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Abstract. Global regression assumes that the relationships being measured are stationary over 

space or the model is applied equally over the whole region.  If there is spatial heterogeneity on 

the data, then the global model is not suitable to the reality.  To overcome multivariate spatial 

over dispersed negative binomial data, we evaluate geographically weighted multivariate 

negative binomial (local method) and compare it to the global method (multivariate negative 

binomial). The results show that the geographically weighted negative binomial performs 

better than the global method.  The log likelihood of the local method is higher than the global 

method. The deviance and mean square prediction error of the local method are smaller than 

the global method. Moreover, the prediction of dependent variables of the local method are 

closer to the observed data than the global method. The estimated coefficients of the local 

method vary, depending on where the data are observed. 

1. Introduction 

Spatial data can be found in many fields, such as in transportation [1], [2],  mortality [3], economic [4] 

and demographic [5]. The characteristic of spatial data is the existence of spatial effects on the data, 

the dependence between observation and location.  The spatial effects can be categorized into two 

types [6],  spatial dependence and spatial heterogeneity. In the spatial dependence, there is statistical 

dependence in a collection of random variables, each of which is associated with a different location. 

The spatial dependence leads to development of spatial area researches, Conditional Autoregressive, 

Spatial Autoregressive and  Spatial Autoregressive Moving Average Model, among others [4], [6].  

The spatial heterogeneity occurs as effects of differentiation between locations. It has the implication 

on the model vary between locations. It leads to development of Geographically Weighted Regression 

[7].  

The Geographically Weighted Regression is a local regression model used to model spatially 

varying relationships. The spatial variation in coefficients can reveal interesting pattern contained in 

the spatial data. Some spatial count data researches were conducted using different techniques. For 

analyzing univariate spatial count data, Geographically Weighted Poisson Regression (GWPR) is 

described for analyzing non stationary count data and Semiparametric GWPR  (SGWPR) model for 

mixed model is proposed, where there are global and local parameters in the model [3]. The estimation 
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of parameters was conducted by using maximum likelihood estimation (MLE) method. The 

application of  Generalized Linear Model (GLM) and GWPR on transportation  case are described in 

[2]. The results show that the performance of GWPR model is better than GLM based on corrected 

Akaike Information Criterion (AICc). However, the GWPR assumes the equidispersion of the data.  

Unfortunately this assumption is often violated in the real data because data are often overdispersed. 

One of the methods for overcoming overdispersion is by using a geographically weighted negative 

binomial model [1].  

On the other hand, many researchers have been developing the global regression models for 

Poisson data with overdispersion. For univariate dependent variable, see [8], [9], [10] and [11]. For 

more than one dependent variables, the multivariate negative binomial model using copula and MLE 

method is proposed [12]. The other researches are  a robust likelihood approach for the overdispersed 

correlated count data analysis based on a multivariate negative binomial model using MLE via 

iterative Newton Raphson algorithm [13], a multivariate generalized Poisson regression model using 

MLE method [14] and the comparison of two bivariate negative binomial regression models that come 

from the different distributions derivation [15]. In a similar way to [16], a bivariate negative binomial  

distribution as a product of negative binomial marginals with a multiplicative factor is defined in [17]. 

The parameters are estimated using MLE via Newton Raphson algorithm.  

There is a relationship between observations from different locations. The near things are more 

related than the distant things. Accordingly, when we use global method for analyzing spatial data, 

there is violation to the condition, because the global method assumes that there are no relationships 

between observations or observations are independent in different locations.  Moreover the global 

regression assumes that the relationship is stationary modeled throughout space, although it might be 

non-stationary. These conditions are not always suitable for spatial data because there are spatial 

effects on it.  For that reason, if there is non-stationariness of the relationships between locations, the 

global model is not suitable with reality.  Therefore it is necessary to use appropriate method to model 

such data. Unfortunately, the researches related to multivariate spatial data are less developed. On the 

other side, many data in real applications are multivariate spatial data. Therefore, the purpose of this 

research is to evaluate the geographically weighted multivariate negative binomial method on 

multivariate spatial overdispersed negative binomial data using infant mortality data with spatial effect 

and overdispersion. We compare it to the multivariate negative binomial (global method). We 

investigate five aspects in this research, the likelihood, deviance, mean square prediction error, 

coefficients estimate and closeness of the prediction (means of dependent variables) to the observed 

data. 

