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Abstract. A vertex k-labeling ϕ : V (G) → {1, 2, . . . , k} on a simple graph G is
said to be a distance irregular vertex k-labeling of G if the weights of all vertices
of G are pairwise distinct, where the weight of a vertex is the sum of labels of all
vertices adjacent to that vertex in G. The least integer k for which G has a distance
irregular vertex k-labeling is called the distance irregularity strength of G and denoted
by dis(G). In this paper, we introduce a new lower bound of distance irregularity
strength of graphs and provide its sharpness for some graphs with pendant vertices.
Moreover, some properties on distance irregularity strength for trees are also discussed
in this paper.
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1. INTRODUCTION

All graphs considered here are simple, finite and undirected. Let G be a graph. We use
V (G), E(G), ∆(G) and δ(G) to denote the set of vertices and edges of G, the maximum
and minimum degree of G, respectively. For a vertex v ∈ V (G), we use NG(v) and
degG(v) to denote the neighborhood and the degree of v in G, respectively. When the
context is clear, we simply write such notations, respectively, with V , E, ∆, δ, N(v)
and deg(v). The vertex v is called an isolated vertex when deg(v) = 0 and is called
a pendant vertex when deg(v) = 1.

In [14], Miller et al. defined a distance magic labeling of graphs as a bijection
ψ : V → {1, 2, . . . , |V |} such that all the vertex weights are equal to a magic constant k,
where the weight of a vertex v ∈ V is defined as the sum of labels of vertices adjacent
to v. A graph that has a distance magic labeling is called distance magic.

More general concept was made by Arumugam and Kamatchi [4], where the
requirement now is that the vertex weights are not necessarily the same but must
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form an arithmetic sequence starting from a with common difference d for some
fixed integers a > 0 and d ≥ 0. They named such a labeling an (a, d)-distance
antimagic labeling and a graph that admits an (a, d)-distance antimagic labeling is called
an (a, d)-distance antimagic graph.

For an edge k-labeling φ : E → {1, 2, . . . , k} the associated weight of a vertex
v ∈ V is defined as

wtφ(v) =
∑

uv∈E

φ(uv),

where the sum is taken over all vertices u adjacent to v. In [10], Chartrand et al.
defined an edge k-labeling φ of a graph G such that for every two distinct vertices
u, v ∈ V then wtφ(u) ̸= wtφ(v). Such labelings are called irregular assignments and
the irregularity strength, s(G), of a graph G is known as the least integer k such that
G has an irregular assignment using labels at most k. This parameter was studied
extensively in numerous papers, see [2, 3, 11, 13, 16]. Fascinating modifications on
irregular assignments were also developed by some authors, see [1, 5, 6, 12].

In [17], Slamin introduced distance irregular vertex labelings as a unification
of distance-based labelings and irregular labelings of graphs. A vertex k-labeling
ϕ : V → {1, 2, . . . , k} is said to be a distance irregular vertex k-labeling of G if for
every two distinct vertices u, v ∈ V there is wtϕ(u) ̸= wtϕ(v), where the weight of
a vertex v is

wtϕ(v) =
∑

u∈N(v)

ϕ(u).

The distance irregularity strength, dis(G), of G is the smallest integer k for which G has
a distance irregular vertex k-labeling. Some results on distance irregularity strength
for families of graphs have been found, including, for example, complete graphs, paths,
cycles and wheels [8, 17], ladders and triangular ladders [15], and some classes of
disconnected graphs [18]. In the literature, there are also investigated a variation and
generalizations of this concept, see [7, 9].

In [17], it was given a general lower bound for the distance irregularity strength of
graphs.

Theorem 1.1 ([17]). Let G be a graph with minimum degree δ and maximum degree ∆
containing no isolated vertex and N(u) ̸= N(v) for u, v ∈ V , u ̸= v. Then

dis(G) ≥
⌈ |V | + δ − 1

∆

⌉
.

Susanto et al. [18] improved that lower bound for the case if a graph has pendant
vertices. They proved the following.

Theorem 1.2 ([18]). Let G be a graph with maximum degree ∆ containing no isolated
vertex and N(u) ̸= N(v) for u, v ∈ V , u ̸= v. If G has t pendant vertices then

dis(G) ≥ max
{
t,

⌈ |V |
∆

⌉}
.
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In this paper, we introduce a new lower bound of the parameter dis(G) and
determine the precise values of the distance irregularity strength for some graphs with
pendant vertices. In addition, we study some properties on this invariant for trees.
Notice that our lower bound improves the existing bounds in Theorems 1.1 and 1.2.

2. MAIN RESULTS

We begin this section with the following result which presents a new lower bound for
the distance irregularity strength.

Theorem 2.1. Let G be a graph with minimum degree δ and maximum degree ∆
containing no isolated vertex and N(u) ̸= N(v) for u, v ∈ V , u ̸= v. Let ni be the
number of vertices of degree i in G for every i = δ, δ + 1, . . . ,∆. Then

dis(G) ≥ max
δ≤i≤∆

{⌈
δ +

∑i
j=δ nj − 1
i

⌉}
.

