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Abstract

A function ¢ : V(G) — {1,2,...,k} of a simple graph G is said to be a non-inclusive distance
vertex irregular k-labeling of G if the sums of labels of vertices in the open neighborhood of every
vertex are distinct and is said to be an inclusive distance vertex irregular k-labeling of G if the
sums of labels of vertices in the closed neighborhood of each vertex are different. The minimum
k for which GG has a non-inclusive (resp. an inclusive) distance vertex irregular k-labeling is called
a non-inclusive (resp. an inclusive) distance irregularity strength and is denoted by dis(G) (resp.
by ai\s(G)). In this paper, the non-inclusive and inclusive distance irregularity strength for the join
product graphs are investigated.
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1. Introduction

All graphs considered here are assumed to be simple, finite and undirected. Let GG be a graph
with vertex-set V(G) = V and edge-set F(G) = E. For a vertex v € V, the degree of v, denoted
by deg.(v), is the number of vertices adjacent to v. The open and closed neighborhood of v is
defined as Ng(v) = {u : wv € E} and Ng[v] = {v} U Ng(v), respectively. The maximum
degree of vertices in G is denoted by A(G). By graph labeling we mean any mapping that carries
some sets of graph elements to a set of non-negative integers, called labels. There are many types
of graph labelings that have been developed. A survey of recent results on graph labelings is
provided by Gallian [8].

Let k be a positive integer and let a graph G be given. A function ¢ : V' — {1,2,... k} is said
to be a non-inclusive distance vertex irregular k-labeling of G if the weights are distinct for every
pair of two distinct vertices, where the weight of a vertex v is defined as the sum of labels of vertices
in the open neighborhood of v in GG. The non-inclusive distance irregularity strength of G, denoted
by dis(G), is the minimum integer k for which G has a non-inclusive distance vertex irregular k-
labeling. Furthermore, the labeling ¢ is called an inclusive distance vertex irregular k-labeling of
G if for each two vertices u and v, there is wig(u) = 3 cnow P(T) # Dyeng) QW) = wty(v).
The least integer k for which G has an inclusive distance vertex irregular k-labeling is called the
inclusive distance irregularity strength, @:(G) We will say that dis(G) = oo and @:(G) = 00
whenever such a non-inclusive and an inclusive distance vertex irregular labeling does not exist,
respectively.

The notion of non-inclusive distance vertex irregular labelings was intoduced in 2017 by Slamin
[13]. Meanwhile, Baca et al. [3] developed inclusive distance vertex irregular labelings one year
later as a variation of the non-inclusive irregularity strength of graphs. These graph invariants are
then generalized by Bong et al. [5] to non-inclusive and inclusive d-distance irregularity strength
of graphs where d is an integer arbitrarily taken from 1 up to diameter of the graph. Thus, a
non-inclusive 1-distance vertex irregular labeling is called a non-inclusive distance vertex irregular
labeling. Similarly, we call an inclusive 1-distance vertex irregular labeling as an inclusive distance
vertex irregular labeling.

A number of research results on non-inclusive and inclusive d-distance irregularity strengths
have been found as seen in [3, 4, 11, 13, 14, 15, 16, 17] when d = 1 and in [5, 18] when d > 1.
In the literature, it was investigated the total version of this concept, see [19, 20]. Furthermore,
related topics on the subjects can also be found in, for example, [1, 6, 9], and for some new results,
see [2, 10, 12].

The following lemmas give the necessary and sufficient condition for a graph G to have finite
dis(G) and dis(G).

Lemma 1.1. [7] Let G be a graph. Then dis(G) < oo if and only if Ng(u) # Ng(v) for every two
vertices u,v € V.

Lemma 1.2. [3] Let G be a graph. Then al\s(G) < oo if and only if Ng[u] # Ng|v] for every two
vertices u,v € V.

In the present paper, we deal with a so-called product of graphs namely a join product. The
Jjoin product of two graphs G and H, denoted by G & H, is a graph obtained from G and H by

2
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joining an edge from each vertex of GG to each vertex of H. We represent the vertex-set of G & H
with V(G @ H) = V(G) U V(H) and the edge-set with E(G & H) = E(G)UE(H)U{ww :u €
V(G),v € V(H)}. We here consider the following problems.

