that the weights
(w(x) = Lyyer(c) f(xy)) distinguish all vertices. Hartsfield and Ringel [1] also conjectured
that every connected graph other than K; admits antimagic labeling in this seminal work.

As of today, the antimagic conjecture is still open; however, much evidence has been
presented by many authors. By using a probabilistic method, Alon et al. [2] proved
the conjecture for graphs with minimum degree at least Clog |V|, for some constant C.
Eccles [3] improved this result, by proving the conjecture for graphs with average degree at
least some constant dy. Hefetz, Saluz, and Tran [4] utilized Combinatorial Nullstellensatz
to prove that if a graph on p¥ vertices, where p is an odd prime and k is a positive integer,
admits a Cp-factor, then it is antimagic. A series of articles by Cranston, Liang, and Zhu [5],
Bérczi, Bernath, and Vizer [6], and Chang et al. [7] showed that for k > 2, every k-regular
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graph is antimagic. For trees, Kaplan, Lev, and Roddity [8] proved that a tree with at most
one vertex of degree 2 is antimagic. On the other hand, Liang, Wong, and Zhu [9] proved
that a tree with many vertices of degree 2 is antimagic. The latest result on antimagic trees
is by Lozano, Mora, Seara, and Tey [10] who proved that caterpillars are antimagic.

In 2017, Arumugam et al. [11] and Bensmail et al. [12] independently introduced a
weaker notion of antimagic labeling, called the local antimagic labeling, where only adjacent
vertices must be distinguished. Both sets of authors conjectured that any connected graph
other than K, admits a local antimagic labeling. This conjecture has been completely settled
by Haslegrave [13] using probabilistic method.

Another type of antimagic labeling was introduced by Kamatchi and Arumugam in
2013 [14]. A bijection f : V(G) — {1,2,...,v} is called a distance antimagic labeling of graph
G if for two distinct vertices x and y, w(x) # w(y), where wr(x) = Ly en(x) f(y), for N(x)
the open neighborhood of x, i.e., the set of all vertices adjacent to x. A graph admitting a
distance antimagic labeling is called a distance antimagic graph. In the same paper, Kamatchi
and Arumugam conjectured that a graph G is distance antimagic if and only if G does not
have two vertices with the same open neighbourhood.

Some families of graphs have been shown to be distance antimagic, among others,
the path P,, the cycle C,; (n # 4), the wheel W, (n # 4) [14], and the hypercube Qj,
(n > 3) [15]. In 2016, Llado and Miller [16] utilized Combinatorial Nullstellensatz to prove
that a tree with I leaves and 2! vertices is distance antimagic.

In 2011, O’Neal and Slater [17] introduced the D-magic labeling as follows.
Let D C {0,1,...,diam(G)} be a set of distances in G. The graph G is said to be D-
magic if there exists a bijection f : V — {1,2,...,v} and a magic constant k such that for
any vertex x, wg(x) = Lyeny(x) f(y) = k, where Np(x) = {y|d(x,y) = d,d € D} is the
D-neighborhood set of x.

When we consider the D-neighborhood set of a vertex, the regularity of a graph is
defined as follows. A graph G is said to be (D, r)-reqular if [Np(x)| = r for every vertex
x € G. Clearly, an regular graph is ({1}, r)-regular.

Inspired by the notion of D-magic labeling, the idea of distance antimagic labeling
was generalized by considering a set of distances D C {0,1,...,diam(G)} and the D-
neighborhood set of a vertex.

Definition 1. A D-antimagic labeling of a graph G is a bijection f: V(G) — {1,...,v} such that
the weight wy(x) = Yyeny (x) f () is distinct for each vertex x.

It is clear that if a graph contains two vertices having the same D-neighborhood set,
then the graph does not admit a D-antimagic labeling. Here we boldly conjecture that the
converse of the previous statement is also true, and thus we propose the following.

Conjecture 1. A graph admits a D-antimagic labeling if and only if it does not contain two vertices
having the same D-neighborhood set.

If x and y are two distinct vertices with the same D-neighborhood set, the two vertices
are called D-twins of each other, denoted by x ~p y. It is clear that ~p is an equivalence
relation, and thus Conjecture 1 can be rewritten as: “A graph admits a D-antimagic labeling
if and only if its vertex set partition defined by ~p contains only singletons”.

