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Article

Cloning of Metalloproteinase 17 Genes from Oriental Giant
Jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae)
Du Hyeon Hwang 1 , Yunwi Heo 1, Young Chul Kwon 1, Ramachandran Loganathan Mohan Prakash 1,
Kyoungyeon Kim 2, Hyunju Oh 2, Ramin Seyedian 3, Al Munawir 4 , Changkeun Kang 1

and Euikyung Kim 1,*
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* Correspondence: ekim@gnu.ac.kr; Tel.: +82-55-772-2355; Fax: +82-55-772-2349

Abstract: We previously demonstrated that Nemopilema nomurai jellyfish venom metalloproteinases
(JVMPs) play a key role in the toxicities induced by N. nomurai venom (NnV), including dermotoxicity,
cytotoxicity, and lethality. In this study, we identified two full-length JVMP cDNA and genomic DNA
sequences: JVMP17-1 and JVMP17-2. The full-length cDNA of JVMP17-1 and 17-2 contains 1614 and
1578 nucleotides (nt) that encode 536 and 525 amino acids, respectively. Putative peptidoglycan (PG)
binding, zinc-dependent metalloproteinase, and hemopexin domains were identified. BLAST analysis
of JVMP17-1 showed 42, 41, 37, and 37% identity with Hydra vulgaris, Acropora digitifera, Megachile
rotundata, and Apis mellifera venom metalloproteinases, respectively. JVMP17-2 shared 38 and 36%
identity with H. vulgaris and A. digitifera, respectively. Alignment results of JVMP17-1 and 17-2
with other metalloproteinases suggest that the PG domain, the tissue inhibitor of metalloproteinase
(TIMP)-binding surfaces, active sites, and metal (ion)-binding sites are highly conserved. The present
study reports the gene cloning of metalloproteinase enzymes from jellyfish species for the first time.
We hope these results can expand our knowledge of metalloproteinase components and their roles in
the pathogenesis of jellyfish envenomation.

Keywords: jellyfish venom; metalloproteinase; sequencing

Key Contribution: This study reports the gene cloning of metalloproteinase enzymes from jellyfish
species for the first time.

1. Introduction

In general, the venom of poisonous animals is a cocktail of bioactive proteins, peptides,
and small molecules that incapacitate or digest their prey. The hundreds of proteins found
in venom include toxins, nontoxic proteins, and many different enzymes. In particular,
metalloproteinases, which are are highly abundant in snake venoms [1–3] and jellyfish
venoms [4,5], are involved in venom-associated pathogenesis. The toxicological effects
of snake venom metalloproteinases (SVMPs) include local and systemic hemorrhages [6],
anti-coagulation [7], and inflammation and necrosis [8]. SVMPs are typically organized
into three main groups (P-I to P-III) based on their domain organization [8,9]. Class P-I is
the smallest SVMP, with only a metalloproteinase (M) domain, P-II contains an M domain
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and a disintegrin (D) domain, and P-III includes M, D, and cysteine-rich (C) domains. P-III
SVMPs are further divided into subclasses based on their post-translational modifications,
such as dimerization (P-IIIc) or proteolysis between the M and D domains (P-IIIb). P-IIId
SVMP contains an additional C-type lectin-like domain [10].

Over the last few decades, Nemopilema nomurai jellyfish (Phylum Cnidaria) have
bloomed in the seas of Korea, China, and Japan, causing substantial damage to the fishing
industry as well as causing numerous jellyfish stings to sea bathers. Jellyfish stings can
cause redness, local edema, a burning sensation, and vesicular eruption [11]. In addition,
venom can infrequently cause systemic reactions such as hyperventilation, shock, paralysis,
cardiovascular collapse, and even death [12]. Recently, we have suggested that N. nomurai
jellyfish venom metalloproteinases (JVMPs) play a key role in the toxicities induced by N.
nomurai venom (NnV), including dermotoxicity, cytotoxicity, and lethality [4,13–15]. Similar
to snake venom, jellyfish venom also contains phospholipases [16–18]. We have previously
reported that NnV demonstrates phospholipase, hyaluronidase, and metalloproteinase
activity and that it can induce cytotoxicity in numerous cell types [4]. Here, we report the
identification of the full-length cDNA and gene structures of two isoforms of JVMPs from
the scyphozoan jellyfish N. nomurai for the first time.

2. Results
2.1. Metalloproteinases Components of NnV

The proteolytic activity of NnV was investigated by zymography analyses using
gelatin as the substrate. Figure 1A shows the gelatinolytic activity at various molecular
masses, with particularly strong signals at approximately 25 kDa and in the range of
50–70 kDa. Most of the gelatinolytic activities of NnV were significantly abolished by treatment
with conventional metal chelators, suggesting that this was caused by metalloproteinases.
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electrophoresis of the pGEM-T/JVMP cDNA after EcoRI digestion. M: 100-bp size marker; lane 1:
pGEM-T/JVMP17-1 cDNA; lane 2: pGEM-T/JVMP17-2 cDNA.