Problem 1. Given two graphs G and H with dis(G) and dis(H ), respectively, what is the value of
dis(G @ H) going to be?

Problem 2. Similarly, if two graphs G and H with al\s(G) and de(H ), respectively, are given,
what is the value of dis(G @ H) going to be?

Using Lemma 1.1, it is easy to show that dis(G & H) = oo if and only if either dis(G) or

dis(H) is infinite. Also, it is not hard to show, by Lemma 1.2, that 51\5(6Y @ H) = oo if and only if
one of the following statements holds:

(i) either de(G) or CTI\S(H ) is infinite; or
(i) both A(G) = |V(G)|—land A(H) = |V(H)| — 1.

Thus, in the rest of the paper, we will only deal with the case when dis(G & H) < oo and &E(G &
H) < 0.

We need to define some notations related to the non-inclusive distance irregularity strength of
graphs as follows. Let G and H be graphs with dis(G) < oo and dis(H) < oco. Let ¢ and ¢ be
a non-inclusive distance vertex irregular dis(G)-labeling of G and a non-inclusive distance vertex
irregular dis( H )-labeling of H, respectively. For a vertex v € V() and a non-negative integer «,
we define an a-weight of v under a labeling ¢« of a graph G as

wty (v) = wiy, (v) + adegq(v).

We denote by vy, a vertex of G in such away that wtg_(vy,,) = max {wtg (v) - v e V(G)}.

max max

Analogously, we write v,;, to mean a vertex of G for which wt§ (v
V(G)}. For a special a = 0, we will use wt s, (v), Wy, (Vmax) and wt s, (Umin) instead of wty,_(v),

o
min

«

om) = min {wtg (v) 1 v €

wty (V) and wt) (vy), ), respectively. Further, we also consider positive integers S¢ and v, i
such that )t (s
Be = max {1, max{ Bezggzz_))_zjegg((zlf” +1:wu,u; € V(G)}} (D
and 5
wt ('UfmGax)frlUt (Umin)+21; ¢ (v)fzu ¢ (u)
YG,H = max {507 L - N |V(G)\—€X((}(IJ)) . e J i 1} ’ @
respectively.

With respect to the inclusive distance irregularity strength, we shall also define some notations
as follows. Given two graphs G and H with dis(G) < oo and dis(H) < oo, let ¢¢ and ¢y be an
inclusive distance vertex irregular dis(G)-labeling of G and an inclusive distance vertex irregular

ai\s(H )-labeling of H, respectively. Let & be a non-negative integer. We define an a-weight of a
vertex v of G under a labeling ¢« of a graph G as

wt%c (v) = wtz_ (v) + (degg(v) + 1)a.

3
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Then we denote by v2, a vertex of (G in such away that wt% (v2, ) = max {wt% (v) 1 v €
G

max max a
V(G)}. Similarly, we also write v3;, to stand for a vertex of G in which wts (v2,) =

min {wt%c(v) : v € V(G)}. In particular, when & = 0, we will use, respectively, witg_(v),

w3 (Umax) and wit;_(Vmin) instead of wt%a(v), wt%c (v9,.) and wt%G (v9..). Moreover, we also

define positive integers EG and 7 g such that

BG = max {1, max{ HZ&EZ]))::E?((ZJ))J +1:u,u; € V(G)}} 3)
and
R e K T
respectively.

Let x and y be two given integers. Then we define

v [rify#0,
y 0, otherwise.

2. dis(G @ H) and dis(G & H)

In this section, we give the construction of the non-inclusive and inclusive distance vertex
irregular labeling for the join product graphs. Our basic idea is to construct a new non-inclusive
distance vertex irregular labeling for the join product graphs G & H from the described non-
inclusive distance vertex irregular labeling of G and H. Similar ideas are then used to construct
the inclusive distance vertex irregular labeling of the join product graphs G & H.