An automorphism of a graph G is a permutation of V(G) preserving adjacency. A graph
G is said to be vertex-transitive if, for any two vertices x and y, there exists an automorphism
of G that maps x to y and it is said to be edge-transitive if, for any two edges xy and uv,
there is an automorphism of G that maps xy to uv. If G is both vertex-transitive and
edge-transitive, G is symmetric. Recall that a cycle, a complete graph, and a hypercube are
symmetric. A path on at least four vertices and a wheel on at least five vertices are neither
vertex-transitive nor edge-transitive.

In the rest of the paper, we shall provide several pieces of evidence that Conjecture 1
is true. First, in Section 2, we provide computational results where all graphs of order
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up to 8 concur with Conjecture 1, for the case of D = {1}. Second, in Section 3, we show
that the set of (D, r)-regular D-antimagic graphs is closed under union. For particular
D, we provide examples of symmetric (D, r)-regular graphs that are D-antimagic, so the
disjoint union of those graphs is also D-antimagic. Examples of disjoint union of non-(D, r)-
regular graphs that are neither vertex-transitive nor edge-transitive but admit D-antimagic
labelings are also presented in this section. Lastly, in Section 4, we show that it is possible to
obtain a D-antimagic graph from a previously known distance antimagic graph. We realize
that Conjecture 1, if true, will be laborious to prove, and thus in the following sections, we
propose several open problems that hopefully are more feasible to solve.

2. Computational Result

We build an exhaustive algorithm to search for all distance antimagic graphs of order
v. We split the algorithm into three functions: Algorithm 1 checks whether an input
graph G contains {1}-twins by seeking two identical rows in the adjacency matrix of G.
Algorithm 2 decides whether labeling is distance antimagic, and Algorithm 3 searches for
distance antimagic graphs. We implemented this algorithm in C++, and the source code
can be found in [18].

Let V(G) = {x1,x2,..., Xy}, A be the adjacency matrix of G, and the labeling matrix
L(G) be a v x v matrix whose (i,i) entry is A(x;), the label of vertex x;.

Algorithm 1 Check If G Contains {1}-Twins

1: function ISTWINS(G)

2 fori < 1tovdo

3 forj < 1toovdo

4: vi=Ai1.0 > v; is the ith row vector of A
5: ifi # jand v; # v; then
6.

7

8

9

return false > return false if two identical row vectors are found
end if
end for
end for
10: return true
11: end function

Algorithm 2 Evaluate Distance Anti Magic

1: function EVALDISTANCEANTIMAGIC(L(G))

2 fori < 1tovdo

3 w; =0 > initialize weight w;
4 forj < 1tovdo > calculate weight w;
5: w; < w; + A(x]-)(Ai,]-)
6

7

8

9

end for
end for
if ISUNIQUE(w) then > check if w; # wj for all i, j
: return 0
10: else
11: return 1
12: end if
13: end function
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Algorithm 3 Search Distance Anti Magic
1: function SEARCHDISTANCEANTIMAGIC(G, P) > P is the set of permutation on v

elements
2: c+1
3: i1
4; if ISTWINS(G) then
5: whilec # 0or Aandi < |P| do
6: A=DP
7: L(B) = L(G,A)
8: ¢ < EVALDISTANCEANTIMAGIC(L(B))
9: i+ i+1
10: end while
11: end if

12: end function

We run the algorithm to search for all distance antimagic (non-isomorphic) graphs of
order up to 8 generated by nauty [19], with results as depicted in Table 1.

Table 1. Distance antimagic graphs of order v,1 < v < 8.

o # Non-Isomorphic # Graphs Not Containing # {1}-Antimagic
Graphs {1}-Twins Graphs

1 1 1 1

2 2 1 1

3 4 2 2

4 11 5 5

5 34 16 16

6 156 78 78

7 1044 588 588

8 12346 8047 8047

Thus, we obtain the following result, which supports Conjecture 1.

Theorem 1. A graph of order v,1 < vs. < 8, admits a {1}-antimagic labeling if and only if it
does not contain two vertices having the same {1}-neighborhood set.

3. Closedness of Union of D-Antimagic Graphs

Theorem 2. Let D be an arbitrary set of distances and G, H be two D-antimagic graphs. If H is
(D, r)-reqular and |Np(x)| < r, for every x € V(G), then G\J H is also D-antimagic.

Proof. Let g and h be D-antimagic labelings of G and H. Define a new labeling [ for G |J H
asl(x) = h(x) +v, whenx € H,and I(x) = g(x), when x € G.

