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DISTANCE TRREGULARITY STRENGTH OF
GRAPHS WITH PENDANT VERTICES

Faisal Susanto, Kristiana Wijaya,
Slamin, and Andrea Semanicova-Fenovcikova

Communicated by Mirko Horndk

Abstract. A vertex k-labeling ¢ : V(G) — {1,2,...,k} on a simple graph G is
said to be a distance irregular vertex k-labeling of G if the weights of all vertices
of G are pairwise distinct, where the weight of a vertex is the sum of labels of all
vertices adjacent to that vertex in G. The least integer k for which G has a distance
irregular vertex k-labeling is called the distance irregularity strength of G and denoted
by dis(G). In this paper, we introduce a new lower bound of distance irregularity
strength of graphs and provide its sharpness for some graphs with pendant vertices.
Moreover, some properties on distance irregularity strength for trees are also discussed
in this paper.

Keywords: vertex k-labeling, distance irregular vertex k-labeling, distance irregularity
strength, pendant vertices.

Mathematics Subject Classification: 05C78, 05C12.

1. INTRODUCTION

All graphs considered here are simple, finite and undirected. Let G be a graph. We use
V(G), E(G), A(G) and §(G) to denote the set of vertices and edges of G, the maximum
and minimum degree of G, respectively. For a vertex v € V(G), we use Ng(v) and
degq(v) to denote the neighborhood and the degree of v in G, respectively. When the
context is clear, we simply write such notations, respectively, with V', E; A, §, N(v)
and deg(v). The vertex v is called an isolated vertexr when deg(v) = 0 and is called
a pendant vertex when deg(v) = 1.

In [14], Miller et al. defined a distance magic labeling of graphs as a bijection
Y :V —{1,2,...,|V]} such that all the vertex weights are equal to a magic constant k,
where the weight of a vertex v € V is defined as the sum of labels of vertices adjacent
to v. A graph that has a distance magic labeling is called distance magic.

More general concept was made by Arumugam and Kamatchi [4], where the
requirement now is that the vertex weights are not necessarily the same but must

© 2022 Authors. Creative Commons CC-BY 4.0 439
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form an arithmetic sequence starting from a with common difference d for some
fixed integers a > 0 and d > 0. They named such a labeling an (a,d)-distance
antimagic labeling and a graph that admits an (a, d)-distance antimagic labeling is called
an (a, d)-distance antimagic graph.

For an edge k-labeling ¢ : E — {1,2,...,k} the associated weight of a vertex

v € V is defined as
wt,(v) = Y p(uw),
uwvelR

where the sum is taken over all vertices u adjacent to v. In [10], Chartrand et al.
defined an edge k-labeling ¢ of a graph G such that for every two distinct vertices
u,v € V then wt,(u) # wit,(v). Such labelings are called rregular assignments and
the irregularity strength, s(G), of a graph G is known as the least integer k such that
G has an irregular assignment using labels at most k. This parameter was studied
extensively in numerous papers, see [2,3, 11,13, 16]. Fascinating modifications on
irregular assignments were also developed by some authors, see [1,5,6,12].

In [17], Slamin introduced distance irregular vertex labelings as a unification
of distance-based labelings and irregular labelings of graphs. A vertex k-labeling
¢:V = {1,2,...,k} is said to be a distance irreqular vertex k-labeling of G if for
every two distinct vertices w,v € V' there is wtg(u) # wiy(v), where the weight of

a vertex v is
wte(v) = Y Blu).

uEN (v)

The distance irregularity strength, dis(G), of G is the smallest integer k for which G has
a distance irregular vertex k-labeling. Some results on distance irregularity strength
for families of graphs have been found, including, for example, complete graphs, paths,
cycles and wheels [8,17], ladders and triangular ladders [15], and some classes of
disconnected graphs [18]. In the literature, there are also investigated a variation and
generalizations of this concept, see [7,9].

In [17], it was given a general lower bound for the distance irregularity strength of
graphs.

Theorem 1.1 ([17]). Let G be a graph with minimum degree § and maximum degree A
containing no isolated vertex and N(u) # N(v) for u,v € V, u #v. Then

dis(G) > PVHHW .

A

Susanto et al. [18] improved that lower bound for the case if a graph has pendant
vertices. They proved the following.