2.2. Full-Length cDNA Sequence Analysis of N. nomurai JVMP17-1 and 17-2

The full-length the cDNAs of the N. nomurai JVMP isoforms JVMP17-1 and JVMP17-2
were amplified with an oligo(dT)18 primer and primers based on the partial transcript se-
quences. The full-length cDNAs of the JVMP17-1 and 17-2 isoforms contain 1614 (GenBank
accession no. MW727214) and 1578 nucleotides (nt) (GenBank accession no. MW727215),
respectively, and the deduced amino acid (aa) sequences encode 537 aa and 525 aa, respec-
tively (Figure 2). Cleavage of the putative signal peptide of JVMP17-1 occurs between
aa 24 and 25 and between aa 18 and 19 in JVMP17-2. BLAST analysis of the JVMP17-1
gene sequence showed 42, 41, 37, and 37% identity with H. vulgaris, A. digitifera, M.
rotundata, and A. mellifera venom metalloproteinases, respectively. JVMP17-2 showed
38 and 36% identity with H. vulgaris and A. digitifera, respectively (data not shown).
Alignment analysis of these two genes revealed that they have PG-binding, zinc-dependent
metalloproteinase, and hemopexin domains. Furthermore, nine TIMP-binding surfaces,
metal-binding sites, and active sites were found to be highly conserved. The zinc-binding
motif (HExxHxxxxxH) sequence was also highly conserved (Figure 2).
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shaded letters: signal peptides; green letters: PG binding surface; red letters: active site of metallo-
proteinase; blue letters: zinc-dependent metalloproteinase domain; (H): TIMP-binding surfaces; (H):
metal (ion)-binding sites; (H): disintegrin motif. Identical, similar, and weakly similar amino acids
are indicated by asterisks, colons, and dots, respectively. Gaps are indicated by dashes.

2.3. Genomic DNA Sequences of N. nomurai JVMP17-1 and 17-2

To determine the gene sequences of JVMP17-1 and JVMP17-2, PCR was performed
using specific primers designed using the full-length cDNA sequences. The PCR products
were cloned into the pGEM-T Easy Vector and the clones were confirmed by EcoRI digestion.
The whole genome sequences of JVMP17-1 and JVMP17-2 comprised 5687 (Figure 3A) and
6661 base pairs (bp) (Figure 3B), respectively. The JVMP17-1 gene contained seven distinct
exons, while JVMP17-2 only contained six distinct exons. The classical 5′ donor (GT) and 3′

acceptor (AG) splice sites were present at each exon/intron boundary (Figure 4A,B).
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3. Discussion

To identify N. nomurai JVMP17-1 and 17-2 genes, we synthesized the first-strand
cDNA and used it to perform the rapid amplification of cDNA ends polymerase chain
reaction (RACE PCR). The complete open reading frame (ORF) of JVMP17-1 contained
1614 nucleotides, including a stop codon, and encoded 537 amino acids (Figure 4A). BLAST
analysis of the cDNA showed that it shared 42, 41, 37, and 37% identity with H. vulgaris,
A. digitifera, M. rotundata, and A. mellifera venom metalloproteinases, respectively. Accord-
ing to the SignalP 4.1 program, a putative signal peptide exists between amino acids 24
and 25. The primary structure of the protein predicted using InterProScan has PG-binding,
zinc-dependent metalloproteinases, and hemopexin domains. Furthermore, nine TIMP-
binding surfaces, metal-binding sites, and active sites were found to be conserved. The
zinc-binding motif (HExxHxxxxxH) sequence was also highly conserved (Figure 2).
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SVMPs are relatively well defined [19]. They have domain structures composed of
signal peptide, propeptide, zinc-dependent metalloproteinase (M), disintegrin (D), and
cysteine-rich (C) domains. Whereas, JVMP17-1 and 17-2 have signal peptide, PG-binding,
M, and hemopexin domains (Figure 5). There is very low homology between the M domain
of JVMP17-1 and 17-2 and the SVMP M domain sequences (GenBank accession number:
O42138 of Agkistrodon contortrix laticinctus, C9E1S0 of Agkistrodon piscivorus leucostoma,
Q9w6M5 of Deinagkistrodono acutus, Q8AWI5 of Gloydius halys, ABG26979 of Sistrurus
catenatus edwardsi, A8QL59 of Naja atra, O93523 of Bothrops jararaca, Q8QG88 of Bothrops
insularis, Q90ZI3 of Protobothrops flavoviridis, ABN72537 of Bungarus multicinctus, C9E1R8 of
Crotalus viridis, and Q9DGB9 of Crotalus atrox) (data not shown). In general, SVMPs have a
propeptide domain between the signal peptide and M domains that causes the activation
of the SVMP when hydrolyzed. In contrast, JVMP17-1 has a PG-binding domain. In many
enzymes, the PG-binding domain usually plays a role in binding to the peptidoglycan
in bacterial cell walls, inducing their degradation [20–22]. Eukaryotic matrix metallopro-
teinases (MMPs) have a similar PG-binding domain that can catalyze extracellular matrix
degradation in association with arthritis [23], tumor invasion [24], and immune defense
mechanisms [25]. The disintegrin domain of SVMP binds and inhibits the integrin of the
platelets or endothelial cell membrane in blood vessels. However, the disintegrin of our
novel JVMPs has a hemopexin domain (KGS and KGD motif), which is a heme-binding
moiety that plays an important role in cell migration [26] or in heme transfer to the liver for
the inhibition of oxidative stress [27] (Figure 5).
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Figure 5. Comparison between SVMPs and N. nomurai JVMP17-1 and 17-2 proteins. Schematic
representation of JVMP17-1 and 17-2 protein domain structure exhibits the conserved domains. SVMP
shows domain structures composed of signal peptide, propeptide, zinc-dependent metalloproteinase
(M), disintegrin (D), cysteine-rich, and hemopexin domains.