We shall show that [ is D-antimagic. Let x and y be two distinct vertices in G |J H.
If both x,y € V(G), then w;(x) = wg(x) # we(y) = w;(y). If both x,y € V(H), then

wy (x) YueNp (x) (h(u) +0)
ZuEND(x) h(”) + ‘ND(X)|U
wy(x) +ro

wy(y) +ro

w; ()

1 N

The last case is if, without loss of generality, x € V(G) and y € V(H). Since
wy(x) = wg(x) < vs.maxeey(g) INp(x)|and wi(y) > (0+1)+ (v+2) +...+ (v+7) > or,

then w (x) < vs.max,cy(g) INp(x)| < vr <w(y). O
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Let 9,/(D) be the set of all D- antimagic graphs and ¢ (D, r) be the set of all (D, r)-
regular graphs. A direct consequence of Theorem 2 is

Corollary 1. ¢4,,(D)N¥(D,r) is closed under union.

Corollary 1 is a generalization of a result in [15], where it was proved that if G is a
regular distance antimagic graph, then 2G is also distance antimagic.

Direct application of Corollary 1 to known graphs in ¢4,,(D) ¥ (D, r) results in the
following.

Corollary 2. 1.  Forn; #4,i =1,...,k, the disjoint union of cycles Uile Cp, is {1}-antimagic.
2. Form; >3,i=1,...,k, the disjoint union of cycles US_, Cy, is {0,1}-antimagic.

3. Forn;>1,i=1,...,k, the disjoint union of complete graphs \J_, Ky, is {1}-antimagic.
4. Forn; > 3,i=1,...,k, the disjoint union of hypercubes U;‘:l Qu, is {1}-antimagic.

5. Fornj=0mod4,i=1,...,k, the disjoint union of hypercubes U?:l 2Qy, is {0, 1}-antimagic.

Proof. Due to facts that:

For n # 4, the cycle C, is {1}-antimagic [14].

For n > 3, the cycle C, is {0, 1 }-antimagic [20].

For n > 1, the complete graph K, is trivially {1}-antimagic.

For n > 3, the hypercube Qy, is {1}-antimagic [15].

For n = 0 mod 4, the disjoint union of two hypercubes 2Qj, is {0, 1}-antimagic [21].
O

ARl e

Although closedness under union is still unknown for the set of non-regular graphs,
in the following theorems, we shall provide some families of disjoint union of non-regular
graphs admitting D-antimagic labelings for D = {1}. We start by showing that particular
cases of disjoint union of paths are distance antimagic.

Theorem 3. For any positive integers m,n > 3, the disjoint union of two paths Py, U Py is
distance antimagic.

Proof. Let V(P,) = {051) :1<i<m}and V(P,) = {v](.2> :1 < j < mn}. We shall consider
three cases which depend on the parity of m and n.

Case 1. Without loss of generality, when m odd and #n even. Define a labeling
g: V(PuUP,) — {1,2,..,m+n}, where g(o{") = m+n, fori =1,g(0") =n+i—1,
for2<i<m, andg(v](.z)) =jforl1 <j<n.

Under this labeling, the weights are:

n+1, ifi=1,

(1)) m+2n+2, ifi=2,

! 2n+2i—2, f3<i<m-—1,
n+m-—2, ifi=m,

and

]

) 27, fl1<j<n-1,
wg(@®) = {7 .._]
n—1, ifj=mn,

It is clear that every vertex in P, has a distinct weight less than any weight in P,.
On the other hand, in Py, the only even weights are 2n 4+ 2i — 2,3 <i < m — 1, all of which
are different. To conclude, for the odd weights in Py, the following inequalities hold

n—1l<n4+l<n4+m—-2<m+2n+2.
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Case 2. When both m and n are even. Since the case when m = #n is considered in

Theorem 4, we may assume m < n. Define a labeling g1 : V(Py,) — {1,2,...,m}, where

Q1 (vfl)) = i. Under this labeling, wy, (ZJIO)) <2m—1,forl <i<m.

We then define three different labelings for P,, depending on the value of n.

Sub Case 2.1. When m = 4 and n = 6, define a labeling ¢> : V(P,) — {5,...,10}, where

gz(ng)) = 5,g2(0£2)) = 7,gz(v§2)) =6, gz(vf;z)) = 9,g2(0é2)) = 8,g2(véz)) = 10.