Our first result below provides the lower bound of the non-inclusive distance irregularity strength
for the join product of two graphs in terms of dis(G) and dis(H ).

Lemma 2.1. Let G and H be graphs such that dis(G & H) < oo. Then
dis(G @ H) > max{dis(G),dis(H)}.

Proof. We first show that there is no non-inclusive distance vertex irregular k-labeling of a graph
G @ H such that k < dis(G). Suppose to the contrary that such labeling ¢ exists, that is, a labeling
¢:V(G® H)— {1,2,...,k} is a non-inclusive distance vertex irregular k-labeling of G & H.
Since each vertex of G is adjacent to all the vertices of / and since all the vertices of G have
distinct weights then if we subtract from all these weights the sum of labels of all vertices of H,
it gives us a restriction of the labeling ¢ on the graph G which is a non-inclusive distance vertex
irregular £’-labeling of G for some &’ < k. But this gives a contradiction as £’ < k < dis(G).
Next we prove that there is no non-inclusive distance vertex irregular k-labeling ¢ of a graph
G @ H such that £ < dis(H). Using similar arguments with the previous case we can obtain
a restriction of the labeling ¢ on the graph A which is a non-inclusive distance vertex irregular
k"-labeling of H with k" < k, giving a contradiction as k" < k < dis(H). O

4
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The following lemma gives the sufficient condition for a-weights of all vertices in a graph to
be different.

Lemma 2.2. Let G be a graph with dis(G) < oo and let ¢ be a non-inclusive distance vertex
irregular dis(G)-labeling of G. Let ¢ be an integer defined in (1). Then for any integer o > [
and every two distinct vertices u,v € V(G), wtg(u) # wtg(v). Moreover, if degq(u) < degg(v)
then wtg(u) < wtg(v).

Proof. For some o and some v/,v' € V(G), u' # v/, if wtg (v') = wty(w') + o/ degg(u') =
wty(v') + o/ deg (V') = wtg' (v) then
,_ wig(u) —wty(v')

degq(v) — degg(w)

«

However, on the other hand, as o/ > [, we have

2 mas [ [ D)y i)

>{1waw>—wwwa why(u!) — wiy(0')
~ L degg(v') — degq(u') degq(v') — degg(u)’

which gives us a contradiction. This proves the first part of the statement.

Next we prove the second part of the statement. Here we use the similar technique as the first
part. Thus we suppose to the contrary that for some o/ and some v/, v € V(G), u' # v/, with
degn(u') < degq(v'), there is wtg'(u’) = wty(v') + o/ degy(v') > wty(v') + o' degg(v') =
wtg (v'). Then wity(u') > wty(v') and

;o wtg(u') —wtg(v')
o < .
deg(v') — degg(u/)

However, on the other hand, as o/ > [, we obtain

o > \\wttﬁc (u/) — wt¢c (U,)J 1> wt¢>c (u/) — wt¢>c (U,)
- / / / 1’
degg(v') — degg(w) degg(v') — degg(w)

again a contradiction. 0

Notice that the property in Lemma 2.2 implies that for any integer a > fg, wty(Ve.) =
wtg(vie ). Next, as vg.ir > (g, the following property is satisfied according to Lemma 2.2.

max

Corollary 2.1. Let G and H be graphs such that dis(G @ H) < oo, and let ¢ and ¢y be a
non-inclusive distance vertex irregular dis(G)-labeling of G and a non-inclusive distance vertex
irregular dis(H)-labeling of H, respectively. Let S and v p be integers defined in (1) and (2),
respectively. Then for any two distinct vertices u,v € V(G), wtlg’H (u) # thf;‘H (v).

The value of the non-inclusive distance irregularity strength for G @ H is given in the following
theorem.
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Theorem 2.1. Let G and H be graphs such that dis(G & H) < oo, and let ¢ and ¢ be a
non-inclusive distance vertex irregular dis(G)-labeling of G and a non-inclusive distance vertex
irregular dis(H )-labeling of H, respectively. If either

® ZueV(G) ba(u) — ZueV(H) O1(v) < Whpe (Umin) — Wty (Vmax) OF
(i) ZuGV(G) oc(u) — ZUEV(H) On (V) > Whpg (Umax) — Wiy (Vmin),
then
dis(G @ H) = max{dis(G), dis(H)}.