Proof. Let
⌈
δ +

∑t
j=δ nj − 1
t

⌉
= max

δ≤i≤∆

{⌈
δ +

∑i
j=δ nj − 1
i

⌉}

for some t. In any distance irregular vertex labeling ϕ of a graph G, the smallest weight
of vertices of degrees δ, δ + 1, . . . , t is at least δ, and the largest among them must be
at least δ +

∑t
j=δ nj − 1. Such largest weight is obtained from the sum of at most t

labels. Therefore

dis(G) ≥
⌈
δ +

∑t
j=δ nj − 1
t

⌉
= max

δ≤i≤∆

{⌈
δ +

∑i
j=δ nj − 1
i

⌉}
.

The lower bound in Theorem 2.1 is tight as can be seen from Theorems 2.2, 2.6
and 2.7.

Let G⊙H denotes the Corona product of two given graphs G and H. It is a graph
obtained from G and H by taking one copy of G and |V (G)| copies of H and joining
the ith vertex of G with every vertex of the ith copy of H.

Theorem 2.2. Let G be a graph on n vertices. Then

dis(G⊙K1) = n+ r,

where r ≥ 0 is the number of isolated vertices of G.
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Proof. Let G be a graph of order n with r vertices of degree 0. Let nH
i be the number

of vertices of degree i in H ∼= G⊙K1 for each i = 1, 2, . . . ,∆(H). Since nH
1 = n+ r

and δ(H) = 1 we have

dis(H) ≥ max
δ(H)≤i≤∆(H)

{⌈
δ(H) +

∑i
j=δ(H) n

H
j − 1

i

⌉}

≥
⌈
δ(H) +

∑1
j=1 n

H
j − 1

1

⌉
= n+ r.

To prove that n + r is also the upper bound for dis(H) we define a corresponding
vertex labeling of H.

Let ϕ be a labeling on vertices of a graph H defined by using the following algorithm.
1. Let x1, x2, . . . , xr be the isolated vertices of G. Let y1, y2, . . . , yr be the vertices

of H, where yi is adjacent to xi. Notice that xi and yi are pendant vertices in H.
We define ϕ(xi) = i and ϕ(yi) = r + i for i = 1, 2, . . . , r.

2. Denote all non-pendant vertices of H by v1, v2, . . . , vn−r such that deg(vi) ≤ deg(vj)
for 1 ≤ i < j ≤ n− r. We denote by ui, i = 1, 2, . . . , n− r, the pendant vertex in
V (H) adjacent to vi. Define ϕ(vi) = 2r + i for i = 1, 2, . . . , n− r.

3. Define ω(vi) =
∑

z∈N(vi) ϕ(z) as the temporary weight of vi, i = 1, 2, . . . , n− r.
4. Define a set W = {ω(v1), ω(v2), . . . , ω(vn−r)}.
5. Set K = n+ r.
6. While W ̸= ∅ do

a. i = i+ 1.
b. If (ui has not been labeled) and (ω(vi) is the smallest element of W ) then

(1) If ω(vi) ≤ K then
(a) K = K + 1.
(b) ϕ(ui) = K − ω(vi).
(c) wtϕ(vi) = K.
(d) W = W \ {ω(vi)}.

(2) Else
(a) K = ω(vi).
(b) K = K + 1.
(c) ϕ(ui) = K − ω(vi) = 1.
(d) wtϕ(vi) = K.
(e) W = W \ {ω(vi)}.

c. If i = n− r then
(1) i = 0.

From the algorithm above, we observe that the labels used in the labeling ϕ are
at most n+ r. For the weights of all pendant vertices of H, we have

wtϕ(xi) = r + i for i = 1, 2, . . . , r,
wtϕ(yi) = i for i = 1, 2, . . . , r,
wtϕ(ui) = 2r + i for i = 1, 2, . . . , n− r.
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Thus the weights of all pendant vertices lie on the set {1, 2, . . . , n+ r}. Furthermore,
one can verify that the weights of all non-pendant vertices of H are distinct and
wtϕ(vi) > n + r for each i = 1, 2, . . . , n − r. It means that ϕ is an optimal distance
irregular vertex (n+ r)-labeling of H. Hence dis(H) = n+ r.

Let G be a graph on n vertices and m edges. The subdivision of G, denoted by
S(G), is a graph obtained from G by replacing each edge uv ∈ E(G) with a path uwv
of length two. We call the vertex w the subdivision vertex of the edge uv.

We define a fern graph with respect to a graph G as follows. Let us denote the
vertices of G arbitrarily by the symbols v1, v2, . . . , vn. For positive integers si, 1 ≤ i ≤ n,
the fern of a graph G, denoted by Fern(G;n; s1, s2, . . . , sn), is a graph obtained from G
by attaching exactly si pendant vertices to the vertex vi of the graph G. A monotonous
fern of G, MoFern(G;n; s1, s2, . . . , sn), is the fern graph with property that for every
two distinct vertices vi, vj ∈ V (G) there is si ≤ sj if and only if degG(vi) ≤ degG(vj).
If si = sj = s for every i ̸= j then Fern(G;n; s, s, . . . , s) ∼= Fern(G;n; s) (respectively
MoFern(G;n; s, s, . . . , s) ∼= MoFern(G;n; s)). Note that

G⊙ sK1 ∼= Fern(G;n; s) ∼= MoFern(G;n; s).