Here the weights are:

W, (017) = 7,00, (08)) = 11, wg, (v57) = 16,0, (07)) = 14, wg, (v57)) = 19, wg, (v)) = 8,

all of which are larger the the weights of all vertices in Py,.
Sub Case 2.2. For n = m +2,m > 6, define a labeling g : V(P,) — {1,...,n}, where

m+j, ifj=1,m+1,m+2,
= (< 2m, ifj=2,
m+j—1, if3<j<m.

This labeling results to the following weights of vertices in P,,.

2m+3j—3, ifj=1,2,
3m+3, ifj =3,
we(0)) = {2m +2j -2, f4<j<m—1,
2m+2j—1, ifj=mm+1,
2m + 1, if j = m+ 2.

The even weights are 2m < 2m +6 < 2m+8 < ... < 4m — 4 and the odd weights
2m+1<2m+3 <3m+3 <4m—1 < 4m + 1, all of which are larger than the weights of
vertices in Py,.

Sub Case 2.3. When n > m + 2, m > 4, define a labeling ¢ : V(P,) — {1,...,n}, where

m+j, ifj=1andn,
2m, ifj=2,

gz(v](.z)): m+j—1, if3<j<m,
m+j+1, ifm+1<j<n-2,
2m+1, ifj=n—-1

Thus, we obtain the following weights for vertices in P,,.

2m+3(j—1), ifj=1and?2,

2m+2j -2, if4<j<m-—1,
2 2m + 2j, ifj=mand m—+1,
w82<v]())—

2m+2j+2, itm+2<j<n-3,
3m+n-—1, ifj=n-2,
2m+2n—1, ifj=n-1,
2m+1, if j =n.
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Here the odd weights are 2m +1 <2m+3 <3m+3 <3m+n—-1<2m+2n—-1
and the even weights are 2m,2m + 6,2m +8,...,4m — 4,4m,4m +2,4m 4+ 6,4m + 8§, ...,
2m +2n — 4.

Case 3. When both m and #n are odd, define a labeling ¢ : V(P, UP,) — {1,...,m+n},
where g(vfl)) =i+1,forl<i<m, and

g(U(z)) _ 1, ifj=1,
] m+j, if2<j<n.

Under the labeling g, we obtain the following weights of vertices.

3, ifi=1,
we0My ={2it2, if2<i<m—1,
m, ifi=m,

and
m+2j, ifj=1and?2,
= {2m+2j, if3<j<n-1,
m+n—1 ifj=n.

The odd weightsare3 <m < m+2 < m+4 < m+n — 1 and the even weights are
2i4+2,for2 <i<n,and 2m + 2j, for 3 < j < n — 1. This concludes our proof.
An example of a distance magic labeling for Py U Pj, can be viewed in Figure 1. [

W W |
21 14 16 18 20 1 3 5 7 9 11
Figure 1. A distance antimagic labeling for Py U Pj5.

Theorem 4. For n # 3, mP, is distance antimagic.

Proof. Let V(mP,) = {vz :1<i<mnl<j<m} and E(mP,) = {v{:vgﬂ 1 <i <
n—1,1 <j<m}. We shall consider three cases:

Case 1. When n = 0,2(mod 4), define a labeling f of mP, as follows.

i i—1)+ 4 ifieven
'U]4 —_ Tl(] 2/ 7
f(@) {n(j1)+l+"2+1, if i odd.

Thus, we obtain the weight of each vertex as follows.

1+n(j—1), ifi=1,
Wi (o)) = (n+i+1)+2n(j—1), ifi=24,...,n-2,
P Yiran(i—1), i£i=3,5.. n-1,
nj/ 1fl=1’l

Case 2. When n = 1(mod 4), define a labeling f of mP, as follows.

. 3—i+n(j—1), ifi=1,2,
f)=Sn—-134n(-1), ifi=35...,n
w5 n(j—1), ifi=4,6,...,n—1.
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Thus, the weight of each vertex is as follows.

1+n(j—1), ifi=1,
n+2+2n(j—1), ifi=2,
Tm+3)+2n(j—1), ifi=3,
m—i+3+2n(j—1), ifi=46...,n—1,
n+5—i+2n(j—1), ifi=57,...,n-2,
3+n(j—1), ifi =n.

Case 3. When n = 3(mod 4), define a labeling f of mP, as follows.

. i+n(j—1), ifi=1,2,
f)=Sn-134n(-1), ifi=35,...,n
w54 n(j—1), ifi=4,6,...,n—1.