Theorem 1.2 ([18]). Let G be a graph with mazimum degree A containing no isolated
vertex and N(u) # N(v) for u,v € V, uw#v. If G has t pendant vertices then

a2 max 1 [ 1]}
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In this paper, we introduce a new lower bound of the parameter dis(G) and
determine the precise values of the distance irregularity strength for some graphs with
pendant vertices. In addition, we study some properties on this invariant for trees.
Notice that our lower bound improves the existing bounds in Theorems 1.1 and 1.2.

2. MAIN RESULTS

We begin this section with the following result which presents a new lower bound for
the distance irregularity strength.

Theorem 2.1. Let G be a graph with minimum degree 6 and mazximum degree A
containing no isolated vertex and N(u) # N(v) for u,v € V, u # v. Let n; be the
number of vertices of degree i in G for everyi=9,0+1,...,A. Then

dis(G) > max { ’V(HZ;_W—‘ } .

5<i<A )

5*22:5”1'*1 ~ max 5+Z;=5”j*1
t T s<i<A i

for some t. In any distance irregular vertex labeling ¢ of a graph G, the smallest weight
of vertices of degrees 6,0 + 1,...,t is at least 4, and the largest among them must be
at least § + Z;Z s — 1. Such largest weight is obtained from the sum of at most ¢
labels. Therefore

S+ _ynj—1 645" _ynj—1
as(C) > {ZW - ”ZH
t 0<i<A 1

Proof. Let

O

The lower bound in Theorem 2.1 is tight as can be seen from Theorems 2.2, 2.6
and 2.7.

Let G ® H denotes the Corona product of two given graphs G and H. It is a graph
obtained from G and H by taking one copy of G and |V (G)| copies of H and joining
the ith vertex of G with every vertex of the i¢th copy of H.

Theorem 2.2. Let G be a graph on n vertices. Then
dis(Go K1) =n+r,

where r > 0 is the number of isolated vertices of G.
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Proof. Let G be a graph of order n with r vertices of degree 0. Let nff be the number
of vertices of degree i in H = G ® K, for each i =1,2,..., A(H). Since nff =n +r
and §(H) = 1 we have

7

dis(H) > max { ’Vé(H) il Z;:.(S(H) nf — 1-‘ }

S(H)<i<A(H)
S(HY +SE nH 1
Z{( )2 —‘:n—i—r.

1

To prove that n + r is also the upper bound for dis(H) we define a corresponding
vertex labeling of H.
Let ¢ be a labeling on vertices of a graph H defined by using the following algorithm.

1. Let x1,x2,...,x, be the isolated vertices of G. Let y1,¥2,...,y, be the vertices
of H, where y; is adjacent to x;. Notice that x; and y; are pendant vertices in H.
We define ¢(x;) =i and ¢(y;) =r+ifori=1,2,...,r.

. Denote all non-pendant vertices of H by vi,va, ..., Up—, such that deg(v;) < deg(v;)
for 1 <i<j<mn-—r. Wedenote by u;, i =1,2,...,n —r, the pendant vertex in
V(H) adjacent to v;. Define ¢(v;) = 2r +ifori=1,2,...,n—r.

[\V]

3. Define w(v;) = ZZGN(W) ¢(2) as the temporary weight of v;, i =1,2,...,n —r.
4. Define a set W = {w(v1),w(v2), .. .,w(vp—r)}
5. Set K =n+r.
6. While W # 0 do
a. 1 =1+ 1.

b. If (u; has not been labeled) and (w(v;) is the smallest element of W) then
(1) If w(v;) < K then
(a) K=K +1.
(b) o(ui) = K — w(vi).

c. If i =n—r then
(1) i=0.

From the algorithm above, we observe that the labels used in the labeling ¢ are
at most n + r. For the weights of all pendant vertices of H, we have
wty(x;) =r+1 fori=1,2,...,r,
wty(y;) =1 fori=1,2,...,r,
wty(u;)) =2r+i  fori=1,2,....n—r
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Thus the weights of all pendant vertices lie on the set {1,2,...,n + r}. Furthermore,
one can verify that the weights of all non-pendant vertices of H are distinct and
wty(v;) > n+1r for each ¢ =1,2,...,n —r. It means that ¢ is an optimal distance
irregular vertex (n + r)-labeling of H. Hence dis(H) =n + 7. O

Let G be a graph on n vertices and m edges. The subdivision of G, denoted by
S(G), is a graph obtained from G by replacing each edge uv € E(G) with a path uwv
of length two. We call the vertex w the subdivision vertex of the edge wv.