Let F be a forest on n vertices and m edges. Let

H ∼= S(MoFern(F ;n; s1, s2, . . . , sn)), 2 ≤ s1 ≤ s2 ≤ . . . ≤ sn,

be the subdivision of a monotonous fern of the forest F with

V (H) = V (F ) ∪ V (S1) ∪ V (S2) ∪ V (S3),

where V (F ), V (S1), V (S2), V (S3) stand for the set of vertices of the base forest, the
set of pendant vertices of H, the set of the subdivision vertices of all edges in F , and
the set of the subdivision vertices of all pendant edges in H, respectively. We suppose
that V (F ) = {vi : 1 ≤ i ≤ n}, where degF (vi) ≤ degF (vj) for i < j. Furthermore,
we may split V (S1) and V (S3) in such a way that

V (S1) =
n⋃

i=1
V (Svi

1 ) and V (S3) =
n⋃

i=1
V (Svi

3 ),

where V (Svi
1 ), i = 1, 2, . . . , n, is the set consisting of all pendant vertices that have

distance 2 to vi in H and

V (Svi
3 ) = {z : z is adjacent to some vertex x ∈ V (Svi

1 ) in H}.
Note that |V (Svi

1 )| = |V (Svi
3 )| = si.

Let us consider the smallest positive integer a satisfying

s1
2 (2a+ (s1 − 1)n) ≥

n∑

i=1
si +

⌈m
2

⌉
+ 1,

that is,

a = max
{

1,
⌈

2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉}
. (2.1)
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Lemma 2.3. Let F be a forest on n ≥ 2 vertices and m ≥ 1 edges without an isolated
vertex and let H ∼= S(MoFern(F ;n; s1, s2, . . . , sn)) for 2 ≤ s1 ≤ s2 ≤ . . . ≤ sn. Let
a be an integer defined in (2.1). Then

a = 1 if and only if
n∑

i=1
si <

⌊
s1n(s1 − 1) −m

2

⌋
+ s1.

Proof. Clearly,

a = 1 if and only if
⌈

2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉
≤ 1,

which is equivalent to

2
n∑

i=1
si − s1n(s1 − 1) +m+ 2 ≤ 2s1.

Thus
n∑

i=1
si <

⌊
s1n(s1 − 1) −m

2

⌋
+ s1.

From Lemma 2.3 we immediately get the following.

Lemma 2.4. Let F be a forest on n ≥ 2 vertices and m ≥ 1 edges without an isolated
vertex and let H ∼= S(MoFern(F ;n; s1, s2, . . . , sn)) for 2 ≤ s1 ≤ s2 ≤ . . . ≤ sn. Let
a be an integer defined in (2.1). Then

a =
⌈

2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉

if and only if
n∑

i=1
si ≥

⌊
s1n(s1 − 1) −m

2

⌋
+ s1.

Lemma 2.5. Let F be a forest on n ≥ 2 vertices and m ≥ 1 edges without an isolated
vertex and let H ∼= S(MoFern(F ;n; s1, s2, . . . , sn)) for 2 ≤ s1 ≤ s2 ≤ . . . ≤ sn. Let
a be an integer defined in (2.1). Then

a+ nF
1 − 1 + (s1 − 1)n ≤

n∑

i=1
si

if and only if one of the following statements is satisfied:

(i)
n∑

i=1
si <

⌊
s1n(s1 − 1) −m

2

⌋
+ s1

or

R
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(ii)
n∑

i=1
si ≥ max

{⌈
2s1(nF

1 − 1 + (s1 − 1)n) − s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
,

⌊
s1n(s1 − 1) −m

2

⌋
+ s1

}
,

where nF
1 is the number of vertices of degree 1 in F .

Proof. We first show the necessity. Let

a+ nF
1 − 1 + (s1 − 1)n ≤

n∑

i=1
si.

If a = 1 then
a+ nF

1 − 1 + (s1 − 1)n = nF
1 − n+ s1n ≤

n∑

i=1
si

and by Lemma 2.3, we have
n∑

i=1
si <

⌊
s1n(s1 − 1) −m

2

⌋
+ s1.

However, the condition nF
1 − n + s1n ≤ ∑n

i=1 si is trivial since nF
1 − n ≤ 0 and

s1n ≤ ∑n
i=1 si. So

n∑

i=1
si <

⌊
s1n(s1 − 1) −m

2

⌋
+ s1.

