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ABSTRACT 

Linear programming is mathematical programming developed to deal with optimization problems involving linear 

equations in the objective and constraint functions. One of the basic assumptions in linear programming problems is the 

certainty assumption. Assumption of certainty shows that all coefficients variable or decision variables in the model are 

constants that are known with certainty. However, in real situations or problems, there may be uncertain coefficients or 

decision variables. Based on the concept and theory of interval analysis, this uncertainty problem is anticipated by 

making approximate values in intervals to develop linear interval programming. The development of interval linear 

programming starts from linear programming with interval-shaped coefficients, both in the coefficient of the objective 

function and the coefficient of the constraint function. It was subsequently developed into linear programming with 

coefficients and decision variables in intervals, commonly known as interval linear programming. Until now, the 

completion of interval linear programming is based on the calculation of the interval limit. The initial procedure for the 

solution is to change the linear programming model with interval variables into two classical linear programming 

models. Finally, the optimal solution in the form of intervals is obtained by constructing two models. This paper provides 

an alternative solution to directly solve the linear interval programming problem without building it into two models. 

The solution is done using the interval arithmetic approach, while the method used is the modified interior-point method. 

Keywords: Interval Linear Programming, Interior Point Method, Interval Arithmetic. 

1. INTRODUCTION 

Linear programming is mathematical programming 

developed to handle optimization problems involving 

linear equations in the objective and constraint functions. 

Linear programming problems must satisfy the basic 

assumptions: proportionality, additive, divisible, and 

certainty. The certainty assumption shows that all the 

coefficients of the decision variables in the model are 

constants that are known with certainty. However, in real 

situations or problems, there may be uncertain 

coefficients or decision variables [1,2]. 

One method for solving linear programming 

problems is using the interior-point method [3]. The first 

step to constructing an interior-point method is to 

transform the general form of classical linear 

programming represented in matrix form into a standard 

linear programming form [2]. The problems of linear and 

quadratic programming have used the interior-point 

method [4]. Therefore, as an alternative method of 

solving linear programming problems, the interior-point 

method needs a more comprehensive appreciation [5]. So 

far, the interior point method is used to solve classical 

linear programming problems that satisfy the assumption 

of certainty, with coefficients and variables in the form of 

constants [2]. Interval analysis can be used to anticipate 

this uncertainty [6]. Based on the concept and theory of 

interval analysis developed by [7], this uncertainty 

problem is anticipated by making approximate values in 

intervals to construct interval linear programming. 

The development of interval linear programming 

starts from a linear program with coefficients in the form 

of intervals, both on the objective function's coefficient 

and the constraint function's coefficient. The optimum 

value of the objective function is obtained by combining 

the optimum value of the best optimum problem and the 

worst optimum problem so that it is in the form of an 

interval, while the optimum point is not in the form of an 

interval [8,9,10,11]. Furthermore, a linear program with 

coefficients in the form of intervals develops into a linear 
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program with coefficients and decision variables in the 

form of intervals. In this development, the problem is 

solved by bringing into two classical linear programming 

models to get the optimum solution in intervals, both the 

optimum point and the optimum value [12,13,14]. 

According to [13,15,16,17] used the simplex method to 

solve linear interval programming with an interval 

arithmetic approach. This interval arithmetic 

programming aims to get a solution for linear interval 

programming directly. 

As a continuation of [14], this paper presents a 

solution for interval linear programming. The method 

used is an interior-point method that has been modified 

to solve linear interval programming directly through an 

arithmetic interval programming approach. Next, we will 

take examples from [15,18,19,20] for the application of 

the modified solution. 

2. INTERVAL ARITHMETIC 

The basic concepts: definitions, properties of interval 

numbers, interval arithmetic, comparison of two 

intervals, and interval matrices can be found in 

[7,9,15,21,22]. Let R denote the set of all real numbers. 

Definition 1. A closed real interval 𝑥 = [𝑥𝐼, 𝑥𝑆] , is 

defined by  

𝑥 = [𝑥𝐼, 𝑥𝑆] = {𝑥𝐼, 𝑥𝑆 ∈ ℝ|𝑥𝐼 ≤ 𝑥𝑆} 

where 𝑥𝐼 and 𝑥𝑆 are called infimum and supremum of 𝑥, 

respectively.  