The genome structures of JVMP17-1 and JVMP17-2 were determined using specific
PCR primers designed using the full-length cDNA sequences. JVMP17-1 contains 5687 bp
(Figure 3A) and has seven distinct exons. Interestingly, the dinucleotide sequences at
the 5′ donor (GT) and 3′ acceptor (AG) splice sites in the introns were highly conserved
(Figure 4A). JVMP17-2 contains 6661 bp (Figure 3B) and has six distinct exons. The 5′ donor
and 3′ acceptor splice sites of JVMP17-2 were also highly conserved (Figure 4B).

4. Conclusions

In the present study, we identified the full-length cDNAs and gene sequences of the
novel proteins JVMP17-1 and JVMP17-2 from the scyphozoan jellyfish N. nomurai. To
determine the functions of these two enzymes in the future, it will be necessary to isolate
them from NnV or generate recombinant proteins using in vitro expression systems in
Escherichia coli or yeast. To the best of our knowledge, this study is the first to report the full-
length cDNAs, gene sequences, and the primary protein structures of two metalloproteinase
isoforms from jellyfish species.

5. Materials and Methods
5.1. Jellyfish Collection and Nematocyst Preparation

N. nomurai jellyfish specimens were captured near the coast of the Republic of Korea
and were immediately transferred to the laboratory on ice. Nematocysts were isolated
using a previously described method [28] with slight modifications. The dissected tentacles
were washed several times with ice-cold seawater to remove any debris. They were then
placed in three volumes (v/v) of cold seawater for 24 h at 4 ◦C with gentle swirling.
After autolysis, the supernatant was centrifuged at 1000× g for 5 min to harvest the
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nematocysts. The autolysis process for the tentacles was repeated for an additional 3–4 days,
and seawater was replaced daily. The harvested nematocyst pellets were stored in a deep
freezer and dried using a freeze dryer (lyophilizer), and the final powder was stored at
−70 ◦C until required.

5.2. Venom Preparation

Freeze-dried nematocyst powder was used to extract jellyfish venom using a previ-
ously described method [5] with a minor amendment. Briefly, venom was extracted from
70 mg of nematocyst powder using glass beads (approximately 8000 beads; 0.5 mm in
diameter) in 1 mL of cold phosphate-buffered saline (PBS, pH 7.4). The mixtures were
vortexed for 30 s, and this step was repeated five times with intermittent cooling on ice. The
venom extracts were then transferred to new microfuge tubes and centrifuged (22,000× g)
at 4 ◦C for 30 min. The supernatant was used as the NnV in the present study. The Bradford
assay (Bio-Rad, Hercules, CA, USA) was used to determine the protein concentration in the
venom [29].