If
a =

⌈
2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉

then

a+nF
1 −1+(s1−1)n =

⌈
2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉
+nF

1 −1+(s1−1)n ≤
n∑

i=1
si,

which is equivalent to

n∑

i=1
si ≥

⌈
2s1

(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
. (2.2)

Moreover, from Lemma 2.4 we get
n∑

i=1
si ≥

⌊
s1n(s1 − 1) −m

2

⌋
+ s1. (2.3)
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Combining (2.2) and (2.3) then

n∑

i=1
si ≥ max

{⌈
2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
,

⌊
s1n(s1 − 1) −m

2

⌋
+ s1

}
.

Next we prove the sufficiency. If

n∑

i=1
si <

⌊
s1n(s1 − 1) −m

2

⌋
+ s1,

by Lemma 2.3, we have a = 1. Therefore,

a+ nF
1 − 1 + (s1 − 1)n = nF

1 + (s1 − 1)n ≤ n+ (s1 − 1)n = s1n ≤
n∑

i=1
si.

Consider

n∑

i=1
si ≥ max

{⌈2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
,

⌊
s1n(s1 − 1) −m

2

⌋
+ s1

}
.

As
n∑

i=1
si ≥

⌊
s1n(s1 − 1) −m

2

⌋
+ s1,

from Lemma 2.4, we have

a =
⌈

2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉
. (2.4)

Moreover, as

n∑

i=1
si ≥

⌈
2s1

(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
,

we get

2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2 ≤ 2(s1 − 1)
n∑

i=1
si. (2.5)
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Using (2.4) and (2.5), we obtain

a+ nF
1 − 1 + (s1 − 1)n

=
⌈

2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉
+ nF

1 − 1 + (s1 − 1)n

=
⌈

2
∑n

i=1 si + 2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2s1

⌉

≤
⌈

2
∑n

i=1 si + 2(s1 − 1)
∑n

i=1 si

2s1

⌉
=

n∑

i=1
si.

The next theorem gives the exact value of the distance irregularity strength for
a subdivision of the monotonous fern of forests.

Theorem 2.6. Let F be a forest on n ≥ 2 vertices and m ≥ 1 edges without an isolated
vertex. Let nF

1 be the number of vertices of degree 1 in F and let 2 ≤ s1 ≤ s2 ≤ . . . ≤ sn.
If either

(i)
n∑

i=1
si <

⌊
s1n(s1 − 1) −m

2

⌋
+ s1

or
(ii)

n∑

i=1
si ≥ max

{⌈2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
,

⌊
s1n(s1 − 1) −m

2

⌋
+ s1

}
,

then

dis(S(MoFern(F ;n; s1, s2, . . . , sn))) =
n∑

i=1
si +

⌈m
2

⌉
.

Proof. Let H ∼= S(MoFern(F ;n; s1, s2, . . . , sn)). Let ni be the number of vertices
in H having degree i. We first show the lower bound. Evidently, n1 =

∑n
i=1 si and

n2 =
∑n

i=1 si +m. From Theorem 2.1, we have

dis(H) ≥ max
{

n∑

i=1
si,

n∑

i=1
si +

⌈m
2

⌉
, . . . ,

⌈
2
∑n

i=1 si +m+
∑∆(H)

i=3 ni

∆(H)

⌉}

≥
n∑

i=1
si +

⌈m
2

⌉
.
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Next we show the upper bound. Put k =
∑n

i=1 si +
⌈

m
2
⌉
. The construction of the

labeling of vertices is as follows. Label all vertices in V (S2) with k. Next we label
the vertices in V (S3) with integers from the set U = {1, 2, . . . ,

∑n
i=1 si}. For each

i = 1, 2, . . . , n, label (s1 − 1) vertices in V (Svi
3 ) with integers a + i − 1, a + i − 1 +

n, . . . , a+ i− 1 + (s1 − 2)n and for i = 1, 2, . . . , nF
1 , label 1 vertex (unlabeled vertex)

in V (Svi
3 ) with a + i − 1 + (s1 − 1)n, where a is an integer defined in (2.1). Order

values in U which have not previously used on vertices in V (S3) ascendingly. Let us
name this ordered set by U ′. Thus

U ′ = U \
{
a, a+ 1, . . . , a+ nF

1 − 1 + (s1 − 1)n
}

=
{

1, 2, . . . , a− 1, a+ nF
1 + (s1 − 1)n, a+ nF

1 + (s1 − 1)n+ 1, . . . ,
n∑

i=1
si

}
.

The conditions (i) and (ii) of the statement along with Lemma 2.5 guarantee
that the set

{
a, a + 1, . . . , a + nF

1 − 1 + (s1 − 1)n
}

belongs to U . Note that if
a+ nF

1 − 1 + (s1 − 1)n =
∑n

i si and a = 1 then U ′ becomes an empty set.
Label all the (si − s1) remaining vertices in V (Svi

3 ), i = 1, 2, . . . , nF
1 , and the

(si − s1 + 1) remaining vertices in V (Svi
3 ), i = nF

1 + 1, nF
1 + 2, . . . , n, using integers

from U ′ with requirement that vertices in V (Svi
3 ) receive smaller label than vertices

in V (Svj

3 ) for each 1 ≤ i < j ≤ n. In other words, all vertices (unlabeled vertices) in
V (Sv1