Definition 2. A real interval 𝑥 = [𝑥𝐼, 𝑥𝑆] , is called 

degenerate, if 𝑥𝐼 = 𝑥𝑆.   

Theorem 3.  If [𝑥𝐼 , 𝑥𝑆] = [𝑦𝐼 , 𝑦𝑆], then 𝑥𝑆 ≥ 𝑦𝐼  and 𝑥𝐼 ≤
𝑦𝑆. 

Definition 4. The width of an interval 𝑥  is the real 

number  𝑤(𝑥) =
1

2
(𝑥𝑆 − 𝑥𝐼). 

Definition 5. The midpoint of an interval 𝑥 is the real 

number 𝑚(𝑥) =
1

2
(𝑥𝐼 + 𝑥𝑆). 

Definition 6.  The absolute value of an interval 𝑥  is a real 

numbe |𝑥| = maks{|𝑥𝐼|, |𝑥𝑆|}. 

Definition 7.  Let  𝑥 , 𝑦  ∈ 𝐼(ℝ) where  𝑥 = [𝑥𝐼, 𝑥𝑆]  and 

𝑦 = [𝑦
𝐼
, 𝑦
𝑆
], then  

1) addition :  

𝑥 + 𝑦 = [𝑥𝐼 + 𝑦𝐼, 𝑥𝑆 + 𝑦𝑆]. 

2) subtraction : 

𝑥 − 𝑦 = [𝑥𝐼, 𝑥𝑆] − [𝑦𝐼, 𝑦𝑆] = [𝑥𝐼, 𝑥𝑆] +

[−𝑦
𝑆
, −𝑦

𝐼
] = [𝑥𝐼 − 𝑦𝑆, 𝑥𝑆 − 𝑦𝐼].        

3) multiplication :  

𝑥𝑦

= [min{𝑥𝐼𝑦𝐼, 𝑥𝐼𝑦𝑆 , 𝑥𝑆𝑦𝐼, 𝑥𝑆𝑦𝑆} , maks{𝑥𝐼𝑦𝐼, 𝑥𝐼𝑦𝑆, 𝑥𝑆𝑦𝐼, 𝑥𝑆𝑦𝑆}] 

4) division : 

𝑥

𝑦
= 𝑥

1

𝑦
= [𝑥𝐼, 𝑥𝑆] [

1

𝑦
𝑆

,
1

𝑦
𝐼

] , 0 ∉ 𝑦 

Definition 8.  An interval vector   𝑉 ∈ 𝐼(ℝ𝑛),   is a set of 

the form 𝑉 = (𝑉𝑖)
𝑛x1

, where  𝑉𝑖 = [𝑥𝑖𝐼, 𝑥𝑖𝑆] ∈

𝐼(ℝ), 𝑥𝑖𝐼, 𝑥𝑖𝑆 ∈ ℝ, and i = 1, 2,…, n.  

Definition 9. Let  𝑥 , 𝑦  ∈ 𝐼(ℝ) where  𝑥 = [𝑥𝐼, 𝑥𝑆]  and 

𝑦 = [𝑦
𝐼
, 𝑦
𝑆
], then  

1) 𝑥  ≤ 𝑦  iff 𝑥𝑆 ≤ 𝑦𝐼 . 

2) 𝑥  ≤ 𝑦  iff  𝑥𝐼 ≥ 𝑦𝐼   and 𝑥𝑆 ≤  𝑦𝑆. 

3) 𝑥  ≤ 𝑦  iff 𝑥𝐼 ≤ 𝑦𝐼   and 𝑥𝑆 ≤  𝑦𝑆. 

4) a) 𝑥  ≤ 𝑦  iff  𝑥𝐼 ≤ 𝑦𝐼   and 𝑚(𝑥) ≤  𝑚(𝑦). 

b) 𝑥  ≤ 𝑦  iff  𝑥𝑆 > 𝑦𝐼   and 𝑚(𝑥) <  𝑚(𝑦). 

c) 𝑥  ≤ 𝑦  iff 𝑚(𝑥) ≤  𝑚(𝑦) and 𝑤(𝑥) ≥ 𝑤(𝑦). 

5) a) 𝑥  ≤ 𝑦  iff  𝑥𝐼 − 𝜖 ≤  𝑦𝑆  where  𝜖 real number. 

b) 𝑥  ≤ 𝑦  iff  𝑥𝑆 − 𝜖 ≤  𝑦𝐼     where  𝜖 real number. 