We define a fern graph with respect to a graph G as follows. Let us denote the
vertices of G arbitrarily by the symbols vy, vs, . .., v,. For positive integers s;, 1 < i < n,
the fern of a graph G, denoted by Fern(G;n; s1, S2, . . ., $n), is a graph obtained from G
by attaching exactly s; pendant vertices to the vertex v; of the graph G. A monotonous
fern of G, MoFern(G;n; s1, $2, .- ., Sn), is the fern graph with property that for every
two distinct vertices v;, v; € V(G) there is s; < s; if and only if degg(v;) < degg(vj).
If s, = s; = s for every i # j then Fern(G;n;s, s, ..., s) = Fern(G;n; s) (respectively
MoFern(G;n; s, s, ..., s) = MoFern(G;n; s)). Note that

G @ sK; 2 Fern(G;n; s) = MoFern(G;n; s).
Let F be a forest on n vertices and m edges. Let
H = S(MoFern(F;n;s1,82,...,8,)), 2<s <s3<...< 8y,
be the subdivision of a monotonous fern of the forest F' with
V(H) =V(F)UV(S51)UV(S2) UV(Ss),

where V(F), V(51), V(S2), V(S3) stand for the set of vertices of the base forest, the
set of pendant vertices of H, the set of the subdivision vertices of all edges in F', and
the set of the subdivision vertices of all pendant edges in H, respectively. We suppose
that V(F) = {v; : 1 <i < n}, where degp(v;) < degp(v;) for i < j. Furthermore,
we may split V(S1) and V(S3) in such a way that

n

V(Sy) =JV(sy) and V(Ss) = ]V(S§),
i=1

i=1
where V(57%), i = 1,2,...,n, is the set consisting of all pendant vertices that have
distance 2 to v; in H and

V(S5%) = {z : =z is adjacent to some vertex z € V(S]*) in H}.

Note that |V (S7%)| = |V (S5")| = s,.
Let us consider the smallest positive integer a satisfying

S1

5 (2a+ (s1 — 1)n) zzn:si—&— [%_‘ +1,

that is,

amax{l, {22?—15”_5”’(31_1)+m+2”. (2.1)

251
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Lemma 2.3. Let F be a forest on n > 2 vertices and m > 1 edges without an isolated
vertex and let H = S(MoFern(F;n;s1,82,...,8,)) for 2 < s3 < sy <...<s,. Let
a be an integer defined in (2.1). Then

n 71 o
a=1 if and only if Zsi< {WJ—&—SL
i=1

Proof. Clearly,

<1

— i

23" s — -1 2
a =1 if and only if { 2z 51 = S5 J+m+ —‘

281

which is equivalent to

n
QZSi—S1n(sl—1)+m+2§231.

i=1

Thus

n
—1) =
S s < {WJ + 51, 0
i=1

From Lemma 2.3 we immediately get the following.

Lemma 2.4. Let F' be a forest on n > 2 vertices and m > 1 edges without an isolated
verter and let H = S(MoFern(F;n; s1,82,...,8,)) for 2 < s < sy < ... < s,. Let
a be an integer defined in (2.1). Then

230 si—sin(s1— 1) +m+2
a =
281

if and only if
Z&‘ > rln(sl ; Dl mJ + s1.
i=1

Lemma 2.5. Let F be a forest on n > 2 vertices and m > 1 edges without an isolated
vertex and let H = S(MoFern(F;n; s1,82,...,8,)) for 2 < s1 < sy <...<s,. Let
a be an integer defined in (2.1). Then

a—i—nf—l—i—(sl—l)nSZsi
i=1

if and only if one of the following statements is satisfied:
(i)
n _ 1 _
ZS@' < rln(sl 9 ) mJ + 81
i=1

or
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(i)

En:si > max{ P‘Sl("f — 14 (s1 = 1)n) —syn(sg — 1) +m+2

2(81 — 1)

o)

where ni is the number of vertices of degree 1 in F.