This leads to the following weights of vertices.

2+n(j—1), ifi =1,
n+1+2n(j—1), ifi=2,
Tm+5)+2n(j—1), ifi=3,
2n—i+3+2n(j—1), ifi=4,6,...,n—1,
n+5-1+2n(j—1), ifi=57...,n-2,
3+n(j—1), ifi = n.

This concludes the proof since, in all three cases, all the vertex-weights are distinct.
An example of a distance antimagic labeling for 4P5 is depicted in Figure 2. [

1 3 6 8 11 13 16 18
2 5 4 7 10 9 12 15 14 17 20 19
Figure 2. A distance antimagic labeling for 4Ps.

In general, we are still not able to prove that the disjoint union of arbitrary paths is
distance antimagic.

Problem 1. Show that Ui-‘zanl., where n; # 3,1 < i < k, is distance antimagic.

The next three theorems deal with the distance antimagicness of graphs containing
many triangles, i.e., wheels, fans, and friendship graphs. A wheel W, is a graph obtained by
joining all vertices of a cycle of order 1 to another vertex called the center. Let V(W,) =

{x0,x1,...,x,} where xq is the center and x3, ..., x,, are the vertices of the cycle.

Theorem 5. For m > 1and n > 3, mW, is distance antimagic.

Proof. Let V(mW,) = {x{ |i=0,1,...,n j=1,2,...,m}. We define different vertex
labelings f of mW,,, depending on the value of n.

Case 1. When 7 is even.



Symmetry 2021, 13, 2071 9 of 15

Sub Case 1.1. When n = 0(mod 4).

(n+1)j for i=0,
(m+1)(j—1)+1 for i=1,
o) = n+1)(j—1)+ (@G- ) for i:3,5,...,%n—|—1,
1 n+1)j—-1)(n+2— for i=in+3,in+5,...,n—1,
( j 2 2
(n+1)(]—1)—|—2n—1+i for i—24 .,211,
n+1)(j—1)+13n+2—i for i=1in+2In+4,...,n
j 2 2 12
This will lead to the following weights of vertices.
In(n+1)(2j - 1) for i=0,
(n+1)(3j—2)+n+3 for i=1,
(n+1)(3j—2) + for i=2,
4 (n+1)(3j—2)+n—2+21 for i=3,5...,in—1,
wr(xl) =¢ (n+1)(3j—-2)+2n—1 for i=1In+1,
n+1)(3j —2) +3n+4—2i for i=4in+3in+5...,n-1,
( ] 2 2
n+1)3/—2)—2+2i for i=4,6,...,5n,
(n+1)(3j-2) - 2
(n+1)3j—2)+n—1+3(1+i) for i=jin+2,
n+1)(3j —2) —2n+4—2i for i=in+4,in+6,...,n
(n+1)(3j-2) - 2 2
Sub Case 1.2. n = 2(mod 4).
' (n+1)j for i=0,
)= (m+1)(j-1)+3({+1) for i=13,...,n—1,
i ] 2
(n+1)j— i for i=2,4,...,n
and so we obtain the following vertex-weights.
sn(n+1)(2j—1) for i=0,
, (n+1)3j—tm+1+i) for i=1,
we(xl) =49 (n+1)(3j—2)+1+i for i=2,4,---,n1-2,
n+1)3j—i for i=3,5---,n—1,
(n+1)3j
(n+1)(3j—2)+i(n+2) for i=n.

Case 2. When 7 is odd.

Sub Case 2.1. When n = 1,5(mod 6).

(n+1)(j—1)+i forjodd i=1,2,...,n,
(n+1)j—n+i forjeven i=0,1,...,n.

' (n+1)j forjodd i=0,
fx) =

The vertex-weights under this labeling are as follows.

For odd j,
%n( +1)(2j - 1) for i=0,
iv_ ) n+1)3j—2)4+n+2 for i=1,
wf(xi)* (n+1)(3j—2)+2i for i=23,---,n—-1,
(n+1)(3j—2) +n for i=mn,
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and for even j,
%n(2](n+l)—n+1) for i=0,
)3j —2n+2 for i=1,

(n+1
(n+1)3]—3n+21 for i=23,---,n—1,
(n+1)3j —2n for i=n.

Sub Case 2.2. For n = 3(mod 6).

i (n+1)j for i=0,
f(xi)_{ (n+1)(j—1)+i for i=1,2,...,n

Thus, we obtain the following vertex-weights.