6) 𝑥  ≤ 𝑦  iff 𝑥𝐼 + 𝑥𝑆 ≤ 𝑦𝐼 + 𝑦𝑆. 

7) 𝑥  ≤ 𝑦   iff  𝑢𝑥𝐼 + 𝑣𝑥𝑆 ≤  𝑢𝑦𝐼 + 𝑣𝑦𝑆  where  𝑢, 𝑣 ∈

(0,1] and vu  . 

Definition 10. An interval matrix 𝐀 ∈ 𝐼(ℝ𝑚×𝑛) , is a 

matrix 𝐀 = (𝑎𝑖𝑗)  where 𝑎𝑖𝑗 = [𝑎𝑖𝑗𝐼, 𝑎𝑖𝑗𝑆] ∈ 𝐼(ℝ) , and 

𝑎𝑖𝑗𝐼 is infimum 𝑎𝑖𝑗  and 𝑎𝑖𝑗𝑆 is supremum 𝑎𝑖𝑗, for every  i 

= 1, 2,…, m, j = 1, 2,…, n. 

Definition 11. The midpoint of an interval matrix 𝐀 is the 

matrix 𝑚(𝐀) = (𝑚 (𝑎𝑖𝑗))  where 𝑚(𝑎𝑖𝑗) =
1

2
(𝑎𝑖𝑗𝐼 +

𝑎𝑖𝑗𝑆).  

Definition 12. The width of an interval matrix 𝐀 is the 

matrix 𝑤(𝐀) = (𝑤 (𝑎𝑖𝑗))  where 𝑤 (𝑎𝑖𝑗) =
1

2
(𝑎𝑖𝑗𝑆 −

𝑎𝑖𝑗𝐼).  

Definition 13. The absolute value of an interval matrix 𝐀 

is the matrix |𝐀| = (|𝑎𝑖𝑗|).   

According to [18], three criteria can be used to 

determine the best solution to the linear interval 

programming problem. These criteria are: 

1) satisfy the constraint function 

2) The width of the interval from the optimum value (the 

narrowest) 

3) Degree of uncertainty is a ratio between the width of 

the interval and the midpoint of the interval 

(smallest). 
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3.  MODIFICATION INTERIOR-POINT 

METHOD 

This interval linear programming solution algorithm 

is based on the interior point algorithm, which is then 

modified. Modifications are intended to conform to the 

definitions and theorems that apply to the interior point 

method, interval operations, and the problem's 

constraints to be solved. The steps for solving interval 

linear programming based on interval arithmetic are as 

follows. 

Step 1: Problem  

Maximize (objective function) 

𝒁 =∑ 𝒄𝒋

𝒏

𝒋=𝟏

𝒙𝒋,                                                                      (1) 

subject to            

∑𝒂𝒊𝒋𝒙𝒋 ≤ 𝒃𝒊

𝒏

𝒋=𝟏

,     𝒊 = 𝟏, 𝟐, … ,𝒎,                                  (2) 

𝒙𝒋 ≥ 𝟎,       𝒋 = 𝟏, 𝟐, … , 𝒏.,                                               (3) 

and 𝑥𝑗 ∈ 𝐼(ℝ
+), 𝑐𝑗, 𝑎𝑖𝑗 , 𝑏𝑖 ∈ 𝐼(ℝ). 

 

Step  2: Forming the problem in Step 1 into standard 

interval linear programming form  

Maximize (objective function)  

𝐙 = 𝐂𝐓𝐗 ,                                                                     (4) 

subject to            

𝐀𝐗 = 𝐛,                                                                        (5) 

𝐗 ≥ 𝟎,                                                                           (6) 

and 

𝐂 =

[
 
 
 
 
 
 
 
𝑐1
𝑐2

⋮
𝑐𝑛

0

0

⋮

0 ]
 
 
 
 
 
 
 

, 𝐗 =

[
 
 
 
 
 
 
 
 
𝑥1
𝑥2

⋮
𝑥𝑛
𝑥𝑛+1
𝑥𝑛+2

⋮

𝑥𝑛+𝑚]
 
 
 
 
 
 
 
 

, 𝐛 =

[
 
 
 
 
𝑏1

𝑏2

⋮

𝑏𝑚]
 
 
 
 