Proof. We first show the necessity. Let
n
a+nt =14 (s —1)n Z

If a =1 then

n
a—|—nf—1—|—(sl—l)n:nf—n—kslnngi
i=1

and by Lemma 2.3, we have

n
—1) =
D si< rln(sl 5 ) mJ + 51,

i=1

However, the condition n{" —n + sin < Y| s; is trivial since ni” —

sin < > 8. So
- sin(s; —1 m
Y s < LH2)J st

i=1

If

230 si—sin(s1— 1) +m+2
a =
281

then

a+ni —1+(s1—1)n = szﬂ si —sin(sy —1) +m+2

251 -“Hﬁ ~iHa

which is equivalent to

251 (nf" =14 (s1 = )n) — sin(s; — 1) + m + 2
Zs’—’V 2(s1—1) —‘

Moreover, from Lemma 2.4 we get

n
ZSi > {Slﬂ(& ; D= mJ + s1.
i=1

n < 0 and

HM:
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Combining (2.2) and (2.3) then

- 2s1(nf =1+ (s1—1)n) —sin(s1 — 1) + m+2
Z §; > max ,
=1 2(81 — ].)

SR P

Next we prove the sufficiency. If

n _ 1 _
ZSi < {Slﬂ(& 5 ) mJ + s1,
i=1

by Lemma 2.3, we have a = 1. Therefore,

n
a—|—nf—1—|—(31—l)nznf—k(sl—1)n§n+(31—1)n:31n325i.
i=1

Consider

" 2s1 (nf" — 14 (s1 — 1)n) — sin(sy — 1) + m + 2
Zsi > max )
i—1 2(81 - 1)

eh=n )

from Lemma 2.4, we have

22?:1 si—sin(s1—1)+m+2
a= .
251

Moreover, as

i - 2s1 (nf =14 (s1 —1)n) — sin(s; — 1) + m+2
Si =2 )
i1 2(81 - 1)

we get

n
2s1(nf — 1+ (s1 — Dn) —sin(s1 — 1) +m+2 < 2(s; — 1) Z S (2.5)

i=1
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Using (2.4) and (2.5), we obtain

a4+nf =14 (s —1)n

(25" s — -1 2
- [P S DI R f 1 (- 1

251
(2570 s+ 281 (nf =14 (51— n) —sin(s1 — 1) +m+2
251

221 18 +2(s1—1) >0 151-‘ i

281

IN

O

The next theorem gives the exact value of the distance irregularity strength for
a subdivision of the monotonous fern of forests.

Theorem 2.6. Let F be a forest onn > 2 vertices and m > 1 edges without an isolated
vertex. Let nf be the number of vertices of degree 1 in F and let 2 < s1 < s9 < ... < sp.
If either

(i)
Zsz rlnsl21> mJ+s1

or

(i)

2(81 — 1)

ECEEE

dis(S(MoFern(F;n; s1,82,...,8,))) = Z s; + [%-‘ )
i=1

n { {251 (nf—l—i—(sl —1)n) — s1n(s1 —1)+m—|—2-‘
E §; > max ,
—

then

Proof. Let H = S(MoFern(F;n;si1,S2,...,5,)). Let n; be the number of vertices
in H having degree i. We first show the lower bound. Evidently, ny = Y| s; and
ng = 2?21 s; +m. From Theorem 2.1, we have

s; +m A(H)
dis(H >maX{ZSMZSz [""”7’7221 1 "‘A(H‘;Z “}
=3 5]
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Next we show the upper bound. Put k = Y7 | s; + [2]. The construction of the
labeling of vertices is as follows. Label all vertices in V(S2) with k. Next we label
the vertices in V(S3) with integers from the set U = {1,2,...,> " | s;}. For each
i=1,2,...,n, label (s — 1) vertices in V(S5") with integers a +i —1,a +i—1+
Ny...,a+i—1+(s; —2)n and for i = 1,2,...,nf" label 1 vertex (unlabeled vertex)
in V(S5%) with a +¢ — 1 + (s1 — 1)n, where a is an integer defined in (2.1). Order
values in U which have not previously used on vertices in V' (S3) ascendingly. Let us
name this ordered set by U’. Thus

U=U\{a,a+1,...;a+n{ —1+ (s1 — )n}

:{1,2,...,@—1,a+nf+(sl—1)n,a+nf+(51—1)n+17...,251}.
i=1

The conditions (i) and (ii) of the statement along with Lemma 2.5 guarantee
that the set {a,a +1,..,a+nf -1+ (51 — 1)n} belongs to U. Note that if
a+ni —1+(s1—1)n=>""s; and a =1 then U’ becomes an empty set.