3 ), V (Sv2
3 ), . . . , V (Svn

3 ) are labeled successively with integers from U ′. Observe
that

nF
1∑

i=1
(si − s1) +

n∑

i=nF
1 +1

(si − s1 + 1) =
n∑

i=1
si −

(
nF

1 + (s1 − 1)n
)

= |U ′|,

so this is possible.
So far, we have completely obtained the final weights of vertices in V (S1) and

in V (F ). For the weights of vertices in V (S1), we have

{wt(v) : v ∈ V (S1)} =
{

1, 2, . . . ,
n∑

i=1
si

}
. (2.6)

Let us consider the weights of vertices in V (F ). For i = 1, 2, . . . , nF
1 , we obtain

wt(vi) =
s1−1∑

j=1
(a+ i− 1 + (j − 1)n) + (a+ i− 1 + (s1 − 1)n) + k +Ai,

and for i = nF
1 + 1, nF

1 + 2, . . . , n, we get

wt(vi) =
s1−1∑

j=1
(a+ i− 1 + (j − 1)n) + k(degF (vi)) +Ai,
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where Ai is the sum of (si − s1) labels in V (Svi
3 ) for i = 1, 2, . . . , nF

1 and is the sum of
(si − s1 + 1) labels in V (Svi

3 ) for i = nF
1 + 1, nF

1 + 2, . . . , n; such values are obtained
from the process on the preceding paragraph.

We show that the weights of vertices in V (F ) are distinct. For every i = 1, 2, . . . , nF
1 ,

wt(vi) =
s1−1∑

j=1
(a+ i− 1 + (j − 1)n) + (a+ i− 1 + (s1 − 1)n) + k +Ai

≥
s1−1∑

j=1
(a+ (j − 1)n) + (a+ (s1 − 1)n) + k +Ai

= s1
2 (2a+ (s1 − 1)n) + k +Ai > 2k +Ai

(2.7)

and

wt(vi) =
s1−1∑

j=1
(a+ i− 1 + (j − 1)n) + (a+ i− 1 + (s1 − 1)n) + k +Ai

≤
s1−1∑

j=1

(
a+ nF

1 − 1 + (j − 1)n
)

+
(
a+ nF

1 − 1 + (s1 − 1)n
)

+ k +Ai

≤
s1−1∑

j=1

(
a+ nF

1 − 1 + (j − 1)n
)

+
n∑

i=1
si + k +Ai

<

s1−1∑

j=1

(
a+ nF

1 − 1 + (j − 1)n
)

+ 2k +Ai.

(2.8)

On the other hand, for i = nF
1 + 1, nF

1 + 2, . . . , n, we have degF (vi) ≥ 2. Thus for each
i = nF

1 + 1, nF
1 + 2, . . . , n,

wt(vi) =
s1−1∑

j=1
(a+ i− 1 + (j − 1)n) + k(degF (vi)) +Ai

≥
s1−1∑

j=1

(
a+ nF

1 + (j − 1)n
)

+ 2k +Ai.

(2.9)

Combining (2.7), (2.8), (2.9) and using the facts that A1 = 0 and Ai < Aj for
1 ≤ i < j ≤ n, it is not surprising that

2k < wt(v1) < wt(v2) < . . . < wt(vn). (2.10)

Next we label vertices in V (F ) with integers {k − n + 1, k − n + 2, . . . , k}. For
a positive integer t, let V (F ) =

⋃t
j=1 V (Tj), where V (Tj) is the set of vertices of a tree

which is the jth component of F , j = 1, 2, . . . , t. We may assume, without loss of
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generality, that Tj is a rooted tree (i.e., a tree in which one vertex has been designated
as the root). Furthermore, let

V (Tj) =
hj−1⋃

b=0
V (T b

j ),

where
V (T b

j ) =
{
v(bc)j

: c = 1, 2, . . . , |V (T b
j )|
}

is an ordered set of vertices (say from the left most to the right most) in the bth
level of Tj and hj is the height of Tj (the level of a vertex v ∈ V (Tj) is the length of
the unique path from v to the root and the height of Tj is defined by hj = max{b :
b is the level of vertices in Tj}). Just keep in mind that

{v(bc)j
: j = 1, 2, . . . , t; b = 0, 1, . . . , hj − 1; c = 1, 2, . . . , |V (T b

j )|}
= {vi : i = 1, 2, . . . , n}

which means that for each triple (b, c, j) there is an integer i such that v(bc)j
= vi, and

vice versa. The vertex v(01)j
is always the root of Tj and we can choose arbitrarily

one vertex vi, for some i ∈ {1, 2, . . . , n}, in each component to be the root. For
example, in Figure 1, it is shown a forest with two components and with vertices
v1, v2, v3, v4, v5, v6, v7, v8, v9 (the indices are ordered ascendingly based on its degree).
The components of such a forest are then represented with rooted trees T1 and T2;
say, T1 is rooted at v1 and T2 is rooted at v8. So all the vertices can now be written:
v1 = v(01)1 , v2 = v(23)1 , v3 = v(21)1 , v4 = v(13)2 , v5 = v(12)2 , v6 = v(11)2 , v7 = v(22)1 ,
v8 = v(01)2 , v9 = v(11)1 (see Figure 2).