, 𝟎 =

[
 
 
 
 
 
 
 
0

0

⋮
0

0

0

⋮

0]
 
 
 
 
 
 
 

, 

𝐀 =

[
 
 
 
𝑎11
𝑎21

⋮

𝑎𝑚1

     

𝑎12
𝑎22

⋮

𝑎𝑚2

     

⋯

⋯
⋱

⋯

     

𝑎1n
𝑎2n

⋮

𝑎𝑚𝑛

     

1

0

⋮

0

     

0

1

⋮

0

     

⋯

⋯
⋱

⋯

     

0

0

⋮

1

 

]
 
 
 

, 

where C, X, 0  ∈ I(ℝ𝑛+𝑚), b  ∈ I(ℝ𝑚), and 

 A ∈ I(ℝ𝑚×(𝑛+𝑚)). 

Step 3: Determine any initial interior-point 𝐗̃
0
=

(𝑥1, 𝑥2, … , 𝑥𝑛+𝑚)  that satisfies the constraints in 

Equation (5) and calculate the value of  𝐙0, with   

𝐙𝟎 = 𝐂𝐓𝐗̃
𝟎
 ,                                                                  (7)  

and  𝑥1, 𝑥2, … , 𝑥𝑛+𝑚  ∈ I(ℝ), 𝑥1, 𝑥2, … , 𝑥𝑛+𝑚 > 0.  

Step  4: Determine the diagonal matrix  

𝐃𝒊+𝟏 = 𝐝𝐢𝐚𝐠(𝐗̃
𝒊
) =

[
 
 
 
 
𝒙𝟏 𝟎 𝟎

𝟎
𝟎

⋮

𝒙𝟐

𝟎

⋮

𝟎
𝒙𝟑

⋮
𝟎 𝟎 𝟎

     

⋯

⋯

⋱
⋯

     

𝟎
𝟎
𝟎

⋮
𝒙𝒏+𝒎]

 
 
 
 

       (8) 

Step 5: Determine 

𝐀𝒊+𝟏 = 𝐀𝐃𝒊+𝟏

𝐂𝒊+𝟏 = 𝐃𝒊+𝟏𝐂}
 

 
.                                                                   (9) 

Step 6: Determine  

a) Projection matrix  

𝐏𝒊+𝟏 = 𝐈 − 𝐀𝒊+𝟏
𝑻(𝐀𝒊+𝟏𝐀𝒊+𝟏

𝑻)
−𝟏
𝐀𝒊+𝟏                              (10) 

with I identity matrix.  

b) Projected gradient level  

𝐂𝑷𝒊+𝟏 = 𝐏𝒊+𝟏𝐂𝒊+𝟏.                                                        (11) 

Step 7:  Determine  

𝐕𝑖+1 = |min (𝐂𝑃𝑖+1)|

𝐌𝑖+1 = [

[1 , 1]
[1 , 1]
⋮

[1 , 1]

] +
𝛼

𝐕𝑖+1
𝐂𝑃𝑖+1

}
 
 
 

 
 
 

,                                  (12) 

where 𝐌𝑖+1 ∈ I(ℝ
𝑛+𝑚)  and 𝛼 ∈ (0 , 1). 

Step 8: Determine the candidate interior points for the 

next iteration, i.e.  

𝐗̃
𝒊+𝟏

= 𝐃𝒊+𝟏𝐌𝒊+𝟏                                                       (13) 

Interior point candidate inspection (non-negative test and 

constraint boundary test) 

a) If the candidate interior point satisfies the constraint 

limit, proceed to Step 9 

b) If the candidate interior point does not meet the 

constraint limit, then stop. Return to the previous 

iteration and take the last interior point of the interval 

that satisfies the constraint limit; proceed to Step 9 
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Step 9 : Determine the optimum value 

 𝐙𝒊+𝟏 = 𝐂𝐓𝐗̃
𝒊+𝟏

                                                           (14) 

Optimum value check (optimality test)  

a) If 𝐙𝑖+1 > 𝐙𝑖, then proceed to the next iteration with 

the same steps as in Step 1-Step 8 in the previous 

iteration.  𝐗̃
𝑖+1

  is chosen to be the interior point for 

that iteration. 

b) If  𝐙𝑖+1 ≤ 𝒁𝑖, then stop, proceed to Step 10. 