Otherwise,
dis(G @ H) < min{max{dis(G), dis(H) + yu¢}, max{dis(H), dis(G) + ve.u } }-

Proof. We distinguish our proof into two cases.

Case 1. ZueV(G’) oc(u) — ZUEV ¢H( ) < Wtpg (Umin) — Wty (Vmax) OF ZUEV(G) ¢c(u) —
ZUEV(H) ¢H (U) > wt¢G (umax) wt(bH (Um1n>-

Put £ = max{dis(G),dis(H)}. Due to Lemma 2.1 it is enough to show that there exists a
non-inclusive distance vertex irregular k-labeling of G & H. Let ¢ be a labeling on the vertices of
G & H defined as follows.

p(v) = ¢g(v) ifveV(G),
o) =oyv) ifveV(H).

Obviously the largest label appearing on the vertices under the labeling ¢ is k£ and the weights of
the vertices are given by

wity,(v) = Wty (v Z ou(u ifveV(G),
ueV(H

wt,(v) = wity,, (v Z da(u)  ifve V(H).
ueV(G)

We show that the vertex weights are distinct for every two vertices u,v € V(G & H). If
both w and v are in V(G) (resp. V(H)) then wt,(u) # wt,(v) as wty,(u) # wty,(v) (resp.
wtg, (u) # wtg, (V)

We now suppose that v € V(G) and v € V(H). The condition (i) implies that wt,(vVmax) <
wt,(Umin) Which means that wt,(u) # wt,(v). Similarly, the restriction (ii) implies that
Wiy, (Umax) < Wi, (Vmin) meaning that wt,(u) # wt,(v).

Case 2. wigg (Umin) = Wl (Vmax) < Duev(a) P6(W) = 2ev ) 91 (V) < Whog (Umax) —
Wiy, (Umin)'

Put k = min{ky, k2 } where k; = max{dis(G), dis(H )+vyn ¢} and ks = max{dis(H), dis(G)+
Ye.m t- We define a vertex ky-labeling ¢ of G & H as follows.

v1(v) = pg(v) ifveV(GQ),
01(v) = ¢u(v) +yue  ifveV(H).
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Clearly the labels used on the labeling ¢, are at most k;. For the vertex weights we have

wty, (v) = wty, (v Z ou(uw) + |V(H)|vmc ifveV(GQ),
ueV(H)

wty, (V) = wiy, (v Z da(u) + v degy(v) ifveV(H).
ueV (G

We show that for every two distinct vertices u and v of G & H, wt,, (u) # wty, (v). If u,v €
V(QG), clearly, wt,, (u) # wt,, (v) as wty, (u) # wity, (v). Assume u,v € V(H). Applying Sy
and vy ¢ to Corollary 2.1, we can obtain that wt,, (u) +vu,¢ degy (u) # wty, (V) +vm.c degy(v)
meaning that wt,, (u) # wt,, (v). We now consider u € V(G) and v € V(H). It suffices for us to
show that wt,, (Umin) > Wty (Vmax)- AS Ve > B, by Lemma 2.2, wty, (vmax’ ) = wt g, (V21 ).
Using these informations together with the facts that

wt¢ (vlﬁnlgx)iwmﬁ (umln)+2u V(G) ¢G(u)72v V(H) d)H(*U)
T = { ] S van-aum ) +1

andy(L J+1) > x, we get

Wi (i) =0 gy () = | Wl (i) Z ou(v) + IV (H)ug
veV(H

— | wty, (VEE) + Z ¢c(u) + vu,cA(H)

ueV (G

=Wt (tmin) — Who, (VIE) + D du(v Z ¢c(u) + (|[V(H)| — A(H))vme

veV (H) weV (G
Zwt¢G(umin> wt¢H max Z ¢H Z CbG

veV (H) uev (@)

w UIBHI;LIX —w Umin u)— v
+<|V<H>|—A<H>>(VH( e &%i‘fﬁ?}f“z”e”m’{( |+1)