v9

v1 v2

v3
v7

v8

v4

v6

v5

Fig. 1. A forest on 9 vertices with two components

v(11)1

v(01)1

v(21)1 v(22)1 v(23)1

T1

v(01)2

v(11)2 v(12)2 v(13)2

T2

Fig. 2. A forest which its components are represented with rooted trees T1 and T2
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For each j = 1, 2, . . . , t, b = 0, 1, . . . , hj −1 and c = 1, 2, . . . , |V (T b
j )| we label vertex

v(bc)j
with k − n + c +

∑b−1
x=0 |V (T x

j )| +
∑j−1

y=1 |V (Ty)|. Note that
∑−1

x=0 |V (T x
j )| = 0

when b = 0 and
∑0

y=1 |V (Ty)| = 0 when j = 1.
It is easy to see that the weight of a subdivision vertex y ∈ V (S2) of an

edge vivi′ ∈ E(F ) is equal to the sum of labels of vi = v(bc)j
and vi′ = v(b′c′)j′

for some i, i′, b, b′, c, c′, j, j′. Furthermore, we can easily check that

(k − n+ 1) + (k − n+ 2) = 2k − 2n+ 3
≤ wt(y) ̸= wt(y′) ≤ 2k − 1 = (k − 1) + k (2.11)

for every two distinct vertices y, y′ ∈ V (S2).
Next we label vertices in V (S1). Beforehand, let us consider

V (S1) =
n⋃

i=1
V (Svi

1 ) =
t⋃

j=1

hj−1⋃

b=0

|V (T b
j )|⋃

c=1
V
(
S

v(bc)j

1

)

and

V (S3) =
n⋃

i=1
V (Svi

3 ) =
t⋃

j=1

hj−1⋃

b=0

|V (T b
j )|⋃

c=1
V
(
S

v(bc)j

3

)
.

Let (b, c, j) < (b′, c′, j′) if either (i) j < j′; (ii) j = j′ and b < b′; or (iii) j = j′, b = b′

and c < c′. Our strategy is that the vertices in V (S3) are weighted with values from

W =
{

n∑

i=1
si + 1,

n∑

i=1
si + 2, . . . , 2k

}
\ {wt(y) : y ∈ V (S2)} (2.12)

and show that it is possible to label the vertices in V (S1) using integers from 1 up to
k to reach these weights. To do that, we distribute the weights W to the vertices in
V (S3) such that

wt(z) < wt(z′) (2.13)

for every two distinct vertices z ∈ V
(
S

v(bc)j

3

)
and z′ ∈ V

(
S

v(b′c′)
j′

3

)
, where (b, c, j) <

(b′, c′, j′). This is possible since |V (S2)| = m and

|W | = 2k −
n∑

i=1
si −m = 2

( n∑

i=1
si +

⌈m
2

⌉ )
−

n∑

i=1
si −m ≥

n∑

i=1
si = |V (S3)|.

We label every vertex x ∈ V
(
S

v(bc)j

1

)
with

(
wt(z) − the label of v(bc)j

)
, where z is

adjacent to x and v(bc)j
. We do this for all (b, c, j). Observe that, from this strategy,

for each x ∈ V
(
S

v(bc)j

1

)
and x′ ∈ V

(
S

v(b′c′)
j′

1

)
with (b, c, j) < (b′, c′, j′), it holds that

the label of x ≤ the label of x′. (2.14)
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We show that 1 ≤ the label of x ≤ k for every x ∈ V (S1). Let us consider vertices

xmin ∈ V
(
S

v(01)1
1

)
and xmax ∈ V

(
S

v((ht−1)(|V (T
ht−1
t

)|))
t

1

)
such that

the label of xmin = min
{

the label of x : x ∈ V
(
S

v(01)1
1

)}
,

the label of xmax = max
{

the label of x : x ∈ V

(
S

v((ht−1)(|V (T
ht−1
t

)|))
t

1

)}
.

According to (2.14), we only need to show that the label of xmin ≥ 1 and the label of
xmax ≤ k. From (2.11) and (2.12), it is not hard to show that wt(zmin) =

∑n
i=1 si + 1

and wt(zmax) ≤ 2k, where zmin and zmax are vertices adjacent to xmin and xmax,
respectively. Since the label of v(01)1 = k − n+ 1 then the label of

xmin =
n∑

i=1
si + 1 − (k − n+ 1) =

n∑

i=1
si −

(
n∑

i=1
si +

⌈m
2

⌉)
+ n = n−

⌈m
2

⌉
≥ 1

and since the label of v((ht−1)(|V (T
ht−1
t )|))

t

= k then the label of xmax ≤ 2k − k = k.
Finally, we have to show that the weights of all vertices are distinct. However,

this is true as we see from (2.6), (2.10), (2.11), (2.12) and (2.13). It allows us to
conclude that our labeling is the desired distance irregular vertex k-labeling and we
are done.