In(n+1)(2j - 1) for i=0,

iv_ ) m+1)3j—2)+n+2 for i=1,
W) =4 (4 1)(3j—2) 42 for i=23,n—1,

(n+1)(3j —2)+mn for i=n.

This concludes the proof since, in all the cases, all the vertex-weights are clearly distinct.
An example of a distance antimagic labeling for 4W; can be seen in Figure 3. [

26

30 29
Figure 3. A distance antimagic labeling for 4W;.
A fan F, is a graph obtained by joining all vertices of a path of order n to a further

vertex called the center. Let V(F,) = {xo, x1,..., X, } where xy is the center and x1, ..., x,
are the vertices of the path.

Theorem 6. For m > 1and n > 1, mF, is distance antimagic.

Proof. V(mF,) = {x{ |i=0,1,...,n,j=1,2,...,m}. We define a vertex labeling f of mF,
as follow:

Case 1. When n is odd,
f) =m+1)(—1)+1+i, for i=0,1,,n,

and thus we obtain the following vertex-weights.

n(n+1)(j—1)+ In(n+3) for i=0,

i) 2m+1)(-1)+4 for i=1,
wrlxg) = 3(n+1)(j—1)+3+2i for i=2,3,-,n—1,

2(n+1)(j—-1)+n+1 for i=n.

Case 2. When n is even.
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Sub case 2.1. When j = 2,4(mod 6),
, n+1)(j-1)+i(n+2) for i=0,
fx) =< m+1)(G-1)+i for i=12,...,%,
m+1)(j—1)+1+i for i=5+1,5+2,...,n,

which leads to the following vertex-weights.

n(n+1)(j—1)+in(n+2) for i=0,
2n+1)(j—1)+3n+3 for i=1,
w (xj)— 3(n+1)(j—1)+in+1+2i for i=23,...,4-1
PRI 34+ 1)(—1) +In+2+42i for i=1,1041,
3(n—|—1)(]—1)—|— sn+3+4+2i for i=5+2,5+1,...,n—1,
2n+1)(j—1)+5Bn+2) for i=n.
Sub Case 2.2. When j = 0(mod 6)
f(x/.')— (n+1)j—5+i for i=0,1,...,%,
i m+1)(j—-1)—5+i for i=5+15+2
and so we obtain the following vertex-weights
nj(n+1) — in? for i=0,
2j(n+1)—n+2 for i=1,
wi(xl) = 3j(n+1)— $3+2i for i=23,...,4-1
PRV Bjtn+1) - Isn—1+2i for i=12,1+1,
3j(n+1)(j—1) m—2+2 for i=54+25+1,...,n-1,
2j(n+1)—n—-2 for i=n.

In all cases, we can see that all the weights are distinct.
Examples of distance antimagic labelings for for 4F¢ and 4F; are depicted in Figure 4. [J

3 10 17 24
5 12 19 26
2 9 16 23
20 27
4 6 1 13 18 25
8 15 22
1 7 14 21 28
5 13 21 29
12
4 6 14 20, 22 28 30
27,
3 1 19
1 7 9 15 7 23 o8 31
2 8 0 18

Figure 4. Distance antimagic labelings for 4F; and 4F;.

A friendship graph fy is obtained by identifying a vertex from 7 copies of cycles of
order 3. Let V(mf,) = {x{), x]l, cX
fori=1,...,nandj=1,2,...,m

]211} where x{), x]2i71, x]2i are the vertices in the j-th Cs,

Theorem 7. Form > 1and n > 3, mf, is distance antimagic.

Proof. We define a vertex labeling f of mf, as follow.



Symmetry 2021, 13, 2071

12 of 15

Forj=1,2,...,m

in [ (2n+1)j, =
f(xl.)—{ 2n+1)(j—1)+i, for i=1,2,---,2n,

and so we obtain the following vertex-weights.
‘ n(2n+1)(2j—-1), for i=0,
we(xl) =1 (4n+2)j—2n+i, for i=1,3,---,2n—1,
(4n+2)j—2(n+1)+i, for i=2,4,---,2n,

where all the weights are distinct.
An example of a distance antimagic labeling for 4f; can be viewed in Figure 5.

% % v %

Figure 5. A distance antimagic labeling for 4f3.