Label all the (s; — s1) remaining vertices in V(S5), i = 1,2,...,n!" and the
(s; — s1 + 1) remaining vertices in V(S3), i = nf + 1,nf" 4+ 2,...,n, using integers
from U’ with requirement that vertices in V(S5°) receive smaller label than vertices
in V(S37) for each 1 <4 < j < n. In other words, all vertices (unlabeled vertices) in
V(S31),V(S5?),...,V(S5™) are labeled successively with integers from U’. Observe
that

F

ny n n
Z(Si—81)+ Z (si—sl—l—l):ZSi—(nf—k(sl—l)n):|U’|,
=1 i:anrl =1

so this is possible.
So far, we have completely obtained the final weights of vertices in V(S1) and
in V(F). For the weights of vertices in V(S7), we have

{wt(v):veV(Sl)}:{1,2,...,231}. (2.6)

Let us consider the weights of vertices in V/(F). For i = 1,2,...,nf we obtain
3171
wt(v;) = Z(a—!—i—1—|—(j—1)n)+(a—|—i—1—|—(31 —Dn)+k+ A,
j=1
and for i = nf" +1,nf" +2,...,n, we get
s1—1

wt(v) = Y (a+i—1+ (= )n) + k(degp(v:) + As,

j=1
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where A; is the sum of (s; — s1) labels in V(S5%) for i = 1,2,...,nf and is the sum of
(s; — s1+ 1) labels in V(S3") for i = n" + 1,nf 4+ 2,...,n; such values are obtained
from the process on the preceding paragraph.

We show that the weights of vertices in V(F) are distinct. For every i = 1,2,...,nf,

wt(vi)zsi(a—l—i—1+(j—1)n)+(a—|—z'—1+(31—1)n)+k—|—Ai
s1—1
> Z(a+(jfl)n)+(a+(sl—l)n)JrkJrAi 27)
j=1

%(2a+(31—1)n)+k+Ai>2k+Ai

and

s1—1
wt(vi) = > (a+i—1+(j—1n)+(a+i—1+ (51— 1)n) +k+ 4
j=1
8171
Z (a+nf =14+ G —Dn)+ (a+nf —1+(s1 — 1)n) + k+ 4;

j=1

IN

81—1

S (atnf —14+G-Dn)+> sit+k+A

j=1 i=1

IN

s1—1

<> (a+nf =14 —1)n) +2k+ A,
j=1

On the other hand, for i = nf" +1,nf +2,... n, we have degx(v;) > 2. Thus for each
i=nl"+1,nf +2,... 0,

s1—1

wt(v;) =

(]

(a+i—14 (G —1)n) + k(degp(v;)) + A;
=t (2.9)

s1—1

> (a+nf +(—)n) + 2k + A;.
j=1
Combining (2.7), (2.8), (2.9) and using the facts that A; = 0 and A; < A; for
1 <i < j < n, it is not surprising that
2k < wt(v1) < wt(ve) < ... < wi(vy). (2.10)
Next we label vertices in V(F') with integers {k —n+ 1,k —n+2,...,k}. For

a positive integer ¢, let V/(F) = U§:1 V(T;), where V(T}) is the set of vertices of a tree
which is the jth component of F', j = 1,2,...,t. We may assume, without loss of
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generality, that T} is a rooted tree (i.e., a tree in which one vertex has been designated
as the root). Furthermore, let

where
V(TD) = {vpey, :e=1,2,....|[V(T})|}

is an ordered set of vertices (say from the left most to the right most) in the bth
level of T; and h; is the height of T; (the level of a vertex v € V(T}) is the length of
the unique path from v to the root and the height of T} is defined by h; = max{b :
b is the level of vertices in T;}). Just keep in mind that