2. Geographically weighted multivariate negative Binomial  method 

The model in this research is built based on multivariate negative binomial distribution , where the 

observation 
ijy  follow Poisson distribution with assumption  |  Poisson ij i i ijY     , i = 1,2,..., n, j 

= 1,2,...,m, 𝜇𝑖𝑗 is the mean of dependent variable-j on location-i and 𝜑𝑖 is unobservable  effect of 

location-i, i  follow gamma distribution or  1 1 Gamma ,i    , where   1E    and 

 Var   .  

2.1. The model 

Let 
ijy  is the observation on location-i, dependent variable-j, where i = 1,2,…,n and j = 1,2,…,m. By 

using the assumption above and letting 1/   , the joint probability density function of  ,i iy is 

given by  

Rahasia



ICRIEMS 6

Journal of Physics: Conference Series 1397 (2019) 012077

IOP Publishing

doi:10.1088/1742-6596/1397/1/012077

3

 
 
 
 
 
 

 

  1

1
1

1

1

, ; , exp

! ( )

yij

m

ij

j

m

ij ym
j

i i i ij im
j

ij

j

f

y




 

     





 






 
 

             
 






y μ

 (1) 

By letting 
1

m

i i ij

j

a   


 
  

 
  and integrating the function of ai with respect to i , the marginal 

probability mass function of  iy  can be written as follows 

  

 

  

1

1

; ,

!

ij

ij

i

m
y

i

j

i m
y

ij i

j

y

f

y





  



   











 
  

 
 

  
 





y μ  (2) 

for i = 1,2,...,n and j = 1,2,...,m, 
1

m

i ij

j

y y



 and 
1

m

i ij

j

 



 .  The probability mass function (2)  is 

known as multivariate negative binomial, where 

  ,  ij ijE Y   
2

Var  +
ij

ij ijY





  and  Corr ,
ij il

ij il

ij il

Y Y
 

   


 
.  

The likelihood function of (2) is given by 

  
1

( )1

1

( )

! ( )( )

ij

i

m
y

ij in
j

m
yi

ij i

j

y

L

y





  

   










 
  

 

 





θ  (3) 

Subsequently, by defining    ,
,  

T
i j i iu v

ij i i iju v t e 
x β

, we build the geographically weighted 

multivariate negative binomial,  where  ,ij i iu v  is the mean of  dependent variable-j, at location-i , 

while  ,i iu v is the coordinate of the location-i ,  
ijt  is exposure variable of location-i and dependent 

variable-j, 
ijx  is independent variable at location-i and dependent variable-j, and   ,  j i iu vβ is the 

vector coefficients of the regression at location-i and dependent variable-j.  Based on [1] and  equation 

(3), the log likelihood function of the local model can be written as 

             , ,*

1 1 1

ln , ln ,
T T
i j l l i j l l

n m m
u v u v

ij ij l l i l l ij i il

i j j

y t e u v y u v t e A w 

  

     
        

     
  

x β x β
θ  (4) 

where i,l= 1,2,3,…,n,    
 

 1

( , )
, ln , ln ! ln

( , )

m
i l l

i l l l l ij

j l l

y u v
A u v u v y

u v


 







   
    

  


, 

       *

1 2,  , ... ,  ,
T

T T T

l l l l m l l l lu v u v u v u v   θ β β β and  wil is the geographical weight. 

 

 

Rahasia



ICRIEMS 6

Journal of Physics: Conference Series 1397 (2019) 012077

IOP Publishing

doi:10.1088/1742-6596/1397/1/012077

4

 
 
 
 
 
 

2.2. The geographical weight and cross validation 

The geographical weight is a value of weights relative to the position of  ,i iu v in the study area. The 

weights themselves are computed from a weighting scheme which is also known as kernel. In this 

research, we use the Fixed Bisquare Kernel weight, 
ilw as a continuous function of 

ild . It can be 

defined as shown in [7], 

 

2
2

1 ;  untuk 

0  ;                    untuk 

il
il

il

il

d
d b

w b

d b

             




 (5) 

where  b  is referred to as the bandwidth, and
ild  is the Euclidean distance between point-i and l. 

The optimum bandwidth is obtained by cross-validation using the formula   

     
2

1 1

n m

ij ij

i j

CV b y y b

 

   (6) 

where  ijy b  is the fitted value of  ijy  with the observation for location-i omitted from the calibration 

process, n and m is the number of location and dependent variables respectively. The optimum 

bandwidth is the bandwidth with minimum CV.   