>wt¢G(umiH> wt¢H max Z ¢H Z ¢G

veV (H) uev (@)

+ wt¢H( max) wtébG umm Z (bG Z (bH = 07

ueV (G veV(H

or equivalently wt,, (Umin) > Wty (Umax). Thus g is a non-inclusive distance vertex irregular
k1-labeling of G @ H and hence dis(G & H) < k;.
Analogously, we define another vertex ky-labeling 5 of G @ H as follows.

pa(v) = ¢ (v) ifveV(H),
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p2(0) = pa(v) + v ifveV(G).

Using similar arguments with the previous one we can obtain that ¢, is a non-inclusive distance
vertex irregular ko-labeling of G @ H and hence dis(G & H) < k. Taking the minimum from both
kq and k-, it brings us to the desired result. O

The following results related to the inclusive distance irregularity strength are presented. The
proofs are omitted since ideas similar with Lemmas 2.1 and 2.2, Corollary 2.1 and Theorem 2.1,
respectively, are used as arguments.

Lemma 2.3. Let G and H be graphs such that al\s(G ® H) < oo. Then
&is(G @ H) > max {de(G), de(H)} .

Lemma 2.4. Let GG be a graph with al\s(G) < oo and let gg be an inclusive distance vertex irregular
dis(G)-labeling of G. Let g be an integer defined in (3). Then for any integer & > (g and every
two distinct vertices u,v € V(G), wt%(u) # wt%(v). Moreover, if dega(u) < degq(v) then

wt%(u) < wt%(v).

Corollary 2.2. Let G and H be graphs such that d/\ls(G ® H) < oo, and let Q/Z;G and ngﬁH be an
inclusive distance vertex irregular al\s(G )-labeling of G and an inclusive distance vertex irregular
ai\s(H )-labeling of H, respectively. Let BG and 7 i be integers defined in (3) and (4), respectively.
Then for any two distinct vertices u,v € V(G), thZ’H (u) # thZ’H (v).

Theorem 2.2. Let G and H be graphs such that C/ll\S(G @ H) < oo, and let bc and bu be an
inclusive distance vertex irregular dis(G)-labeling of G and an inclusive distance vertex irregular
dis(H)-labeling of H, respectively. If either

(1) ZuEV(G) &EG(U) - ZvEV(H) &EH(U) < wt:ﬁ’\G (umin) - U)t(;H (Umax) or
(i1) Zuev(c) pa(u) — ZUGV(H) or(v) > U’tac (Umax) — WtaH (Umin),

then . L .
&is(G @ H) = max {dis(G), dis(H)} .

Otherwise,
dis(G @ H) < min {max {de(G), dis(H) + aH,G} , max {de<H), dis(G) + %,H}} .

If we take H = K then from Theorem 2.2 we obtain the inclusive distance irregularity strength
for the graph G' & K which was proved by Baca et al. [3].

Corollary 2.3. [3] Let G be a graph such that al\s(G @ K1) < oo. Then a;s(G &K= de(G)
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3. dis(G @ K,)

In [4], Bong et al. showed that the non-inclusive distance irregularity strength of G & K; and
G is equal as stated in the following theorem.

Theorem 3.1. [4] Let G be a connected graph with dis(G) < oo. Then dis(G & K;) = dis(G).

However, the above assertion is not true as we can easily see a counter example namely the com-
plete graph K,, = K,,_; & K of Slamin [13] which showed that dis(K,,) = dis(K,—1 & K;) =
n#n—1=dis(K,_1).

In this section, we provide a correction for Theorem 3.1. We prove that dis(G @ K) can be
either dis(G) or dis(G) + 1. We will need the following lemma in order to prove our theorem.