Observe that, in the proof of Theorem 2.6, one member of W in (2.12) was not
used when m is odd since |W |− |V (S3)| = 1. This observation leads us to the following
result.
Theorem 2.7. Let F be a forest on n ≥ 2 vertices and m ≥ 1 edges without an isolated
vertex. Let nF

1 be the number of vertices of degree 1 in F and let 2 ≤ s1 ≤ s2 ≤ . . . ≤ sn.
If m is odd and

n∑

i=1
si =

⌈
2s1

(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
− 1 (2.15)

then

dis(S(MoFern(F ;n; s1, s2, . . . , sn))) =
n∑

i=1
si +

⌈m
2

⌉
=

n∑

i=1
si + m+ 1

2 .

Proof. The proof is the same as of Theorem 2.6 with two exceptions, that, in this case,
the set

U =
{

1, 2, . . . ,
n∑

i=1
si + 1

}
\ {j} (2.16)

for any j ∈ {1, 2, . . . , a− 1} and the set

W =
{

n∑

i=1
si + 2,

n∑

i=1
si + 3, . . . , 2k

}
\ {wt(y) : y ∈ V (S2)} (2.17)
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are used in the labeling construction instead of the set

U =
{

1, 2, . . . ,
n∑

i=1
si

}

and the set

W =
{

n∑

i=1
si + 1,

n∑

i=1
si + 2, . . . , 2k

}
\ {wt(y) : y ∈ V (S2)},

respectively.
Note that due to (2.15) and Lemma 2.4, we have

a =
⌈

2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉
> 1. (2.18)

By using (2.15) and the fact that −(x+ y) < −y⌈ x
y ⌉ ≤ −x for xy > 0 then

s1n(s1 − 1) +m+ 2 + 2s1
(
nF

1 − 1
)

− 2(s1 − 1)
n∑

i=1
si

= s1n(s1 − 1) +m+ 2 + 2s1
(
nF

1 − 1
)

− 2(s1 − 1)
(⌈

2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
− 1
)

> s1n(s1 − 1) +m+ 2 + 2s1
(
nF

1 − 1
)

−
(

2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2 + 2(s1 − 1)
)

+ 2(s1 − 1) = 0 (2.19)

and

s1n(s1 − 1) +m+ 2 + 2s1
(
nF

1 − 1
)

− 2(s1 − 1)
n∑

i=1
si

= s1n(s1 − 1) +m+ 2 + 2s1
(
nF

1 − 1
)

− 2(s1 − 1)
(⌈

2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
− 1
)

≤ s1n(s1 − 1) +m+ 2 + 2s1
(
nF

1 − 1
)

−
(

2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
)

+ 2(s1 − 1) = 2(s1 − 1) < 2s1, (2.20)
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and so by (2.18), (2.19) and (2.20),

a+ nF
1 − 1 + (s1 − 1)n−

n∑

i=1
si

=
⌈

2
∑n

i=1 si − s1n(s1 − 1) +m+ 2
2s1

⌉
+ nF

1 − 1 + (s1 − 1)n−
n∑

i=1
si

=
⌈
s1n(s1 − 1) +m+ 2 + 2s1

(
nF

1 − 1
)

− 2(s1 − 1)
∑n

i=1 si

2s1

⌉
= 1,

or equivalently,

a+ nF
1 − 1 + (s1 − 1)n =

n∑

i=1
si + 1,

which implies that the set
{
a, a+ 1, . . . , a+ nF

1 − 1 + (s1 − 1)n
}

belongs to (2.16).
Furthermore, due to (2.17), we get that wt(zmin) =

∑n
i=1 si + 2 and

wt(zmax) = 2k. Since m is odd then the label of

xmin =
n∑

i=1
si +2−(k−n+1) =

n∑

i=1
si −

(
n∑

i=1
si + m+ 1

2

)
+n+1 = n+1−m+ 1

2 ≥ 2

and the label of xmax = 2k− k = k, meaning that there is no vertex with label greater
than k.

We end this section by discussing some properties of the distance irregularity
strength for trees. First, we show that the bound in Theorem 2.1 can be reduced such
that it is determined only by n1 or

⌈
n1+n2

2
⌉

as we state in the following theorem.

Theorem 2.8. Let T be a tree with maximum degree ∆ such that N(u) ̸= N(v) for
u, v ∈ V , u ̸= v. Let ni be the number of vertices of degree i for every i = 1, 2, . . . ,∆.
Then

dis(T ) ≥ max
{
n1,

⌈
n1 + n2

2

⌉}
.

Proof. With respect to Theorem 2.1, evidently, the theorem holds for 1 ≤ ∆ ≤ 2.

We now suppose that ∆ ≥ 3. Let ti =
⌈∑i

j=1
nj

i

⌉
for i = 1, 2, . . . ,∆.