3. Method and algorithm  

We use infant mortality data 2014 from East, Middle and West Java, Indonesia [18], [19], [20]. There 

are three dependent variables (Y1, Y2 and Y3) which have positive correlation between them and six 

independent variables (X1 – X6), where they are direct and underlying causes of infant mortality. The 

description of the variables used in this research is presented in Table 1.  

 

Table 1. Research variables of infant mortality data. 

Variable Description 

Y1 

Y2 

Y3 

X1 

X2 

X3 

X4 

X5 

X6 

The number of birth deaths 

The number of neonatal deaths (after birth to 1 month) 

The number of infancy deaths (1 month to 1 year) 

The percentage of handling obstetric complications 

The percentage of households that have healthy behavior 

The percentage of integrated health posts giving service actively 

The percentage of active family planning participant 

The percentage of prenatal visits to the health worker minimum four times 

The percentage of prenatal getting Fe3 (90 pills) 

 

We use the coordinates of latitude and longitude of the regencies/towns in East, Middle and West Java 

Indonesia as geographical factor of locations. There are 38, 35 and 27 regencies/towns in East, Middle 

and West Java, Indonesia respectively. Thus, there are 100 locations in total. 

Geographically Weighted Negative Binomial uses MLE method via  Newton Raphson algorithm 

for the estimation of parameters [1]. However, the algorithm has the weakness in dealing with false 

convergence due to improper initial value. Moreover, when analyzing more than one dependent 

variables, things are more complicated. In this research, we use MLE method via Nelder Mead 

algorithm for estimating the mean of dependent variables. Nelder Mead  is an alternative algorithm for 

Newton Raphson. This is free derivative and robust algorithm related to the initial value for 

geographically weighted multivariate method [21]. The method is nonlinear optimization technique for 
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maximizing or minimizing function on multi dimension. The Nelder Mead algorithm is a popular 

algorithm, because it is reliable enough even for researches in  high dimension. 

The algorithm proceeds through operations of the simplex to find local optimum of log likelihood 

function. Let  is  p  dimension parameter space and  *
θ  is a function that we want to maximize 

(log likelihood function) or  * θ   minimized, where * and      *

1,0 1,1 1, 1[ ,  ,  ... ,   l l l l p l lu v u v u v   θ

           2,0 2,1 2, 1 3,0 , 1 ,  ,  ... ,  ,  ... ,  , ]i i l l p l l l l m p l l l lu v u v u v u v u v u v       . Each iteration is started from 

simplex, that is the structure formed by 1p   points, not in the same plane, in an p -dimension space,

1mp p  where m is the number of dependent variables and p is the number of parameters for each 

dependent variable.  Based on the evaluation of  * θ   on the vertex, the vertex having the worst 

function value is replaced by a new point with a better function value. By assuming that optimum is 

minimum, the vertex with highest value of the function is replaced by the new point with a lower 

value of the function through one of reflection, expansion or contraction operations. If all of these 

operations fail to find new point to replace the worst point, then the simplex will shrink to the vertex 

with lowest function value. See [22] and [23] for Nelder Mead algorithm in details. The cross 

validation is conducted using the golden section algorithm to find an optimum bandwidth. The initial 

estimate of geographically weighted multivariate negative binomial is taken from the coefficients and 

index of dispersion estimate of multivariate negative binomial for estimating the mean of dependent 

variables. The data analysis is conducted using R.3.4.3 software with MASS, REdas, spgwr and GW 

model packages.   

4. Result and Discussion  

The model used in this research consists three dependent variables. All correlation coefficients 

between the dependent variables are positive. They are 0.552, 0.449 and 0.706 for the correlation 

between Y1 and Y2, Y1 and Y3, and Y2 and Y3 respectively. Moreover the variance of dependent 

variables are much larger than their mean, it indicates the existence of overdispersion in the data. The 

variance of Y1, Y2 and Y3 are 3507.36, 4444.65 and 547.00, while their means are 94, 117 and 31 

respectively. Therefore, we consider multivariate negative binomial distribution for this data.   

There is a high correlation between two independent variables X5 and X6 (Correlation = 0.909), We 

omit X6 from the data analysis for overcoming multicollinearity. The selection of independent 

variables uses a forward stepwise method. The model with four independent variables (X1, X2, X3 and 

X4) has the best performance. Therefore we use those variables for further analysis.  