Lemma 3.1. Let G be a graph with dis(G) < co. If 3°,cy(q) ¢c(u) = wis,(Umax) + 1 for
every non-inclusive distance vertex irregular dis(G)-labeling ¢¢ of G then A(G) = |V(G)| — 1.
Moreover, if G is not a complete graph then G = G* @ K, for some graph G* with A(G*) <
|[V(G*)| — 1 and m = dis(G).

Proof. Let 3°,cy(q) 9c(u) = wty(umax) + 1 for each non-inclusive distance vertex irregular
dis(G)-labeling ¢ of G. On contrary, assume that A(G) < |V(G)| — 1. Then wty, (Umax) <
> uevie) Palu)—Lor 2 v ¢a(u) > Wiy, (umax) +1, a contradiction. Thus A(G) = [V(G)|—
1. Let G 2 K,,. Then we may write G = G* & K, for some graph G* with A(G*) < |V(G*)| —1
and some positive integer m. For each z,y € V(G)\V(G*), ¢c(z) # ¢c(y). Clearly umax €
V(GN\V(G") and ¢ (tmax) = 1.

Next we show that m = dis(G). By Lemma 2.1, m < dis(G). Now assume that m < dis(G).
Then a labeling ¢, on the vertices of GG defined as

QZS/G(U) = QbG’(u) ifu e V(G>\{umax}a
dn(u) =p if U = Upax,

where p € {1,2,...,dis(G)\{¢c(u) : v € V(G)\V(G*)}, is a non-inclusive distance ver-
tex irregular dis(G)-labeling of G. Next let ul . € V(G) (possibly ul .. = Umax) such that

max max

Wty (Upyay) = max{wty (u) : u € V(G)}. In fact, we have ¢ (uy,,,) > 1 and

Y Ge() = wty, () + O () > Whog (W) + 1,
ueV(G)

yielding a contradiction. Hence m = dis(G). O

Now we are ready to prove the main result of this section. Note that for each graph G with
dis(G) < oo and non-inclusive distance vertex irregular labeling ¢, it holds that

D da(u) > whyg (tmax) + 1. ©)

ueV(G)
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Theorem 3.2. Let G be a graph with dis(G) < oc. If there exists a non-inclusive distance vertex
irregular dis(G)-labeling ¢ of G suchthat y_, .y () (1) > wis, (Umax) +1 then dis(GH K1) =
dis(G). Otherwise dis(G & K;) = dis(G) + 1.

Proof. The first case follows from Theorem 2.1. Now we consider the second case, i.e., for
every non-inclusive distance vertex irregular dis(G)-labeling ¢ of G there is .y da(u) <
Wi, (Umax) +1. Combining this inequality with (5), we have that 3 ° () ¢c (1) = wtgg (Umax) +
1 for each non-inclusive distance vertex irregular dis(G)-labeling ¢¢ of G.

Evidently dis(G' & K;) = dis(G) + 1 if G = K,,. Suppose that G 2 K,,. From Lemma 3.1,
A(G) = |V(G)] — 1 and G = G* & K, for some graph G* with A(G*) < |V(G*)| — 1 and
m = dis(G).

Nowlet H = G @& K, = G* @ Kp,41. By Lemma 2.1, dis(H) > m + 1 = dis(G) + 1. On the
other hand, the labeling ¢ defined below is a non-inclusive distance vertex irregular (dis(G) + 1)-
labeling of H,

o(u) = da(u) + dis(G) + 1 —¢q ifu e V(G"),

p(u) = ga(u) ifu e V(Kn),
o(u) =dis(G) + 1 ifu e V(K,),
where ¢ = max{¢g(u) : u € V(G*)}. O

4. Inclusive distance irregularity strength of complete multipartite graphs

In this part, we deal with the inclusive distance vertex irregular labeling of complete multipar-
tite graphs. Let us denote the complete multipartite graphs with ) _, p; partite sets, r > 2, p; > 1,
by G = Kny ny,....,n1n9,Ng, ... Moy, Ny, - .., my, Where 1 <imy <mg <o+ <y

p1 times po times pr times

We begin with the following observation which is easy to prove.
Observation 4.1. Let n > 1. Then (Ti\s(nKl) =n.