Step 10 :  The optimum solution is obtained, namely the 

optimum point and the optimum value in the form of an 

interval  

𝒙𝒊 = [𝒙𝒊𝑰, 𝒙𝒊𝑺], 𝒊 = 𝟏, 𝟐, … ,𝒎,  and   𝒁 = [𝒛𝑰, 𝒛𝑺].   (15) 

4. NUMERICAL EXAMPLE 

In this section, we solve one example of interval 

linear programming in [15,18,19,20] and compare the 

results.  

Maximize (objective function) 

𝒁 = [𝟐𝟔 , 𝟑𝟎]𝒙𝟏 − [𝟓. 𝟓 , 𝟔]𝒙𝟐                                      (16) 

subject to            

[𝟖 , 𝟏𝟎]𝒙𝟏 − [𝟏𝟐 , 𝟏𝟒]𝒙𝟐  ≤ [𝟑. 𝟖  , 𝟒. 𝟐]

[𝟏 , 𝟏. 𝟏]]𝒙𝟏 + [𝟎. 𝟏𝟗 , 𝟎. 𝟐]𝒙𝟐  ≤ [𝟔. 𝟓  , 𝟕]

𝒙𝟏, 𝒙𝟐 ≥ 𝟎

}          (17) 

Forming the problem in Equation (16) into standard 

interval linear programming form 

Maximize (objective function) 

𝒁 = [𝟐𝟔 , 𝟑𝟎]𝒙𝟏 − [𝟓. 𝟓 , 𝟔]𝒙𝟐 + 𝟎𝑺𝟏 + 𝟎𝑺𝟐            (18) 

subject to            

[𝟖 , 𝟏𝟎]𝒙𝟏 − [𝟏𝟐 , 𝟏𝟒]𝒙𝟐 + 𝑺𝟏 = [𝟑. 𝟖  , 𝟒. 𝟐]

[𝟏 , 𝟏. 𝟏]𝒙𝟏 + [𝟎. 𝟏𝟗 , 𝟎. 𝟐]𝒙𝟐 + 𝑺𝟐 = [𝟔. 𝟓  , 𝟕]

𝒙𝟏, 𝒙𝟐, 𝑺𝟏, 𝑺𝟐 ≥ 𝟎

}    (19) 

An initial interior interval is taken, which satisfies the 

constraint in Equation (19) i.e. 𝐗0 = ([2 , 2] , [5 ,

5] , [51 , 51], [3.5 , 3.5]) , the value obtained is 𝐙0 =

[22 , 32.5]. By using Octave16 software, the optimum 

solution is  𝑥1   ≅  [3.8109 , 4.9579], 𝑥2   ≅  [2.3034 , 

5.7705] and  𝑍 ≅ [64.462 , 136.07]. The results of the 

optimum point and the optimum value can be seen in 

Table 1, while Table 2 presents comparison criteria 

between all solutions. 

 

 

From Table 1, it can be seen, the solution satisfies 

nine properties of Definition 9 and is better than 

[18,19,20] if using the constraint value criterion. If it 

refers to the interval width criteria, the solution is better 

than [19]. (2009). Meanwhile, when referring to the 

requirements for the degree of uncertainty, [15] solution 

using the modification simplex method is the best. These 

results can be identified as follows: (1) There is difficulty 

in taking the initial interior interval [9]. (2) Calculation of 

the inverse interval still uses the approach [22]. 

From the calculation example above, solving the 

interval linear programming problem can use the interior-

point method based on interval arithmetic calculations to 

improve taking the initial interior interval and 

determining the appropriate inverse matrix. 

 

5. CONCLUSIONS  

The solution of interval linear programming can 

involve all interval components directly. It is called 

interval linear programming based on interval arithmetic. 

The first step in solving interval linear programming 

problems is to form into standard interval linear 

programming. Standard interval linear programming is a 

classical standard linear programming modified by 

substituting the point elements in intervals. It begins with 

determining the initial interior interval that satisfies the 

problem constraints. Then modify the interior point 

method by changing the points into intervals to solve the 

problem until the optimum point and optimum value are 

obtained in the interval. The difficulty of solving interval 

linear programming that directly involves all interval 

components is in determining the initial interior interval 

and the inverse of the interval matrix. Sometimes this 

difficulty results in the solution obtained is not the best 

solution compared to the settlement method used by 

previous researchers. 
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