We conclude this section by considering the disjoint union of unicyclic graphs. A sun
Sy is a cycle on n vertices with a leaf attached to each vertex on the cycle. Let the vertex set
ofsun V(S,) = {x1,...,Xn,¥1,...,Yn}, where d(x;) =3 and d(y;) = 1.

Theorem 8. Form > 1and n > 1, mS,, is distance antimagic.

Proof. Let V(mS,) = {x{,yz |i=1,...,n,j=1,2,...,m}. We define a vertex labeling f
of mS,, as follows.

f(x{) =(m+j—1)n+i for i=12,...,n,

and '
fy)=(G-Dn+i for i=12,...,n.
Under the labeling f, the vertex-weights are
wr(y) = f(x]) = (m+j—n+i for i=12,...n
and
, 2n(m—1)+3+43nj, for i=1,
wf(xf): n(2m—3)+3(nj+i), for i=23,...,n—1,
n(2m — 1) + 3nj, for i=n,

which are all distinct.
An example of a distance antimagic labeling for 357 is in Figure 6. [

With several examples that we have presented, more general questions are in
the following.

Problem 2. If G is a non-reqular graph containing no {1}-twins, show that nG is distance antimagic.

Problem 3. If Gy, Gy, . .. Gy, are non-regular graphs containing no {1}-twins, show that \Ji_; G;
is distance antimagic.
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Figure 6. A distance antimagic labeling for 3Sy.

4. Distance-D Graph and D-(Anti)magic Labeling

For any connected graph G, we denote by G, 1 < k < diam(G), the distance-k graph of
G, as the graph whose vertices are those of G and whose edges are the 2-subsets of vertices
at mutual distance k in G [22]. In particular, G; = G. On the other hand, the k-th power
graph of a graph G, G¥, is another graph that has the same set of vertices, but in which two
vertices are adjacent when their distance in G is at most k [23]. Clearly, G#@"(G) = K.

We generalize the two aforementioned graphs by defining the distance-D graph of
G, Gp, as the graph with the same vertices as G, where two vertices are adjacent when
their distance in G is in D. Clearly, the distance-k graph Gy = Gy, and the kth power

Gk=¢G {0,1,2,...k}- (For examples, see Figures 7 and 8.)

(@ (b)

Figure 7. (a) A {2}-magic labeling for Cs. (b) A distance antimagic labeling for (Cs) 5}

7 7

Figure 8. (a) A {0,2}-antimagic labeling for a binary tree T. (b) A {0, 1}-antimagic labeling for Ty ).

The next theorem shows that when G is D-(anti)magic, Gp is either {1}-(anti)magic
or {0, 1}-(anti)magic.

Theorem 9. Let G be a D-(anti)magic graph.
1. If D does not contain 0 then Gp is {1}-(anti)magic.
2. If D contains 0 then Gp is {0, 1}-(anti)magic.

Proof. Suppose that f is an (anti)magic labeling of G. From the definition of Gp, for any
x, N(x) in Gp is the same with Np(x) in G. If D does not contain 0, then -, cn(x) f(x)
in Gp is the same with ¥ <y, (x) f(x) in G. On the other hand, if D contains 0, then

f(x) + Lyen(x) f(x) in Gp is the same with ¥, ey () f(x) in G O
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However, since it is relatively easier to find a distance (anti)magic labeling for a graph,
the converse of Theorem 9 is more interesting for us. Let ¢, be the set of graphs of order
n. Define a function %p : 4, — %,, where .Zp(G) = Gp. It is clear that %] is neither
injective nor surjective. For instance, as depicted in Figure 9, (Cy) ) is 2P, however there
is also another graph, in this case P;, where (Py) (2 = 2P;. Notice that both C4 and P, are
{2}-antimagic with the same vertex labeling.

4 4 4

1 1 1
(a) (b) (c)

Figure 9. (a) A {2}-antimagic labeling for C4. (b) A distance antimagic labeling for (Cy) 2 ©A
{2}-antimagic labeling for P;.

Despite the fact that .#p is not invertible, we can still state the following.

Theorem 10. Suppose one of the following conditions holds:

1. Let D be a distance set not containing 0 and G be a {1}-(anti)magic graph.
2. Let D be a distance set containing 0 and G be a {0, 1}-(anti)magic graph.

If there exists a graph H such that G = Hp, then H is D-(anti)magic.

Theorem 10 hints that if we manage to find a distance (anti)magic graph, we might as
well find D-(anti)magic graphs for suitable sets of Ds.
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