The next lemma presents the upper bound for the inclusive distance irregularity strength of
complete multipartite graphs with same size of partite sets.

Lemmad.l. Let G = Ky, p, ... n wheren,p > 2. Then al\s(G) <n+2p-1).
—_——

p times

Proof. By labeling n vertices in the i-th partite of G with2(i —1)+1,2(: —1)+2,...,2(i—1)+mn,
it is not difficult to see that the vertex weights are all distinct. [

Complete multipartite graphs with infinite inclusive distance irregularity strength are given in
the following result.

Observation4.2. Let G = Knl’nb e NN, Moy ey N My ey e o oy Ty wherer > 2, P1,DP2y -y

-~ -~
pq times po times pr times

pT,ZIandlgnl<n2<---<nr.lfn1:1andp122then(§i\s(G):oo.

10
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In the following, an algorithm for determining the upper bound for the inclusive distance irregu-
larity strength of complete multipartite graphs for other cases is provided.  Note that

[ass
Kny,nq,...,nune,ne, ... Nayelp, Ny oo ny = Knypng,....ong © Kng,ng, ... ,ng ® ...
- o > - > N 7 N\ 4
Vv Vo Vv
p1 times po times Py times p1 times po times
®Knrvnrv-'-anr'
N—————

Py times

Algorithm 1 Calculating an upper bound for the inclusive distance irregularity strength of
complete multipartite graphs

Input: », pi,po,...,0r,n1,N9,...,n,: positive integers where » > 2, p;,p2,...,p- > 1 and
1<ny<ng<---<mng,(n,p) #(1,s),s>2;
Output: £, i.e. an upper bound for dis(Kpy, ny, ..., ning, ne, ..., Ny, Ny« , Ny )
pxnes pQXnes prjtgnes
G« Knl,nl,. .. ,nl;
—_——
pq times
if p; = 1 then
G« anl; -
Construct an inclusive distance vertex irregular dis(G)-labeling of G by using Observation
4.1;
else

Construct an inclusive distance vertex irregular ai\s(G)—labeling of G by using Lemma 4.1;
end if
fori <~ 2tordo

H «+ Kni,nl-,. .. ,ni;
p; times
if p; = 1 then
H + niKl; .
Construct an inclusive distance vertex irregular dis(H )-labeling of H by using Obser-
vation 4.1;
else .
Construct an inclusive distance vertex irregular dis( H )-labeling of H by using Lemma
end4i'f1’ .
Construct an inclusive distance vertex irregular dis(G @ H)-labeling of G & H by using
Theorem 2.2;
G+ GoH,
dis(G) <+ dis(G & H);
end for
k« dis(G® H);
return k;

From Algorithm 1 we immediately get the following.

~
Theorem 4.1. Let G = K@hnh T, Mgy T T Ty Ty where r > 2, p1,pa, ..
Vv

vV Vv
pq times p9 times P times

*

11
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pr>land1l <np <ng <---<n, (n,p1) # (1,8), s > 2 ThencT\is(G) < k where k is an
integer which is the output of Algorithm 1.

Observe that in our construction of the inclusive distance vertex irregular labeling for the com-
plete multipartite graphs in Algorithm 1, vertices with smaller degree receive smaller weights.
From this observation, we then conjecture that the upper bound in Theorem 4.1 is tight.

: ~
Con_]ecture 1. Let G = K@l’nh . 7n17@27n27_ .. 7n% ..... ILr;nrw .. 7n7j‘ where r > 2, P1,P2, ..,

Vv Vv
pq times p9 times pr times

pr>land1l <ny <ng <---<mny, (n,p1) # (1,8), s > 2. Then al\s(G) = k where k is an
integer which is the output of Algorithm 1.

The following result supports Conjecture 1.
Corollary 4.1. Letr > 2and 1 < n; < ng < --- < n,. Then (EE;(Knhn2 ,,,,, ny) = T

Proof. The upper bound follows from Theorem 4.1 and the lower bound is obtained from Lemma
2.3. ]
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