5.3. Metalloproteinase Analysis of NnV

The metalloproteinase activity of NnV was analyzed by a proteolytic zymography
assay using gelatin as the substrate, as previously described [30]. To prepare the zymog-
raphy gels, gelatin (2 mg/mL) and thrombin (0.01 U/mL) dissolved in 20 mM sodium
phosphate buffer (pH 7.4) were copolymerized with 12% polyacrylamide. NnV (5 µg)
was loaded in a non-reducing sample buffer before electrophoresis at 15 mA/gel at 4 ◦C.
The SDS was removed by washing the gel twice in 2.5% Triton X-100 for 20 min. The gel
was then incubated in 20 mM Tris (pH 7.4) and in 0.5 mM calcium chloride at 37 ◦C for
16 h before staining with 0.125% Coomassie blue. Where required, the metalloproteinase
protease inhibitors 1,10-phenanthroline, tetracycline, and EDTA were added to the incu-
bation buffer of the appropriate gel at a final concentration of 10 mM. The zymography
assay was performed as previously described. Clear zones in the gel indicate regions with
proteolytic activity.

5.4. Total RNA Extraction

Total RNA was extracted using a previously described method [31]. Briefly, lyophilized
tentacle powder was dissolved in lysis buffer, and total RNA was purified by ethanol
precipitation. The pellet was dissolved in diethyl pyrocarbonate-treated, nuclease-free
water and treated with DNase I (NEB, Ipswich, MA, USA). The total RNA was used as a
template for RACE after heat treatment at 75 ◦C for 10 min to inactivate the DNase I.

5.5. Rapid Amplification of cDNA Ends (RACE)

The 3′-RACE PCRs used for the two genes were performed with specific forward
primers (JVMP17-1: 5′-GATGGAGGACAGCAGACGAATGGC-3′; JVMP17-2: 5′-GGATAC-
CCAAGGAGCGTTTGGGAG-3′) designed based on the transcriptome sequence data and
an oligo (dT)18 primer. The 5′-RACE PCRs were performed using the SMARTer RACE
cDNA Amplification Kit (Clontech, Mountain View, CA, USA) according to the manufac-
turer’s instructions. First-strand cDNA for 5′-RACE was synthesized from total RNA with
gene-specific primers (JVMP17-1: 5′-GTCCATCGTATCGGCCGTGACATC-3′; JVMP17-2:
5′-GCGAGGTAGTTAAGTCCTTCCTGG-3′) and the SMARTer II A oligonucleotide. The
5′-RACE PCR was performed using an Advantage® 2 PCR Enzyme Kit (Clontech, Moun-
tain View, CA, USA). All PCR products were purified using an Expin™ PCR SV purification
kit (cat. no. 103-102; GeneAll Biotechnology Co., Ltd., Seoul, Republic of Korea), cloned
into the pGEM-T® Easy Vector System (Promega, Madison, WI, USA), and sequenced using
an ABI PRISM 3739 XL Genetic Analyzer (Applied Biosystems, Waltham, MA, USA).
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5.6. Genomic DNA Sequences of N. nomurai JVMP17-1 and JVMP17-2

Genomic DNA was purified from the whole body of the jellyfish using the cetyltrimethyl
ammonium bromide method [31]. Specific primers for the JVMP17-1 and JVMP17-2 ge-
nomic DNA sequences were designed based on their full-length cDNA sequences.

5.7. Nucleotide Sequence Analysis

A homology search of full-length cDNA sequences was performed using the NCBI
BLAST program (http://www.ncbi.nlm.nih.gov/BLAST/, accessed date (10 March 2021)).
Protein domains were predicted using the InterProScan search tool (www.ebi.ac.uk/Tools/
InterProScan/, accessed date (5 June 2022)). The signal peptide cleavage site in the deduced
amino acid sequences was predicted using SignalP 4.1 (http://www.cbs.dtu.dk/services/
SignalP, accessed date (5 June 2022)). The sequence identity values for the deduced amino
acid sequences are available on the EMBL-EBI website (http://www.ebi.ac.uk/Tools/
emboss/align/, accessed date (5 June 2022)).

All data used for statistical material can be found in the Supplementary Material
Figure S1 and Table S1.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxins14080519/s1, Figure S1. Alignment analysis of JVMP17-1 and 17-2
M domains compared to that of other SVMPs M domain. A8QL59: Naja atra, ABN72537: Bungarus
multicinctus, Q90ZI3: Protobothrops flavoviridis, Q8AWI5: Gloydius halys, Q9DGB9: Crotalus atrox,
O42138: Agkistrodon contortrix laticinctus, ABG26979: Sistrurus catenatus edwardsi, Q9w6M5:
Deinagkistrodono acutus, C9E1S0: Agkistrodon piscivorus leucostoma, C9E1R8: Crotalus viridis,
O93523.2: Bothrops jararaca, Q8QG88: Bothrops insularis. Identical, similar, and weakly similar
amino acids are indicated by asterisks, colons and dots, respectively. Table S1. Comparison of N.
nomurai JVMP 17-1 and JVMP 17-2 deduced amino acid sequence with a BLAST analysis.
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