{Vpey, 15 =1,2,...,t:6=0,1,... . hj —Lie=1,2,... [V(T))|}
={v;:i=1,2,...,n}

which means that for each triple (b, ¢, j) there is an integer i such that V(be); = Vi, and
vice versa. The vertex v(gy), is always the root of T and we can choose arbitrarily
one vertex v;, for some i € {1,2,...,n}, in each component to be the root. For
example, in Figure 1, it is shown a forest with two components and with vertices
v1, U2, U3, U4, Us, Ug, U7, Vg, Vg (the indices are ordered ascendingly based on its degree).
The components of such a forest are then represented with rooted trees 77 and Tb;
say, T7 is rooted at v; and T5 is rooted at vg. So all the vertices can now be written:
V1 = V(01);, V2 = U(23);, U3 = VU(21);, V4 = V(13)5, Us = V(12)5> V6 = U(11)9> V7 = V(22),>
U8 = V(01),5 Vo = V(11), (see Figure 2).

vy V2 Vg

v7
U3 Vs

Fig. 1. A forest on 9 vertices with two components

V(o1

Y(o1)2

U(ll)l @/I\@

V(1)2 V(12)2 V(13),
U21); Y(22): Y(23)

T1 T2

Fig. 2. A forest which its components are represented with rooted trees 71 and T»
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Foreachj=1,2,...,t,b= 0,1,...,hj—1 and ¢ =1,2,...,|V(T?)| we label vertex
Vibey, With k —n+c+ Y 0_o [V(T?)| + 3071 [V(T,)|. Note that . [V(T#)| = 0
when b =0 and 22:1 |[V(Ty)| = 0 when j = 1.

It is easy to see that the weight of a subdivision vertex y € V(S3) of an
edge vivy € E(F) is equal to the sum of labels of v; = v, and vy = Ver),
for some ,7’,b,0', ¢, c, j,j'. Furthermore, we can easily check that

(k—n+1)+(k—-n+2)=2k—2n+3
<wt(y) Zwt(y') <2k —1=(k—1)+k (2.11)

for every two distinct vertices y,y’ € V(Ss).
Next we label vertices in V(S7). Beforehand, let us consider

n t hj—1 J
V(S]_) — U Sm U U v (Sf(bc)j)
i=1 j=1 b=0 c=1
and
n t hj— (Tb | v
V(SS) — U 51’()1 U U U v (53(bc)j) .
i=1 j=1 b=0 c=1

Let (b,c,5) < (b, c,4") if either (i) j < j'; (ii) j =7  and b < V5 or (ili) j =4/, b=V
and ¢ < ¢’. Our strategy is that the vertices in V(S3) are weighted with values from

= {z”: s; + 17271:31- +2,... ,Qk} \{wt(y) :y € V(S2)} (2.12)
i=1 i=1

and show that it is possible to label the vertices in V(1) using integers from 1 up to
k to reach these weights. To do that, we distribute the weights W to the vertices in
V(S3) such that

wt(z) < wt(2") (2.13)

for every two distinct vertices z € V' (S wL)J) and 2’ € V (S%/ i ), where (b, ¢, j) <
(b, ¢, 5"). This is possible since |V (S3)| = m and

|W|=2k—i8i—m=2(zﬂ:8i+’7*—‘ Zsz—m>zsz—|VS3
i=1 i=1

We label every vertex x € V (S <bc)3> with (wt(z) — the label of v(bc)j), where z is
adjacent to z and v(y),. We do this for all (b, ¢, 7). Observe that, from this strategy,

for cach z € V (S ““)J) and 2/ € V (S @eh; ) with (b, ¢, j) < (., §'), it holds that

the label of z < the label of z’. (2.14)
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We show that 1 < the label of z < k for every x € V(S7). Let us consider vertices

hy—1

v
(he—D (VT 1)
Tmin €V (Sf(m)l) and Tyax €V <S1( o ' )t) such that

the label of z,,;, = min {the labelof z: 2z €V (Sf(‘”)l ) } ,
v 1 he—1
the label of Zpax = max {the label of z:z €V (Sl((ht YAV, ’)>t> } .

According to (2.14), we only need to show that the label of zyi, > 1 and the label of
Tmax < k. From (2.11) and (2.12), it is not hard to show that wt(zmin) = Y 1y si + 1
and wit(zmax) < 2k, where zpmin and zpax are vertices adjacent to Zmin and ZTmax,
respectively. Since the label of v(g1), = k —n + 1 then the label of

xmin:gsi—l—l—(l@—n—i—l):gsi— <§Si+[m>+n:n— [%W >1

and since the label of 'U((htil)(lv(Tht—l)l)) = k then the label of x,.x <2k — k = k.