By using four variables (X1, X2, X3 and X4) and Nelder-Mead algorithms in section 3, we find the 

optimum bandwidth b = 4.298 and CV = 885910.30. The geographically weighted multivariate 

negative binomial (local method) performs better than the multivariate negative binomial (global 

method) as shown in Table 2. Three criteria of the likelihood, deviance and mean square prediction 

error (MSPE) are used to compare the two methods. The local method has higher log likelihood and 

smaller deviance than the global method. Moreover, the behavior of the residual of the local method is 

better than the global method, indicated by a small MSPE value. The MSPE of local method is smaller 

than the global method.   

 

Table 2. Goodness of fit of the local and global methods.  

Method Log likelihood Deviance MSPE 

Local -2049.7   1925.3 2500.8 

Global -2122.2 2073.4 2542.2 
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Figure 1. Comparison of observed data and their prediction using global and local methods 

 

The comparison of observed data (y1, y2 and y3) and their prediction are presented in Figure 1. The 

darker color represents the higher of deaths than lighter color. That figure shows that the prediction of 

local method tends to close to the observed data than the global method. This indicates that the local 

method predicts better the dependent variables than the global method. This is in accordance with 
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MSPE result, that the local method is better than the global method. Although the local method has 

better prediction than global method, the time for local method is longer than it for global method, 

mainly for cross validation process. Building one model in local method similar to building n model in 

global method, where n is the number of locations. 

The coefficients estimates of global and local methods and their standard error (in parentheses) are 

presented in Table 3. They show that there are differences between the coefficients estimate resulted 

by both methods. This is because the coefficients estimates of spatial data model have the local 

character, those depend on the location where the data are observed.  

 

Table 3. Estimated coefficients for the three locations using global and local methods. 

Coefficient Global 
    Local     

Madiun Cilacap Karawang 

β10 4.505 (0.459) 4.678 (0.933) 4.440 (0.664) 4.451 (1.877) 

β11 0.001 (0.003) 0.004 (0.008) 0.002 (0.004) -0.002 (0.005) 

β12 -0.002 (0.003) -0.003 (0.005) -0.002 (0.004) 0.015 (0.007) 

β13 -0.003 (0.003) -0.011 (0.006) -0.003 (0.004) -0.008 (0.005) 

β14 0.003 (0.003) 0.004 (0.003) 0.003 (0.005) -0.003 (0.023) 

β20 4.657 (0.458) 4.622 (0.931) 4.700 (0.663) 5.622 (1.870) 

β21 0.005 (0.003) 0.009 (0.008) 0.005 (0.004) 0.003 (0.005) 

β22 0.000 (0.003) 0.002 (0.005) 0.000 (0.004) 0.010 (0.007) 

β23 -0.007 (0.003) -0.015 (0.006) -0.009 (0.004) -0.012 (0.005) 

β24 0.002 (0.003) 0.002 (0.003) 0.001 (0.005) -0.015 (0.023) 

β30 2.387 (0.471) 2.757 (0.956) 2.466 (0.680) 2.438 (1.930) 

β31 0.008 (0.003) 0.009 (0.008) 0.009 (0.004) 0.007 (0.005) 

β32 0.007 (0.003) 0.011 (0.005) 0.006 (0.005) 0.008 (0.007) 

β33 -0.004 (0.003) -0.015 (0.006) -0.005 (0.004) -0.004 (0.005) 

β34 0.001 (0.003) 0.001 (0.003) 0.001 (0.005) -0.001 (0.024) 

  0.339 (0.046) 0.396 (0.087) 0.322 (0.062) 0.307 (0.092) 

Loglikelihood  -2122.244   -2049.741   

Deviance    2073.387   1925.304   

MSPE   2542.177   2500.843   

5. Conclusion  

Geographically weighted multivariate negative binomial is a development method of geographically 

weighted negative binomial. This method is used when there are multivariate spatial count data having 

positive correlation between them. The dependent variables are predicted by independent variables, 

where each location has the local character coefficients based on where the data are observed.  

The geographically weighted multivariate negative binomial performs better than the global 

method (multivariate negative binomial) in predicting the means of multivariate spatial overdispersed 

data. This is indicated by higher log likelihood and smaller deviance and MSPE. Moreover, the local 

method predicts the dependent variables better than the global method. The prediction of the local 

method tends to be closer to the observed data than the global method. However the computational 

time for local method is longer than the global method.  
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