It is enough to show that t1 − tl ≥ 0 or t2 − tl ≥ 0 for each l = 3, 4, . . . ,∆.
If t1 − tl ≥ 0 then we are done. Now assume that t1 − tl < 0. Then

ln1 −
l∑

j=1
nj < 0 ⇔ n2 > (l − 1)n1 −

l∑

j=3
nj . (2.21)
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Using (2.21) along with the facts that ⌈x⌉−⌈y⌉ > x−y−1 and n1 = 2+
∑∆

i=3(i−2)ni,
we have

t2 − tl =
⌈
n1 + n2

2

⌉
−
⌈∑l

j=1 nj

l

⌉

>
n1 + n2

2 −
∑l

j=1 nj

l
− 1 = (l − 2)n1 + (l − 2)n2

2l −
2
∑l

j=3 nj

2l − 1

>
(l − 2)n1 + (l − 2)

(
(l − 1)n1 −∑l

j=3 nj

)

2l −
2
∑l

j=3 nj

2l − 1

=
l(l − 2)n1 − l

∑l
j=3 nj

2l − 1

=
(l − 2)

(
2 +

∑∆
j=3(j − 2)nj

)
−∑l

j=3 nj

2 − 1

=
(l − 3)

∑l
j=3(j − 2)nj +

∑l
j=3(j − 3)nj

2

+
(l − 2)

(
2 +

∑∆
j=l+1(j − 2)nj

)

2 − 1 ≥ 0.

As l ≥ 3, clearly, the last inequality is true. Therefore t2 − tl > 0 and so the assertion
holds.

In the next lemmas, we give the necessary condition for which dis(T ) is equal to
n1 or

⌈
n1+n2

2
⌉
.

Lemma 2.9. Let T be a tree with maximum degree ∆ such that N(u) ̸= N(v) for
u, v ∈ V , u ̸= v. Let ni be the number of vertices of degree i for every i = 1, 2, . . . ,∆.
If dis(T ) = n1 then n1 ≥ n2.
Proof. Evidently dis(T ) ≥ n1. Then by Theorem 2.8,

n1 ≥
⌈
n1 + n2

2

⌉
⇔ 2n1 ≥ n1 + n2 ⇔ n1 ≥ n2.

From Lemma 2.9 we immediately have the following.
Lemma 2.10. Let T be a tree with maximum degree ∆ such that N(u) ̸= N(v) for
u, v ∈ V , u ̸= v. Let ni be the number of vertices of degree i for every i = 1, 2, . . . ,∆.
If dis(T ) =

⌈
n1+n2

2
⌉

then n1 < n2.

3. FINAL REMARKS

In this paper, we introduced a new lower bound for the distance irregularity strength
and determined the exact values of this parameter for some graphs with pendant
vertices. We also presented some properties on distance irregularity strength for trees.
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In particular, we gave the necessary condition for a tree to have distance irregularity
strength n1 or

⌈
n1+n2

2
⌉
.

The necessary condition stated in Lemma 2.9 is not sufficient as we can see from
a counterexample shown in Figure 3.

3

1 2 3

1 42

Fig. 3. A tree T with dis(T ) = 4.

We believe, however, that this happens only if n1 = n2 as stated in the following
conjecture.
Conjecture 3.1. Let T be a tree with maximum degree ∆ such that N(u) ̸= N(v) for
u, v ∈ V , u ̸= v. Let ni be the number of vertices of degree i for every i = 1, 2, . . . ,∆.
If dis(T ) = n1 + 1 then n1 = n2.
When trees with n1 = n2 are ignored, the following conjecture is most likely to be
true.
Conjecture 3.2. Let T be a tree with maximum degree ∆ such that N(u) ̸= N(v) for
u, v ∈ V , u ̸= v. Let ni be the number of vertices of degree i for every i = 1, 2, . . . ,∆
and n1 ̸= n2. Then dis(T ) = n1 if and only if n1 > n2.
As we have not found its counter example, we conjecture that the necessary condition
given in Lemma 2.10 is also sufficient.
Conjecture 3.3. Let T be a tree with maximum degree ∆ such that N(u) ̸= N(v) for
u, v ∈ V , u ̸= v. Let ni be the number of vertices of degree i for every i = 1, 2, . . . ,∆.
Then dis(T ) =

⌈
n1+n2

2
⌉

if and only if n1 < n2.
A problem below is based on the result from Theorems 2.6 and 2.7.

Problem 3.4. Let F be a forest on n ≥ 2 vertices and m ≥ 1 edges without an isolated
vertex. Let nF

1 be the number of vertices of degree 1 in F and let 2 ≤ s1 ≤ s2 ≤ . . . ≤ sn.
Determine the exact value of dis(MoFern(F ;n; s1, s2, . . . , sn)) if

(i)
⌊
s1n(s1 − 1) −m

2

⌋
+s1 ≤

n∑

i=1
si

<

⌈
2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
−1,
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(ii) m is even and

n∑

i=1
si =

⌈
2s1
(
nF

1 − 1 + (s1 − 1)n
)

− s1n(s1 − 1) +m+ 2
2(s1 − 1)

⌉
− 1.
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