Finally, we have to show that the weights of all vertices are distinct. However,
this is true as we see from (2.6), (2.10), (2.11), (2.12) and (2.13). It allows us to
conclude that our labeling is the desired distance irregular vertex k-labeling and we
are done. O

Observe that, in the proof of Theorem 2.6, one member of W in (2.12) was not
used when m is odd since |W|— |V (S3)| = 1. This observation leads us to the following
result.

Theorem 2.7. Let F be a forest onn > 2 vertices and m > 1 edges without an isolated
vertex. Let nf" be the number of vertices of degree 1 in F and let 2 < 51 < 53 < ... < 5.
If m is odd and

z":Si _ [231 (nf =1+ (s1 _21(11:)__1;1n(81 -1 +m+ 2—‘ . (2.15)

then

m+1

dis(S(MoFern(F;n; s1,82,...,84))) = i si + [%—‘ = i Si + —
i=1 i=1

Proof. The proof is the same as of Theorem 2.6 with two exceptions, that, in this case,

the set .
U:{l,Q,...,ZsH—l}\{j} (2.16)

for any j € {1,2,...,a — 1} and the set

W= {zn: s + Q,isi +3,.. .,Qk} \{wt(y) : y € V(S2)} (2.17)
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are used in the labeling construction instead of the set

and the set

W= {Zn:si+1,zn:si+2,...,2k}\{wt(y):yEV(SQ)},

respectively.
Note that due to (2.15) and Lemma 2.4, we have

a =

ms— 1 2
[221_13 817;(81 )+m+ w > 1. (2.18)
S1

By using (2.15) and the fact that —(z +y) < —y[{] < —x for 2y > 0 then

n
sin(sy — 1)—|—m+2—|—251(nf— 1) —2(s1 —1)2&
i=1

:sln(5171)+m+2+251(nf—1)

_2(51_1)<’7281< 1 —14+(s1—1Dn )—Sln(81—1)+m+2—‘_1>

2(81 — ].)
> s1n(s1 — 1) +m+ 2+ 251 (nf — 1) (231 F 14 (sy — 1)n)
—spn(sy — 1) +m+2+2(s; — 1)) 2sy —1) =0 (2.19)

and

sin(s1 — 1) +m+2+2s1(nf —1) —2(s; 71)251
i=1

=sin(sy — 1) +m+2+2s;(nf —1)

8171?— S1 — n)—sin(sy — m
2(511)<F( L 21()51)_1) ( D+ +2}1)

<sin(st— 1) +m+2+2s1(nf —1) — (2s1(nf — 14 (s1 — 1)n)

—sin(s; —1) +m+ 2) F2(sy — 1) = 2(s; — 1) < 281, (2.20)
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and so by (2.18), (2.19) and (2.20),

a—i—nf—l—i—(sl—l)n—Zsi
i=1
230 s —sin(s1—1)+m+2
281

Si

—‘+nfl+(sll)n
1

n
1=

=1

)

ﬁsln(sl —1)+m+2+2s(nf —1) = 2(s1 — 1) X1 s
281

or equivalently,

a—l—nf—l—l—(sl—l)n:Zsi—l—l,

i=1

which implies that the set {a,a+1,...,a+n{" — 1+ (s; — 1)n} belongs to (2.16).
Furthermore, due to (2.17), we get that wt(zmim) = »..;8 + 2 and
wt(Zmax) = 2k. Since m is odd then the label of

g g g m+ 1 m+ 1
xmin=23i+2—(k—n+1)=Zsi—<Zsi+2) tntl=ntl-—0— >2
=1 =1

i=1

and the label of xy,.x = 2k — k = k, meaning that there is no vertex with label greater
than k. O]

We end this section by discussing some properties of the distance irregularity
strength for trees. First, we show that the bound in Theorem 2.1 can be reduced such
that it is determined only by nq or {%W as we state in the following theorem.

Theorem 2.8. Let T be a tree with mazimum degree A such that N(u) # N(v) for
u,v € V, u#v. Let n; be the number of vertices of degree i for everyi=1,2,..., A.

Then
dis(7) > max {nl, {nl ;n2-‘ } .

Proof. With respect to Theorem 2.1, evidently, the theorem holds for 1 < A < 2.
Zfilﬂ fori=1,2,...,A.

It is enough to show that ¢t; —¢; > 0 or to — ¢; > 0 for each [ = 3,4,...,A.
If t1 — t; > 0 then we are done. Now assume that t; — ¢t; < 0. Then

We now suppose that A > 3. Let ¢; = [

l l
Ing — Z?’Lj <0 & ny> (l — 1)n1 — an' (221)

=1 j=3
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Using (2.21) along with the facts that [z]—[y] > x—y—1and n; = 2+Zf‘:3(i—2)ni,
we have

ni + no Zé‘:l nj
bh—ti=|=—| - | =5~

! 1
>ﬂ1+n2_2j=1nj_1 (l—2)n1+(l—2)n2_22j:3nj_

2 l 21 21
(=2 +0=2) (= Dm = Tigny) 25 o0,
” 2l BT
I(1—=2)n1 =15 _yn;
- 2 -
(- Dn) - S
_ . .
=33 -2y + 305 - 3y
2
_ Aoy
Lo L= ) eo

As [ > 3, clearly, the last inequality is true. Therefore t; — ¢; > 0 and so the assertion
holds. O

In the next lemmas, we give the necessary condition for which dis(7T’) is equal to
my or [212a].

Lemma 2.9. Let T be a tree with maximum degree A such that N(u) # N(v) for
u,v € V, u#v. Let n; be the number of vertices of degree i for everyi=1,2,... A.
If dis(T) = ny then ny > na.

Proof. Evidently dis(T") > n;. Then by Theorem 2.8,

ny+n
77,12’712 2—‘@2n12n1+n2¢>n12n2. O

From Lemma 2.9 we immediately have the following.

Lemma 2.10. Let T be a tree with mazimum degree A such that N(u) # N(v) for
u,v € V, u#wv. Let n; be the number of vertices of degree i for everyi=1,2,... A.
If dis(T) = [™£22] then ny < na.

3. FINAL REMARKS
In this paper, we introduced a new lower bound for the distance irregularity strength

and determined the exact values of this parameter for some graphs with pendant
vertices. We also presented some properties on distance irregularity strength for trees.
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In particular, we gave the necessary condition for a tree to have distance irregularity
strength nq or [%W

The necessary condition stated in Lemma 2.9 is not sufficient as we can see from
a counterexample shown in Figure 3.

1 2 4

Fig. 3. A tree T with dis(T) = 4.

We believe, however, that this happens only if n; = nsy as stated in the following
conjecture.

Conjecture 3.1. Let T be a tree with mazimum degree A such that N(u) # N(v )
u,v € V, u# v. Let n; be the number of vertices of degree i for everyi=1,2,.. A
If dis(T) = n1 + 1 then ny = no.

When trees with n; = no are ignored, the following conjecture is most likely to be
true.

Conjecture 3.2. Let T be a tree with mazimum degree A such that N( )# N(v ) for
u,v € V, u#v. Let n; be the number of vertices of degree i for everyi=1,2,..., A
and ny # ng. Then dis(T) = ny if and only if nqy > ns.

As we have not found its counter example, we conjecture that the necessary condition
given in Lemma 2.10 is also sufficient.

Conjecture 3.3. Let T be a tree with mazimum degree A such that N(u) # N (v )
u,v € V, u#v. Let n; be the number of vertices of degree i for everyi=1,2,.. A
Then dis(T) = [2E22] if and only if ny < ns.

A problem below is based on the result from Theorems 2.6 and 2.7.

Problem 3.4. Let F be a forest onn > 2 vertices and m > 1 edges without an isolated
vertex. Let nf be the number of vertices of degree 1 in F and let 2 < s1 < 59 < ... < sp.
Determine the exact value of dis(MoFern(F;n;s1,Sa,...,5n)) if

(i)
rln(slzl)mJ +s1 SiSi

- 2s1(nf =1+ (s1 —1)n) —sin(s1 — 1) +m+2
2(51 — 1) ’
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(ii) m is even and

ZS‘_ 2s1(nf =1+ (s1 —1)n) —sin(s1 — 1)+ m+2 1
L 2(s; — 1) '
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