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We would like to express our gratitude to all participant who were joining “The Second 

International Conference on Combinatorics, Graph Theory, and Network Topology 

(ICCGANT)”. It is the 2
nd 

International conference held by the CGANT Research Group held 

by University of Jember in cooperation with Indonesian Combinatorics Society 

(INACOBMS) on 24-25 November 2018. The conference is held to welcome participants 

from many countries, with broad and diverse research interests of mathematics especially 

combinatorical study. The mission is to become an annual international forum in the future, 

where, civil society organization and representative, research students, academics and 

researchers, scholars, scientist, teachers and practitioners from all over the world could meet 

in and exchange an idea to share and to discuss theoretical and practical knowledge about 

mathematics and its applications. The aim of the second conference is to present and discuss 

the latest research that contributes to the sharing of new theoretical, methodological and 

empirical knowledge and a better understanding in the area mathematics, application of 

mathematics as well as mathematics education. The themes of this conference are as follows: 

(1) Connection of distance to other graph properties, (2) Degree/diameter problem, (3) 

Distance-transitive and distance-regular graphs, (4) Metric dimension and related parameters, 

(5) Cages and eccentric graphs, (6) Cycles and factors in graphs, (7) Large graphs and 

digraphs, (8) Spectral Techniques in graph theory, (9) Ramsey numbers, (10) Dimensions of 

graphs, (11) Communication networks, (12) Coding theory, (13) Cryptography, (14) Rainbow 

connection, (15) Graph labelings and coloring, (16) Applications of graph theory. The topics 

are not limited to the above themes but they also include the mathematical application 

research of interest in general including mathematics education, such as: (1) Applied 

Mathematics and Modelling, (2) Applied Physics: Mathematical Physics, Biological Physics, 

Chemistry Physics, (3) Applied Engineering: Mathematical Engineering, Mechanical 

engineering, Informatics Engineering, Civil Engineering, (4) Statistics and Its Application, 

(5) Pure Mathematics (Analysis, Algebra and Geometry), (6) Mathematics Education, (7) 

Literacy of Mathematics, (8) The Use of ICT Based Media In Mathematics Teaching and 

Learning, (9) Technological, Pedagogical, Content Knowledge for Teaching Mathematics, 

(10) Students Higher Order Thinking Skill of Mathematics, (11) Contextual Teaching and 

Realistic Mathematics, (12) Science, Technology, Engineering, and Mathematics Approach, 

(13) Local Wisdom Based Education: Ethnomathematics, (14) Showcase of Teaching and 

Learning of Mathematics, (16) The 21st Century Skills: The Integration of 4C Skill in 
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Teaching Math. 

 

 

 

The participants of this ICCGANT 2018 were 375 participants consisting research students, 

academics and researchers, scholars, scientist, teachers and practitioners from many countries. 

The selected papers to be published on IOP Conference Series: Journal of Physics are 110 

papers. 

 
On behalf of the organizing committee, finally we gratefully acknowledge the support from 

the University of Jember of this conference. We would also like to extend our thanks to all 

lovely participants who have been joining this unforgettable and valuable event.. 

 

 
Prof. Dafik, M.Sc., Ph.D. 
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The local (adjacency) metric dimension of split

related complete graph

E R Albirri1,3, Dafik1,3, I H Agustin1,2, R Adawiyah1,3, R Alfarisi1,4, R
M Prihandini1,4

1CGANT-University of Jember, Jember, Indonesia
2Department of Mathematics, University of Jember, Jember, Indonesia
3Department of Mathematics Education, University of Jember, Jember, Indonesia
4Department of Elementary School Education, University of Jember, Jember, Indonesia

E-mail: ermitara@unej.ac.id

Abstract. Let G be a simple graph. A set of vertices, called V (G) and a set of edges, called
E(G) are two sets which form graph G. W is a local adjacency resolving set of G if for every
two distinct vertices x, y and x adjacent with y then rA(x|W ) 6= rA(y|W ). A minimum local
adjacency resolving set in G is called local adjacency metric basis. The cardinality of vertices
in the basis is a local adjacency metric dimension of G (dimA,l(G)). We present the exact value
of local adjacency metric dimension of m-splitting complete and bipartite graphs.

1. Introduction
This research in this paper uses simple and connected graphs. A set of vertices, called V (G)
and a set of edges, called E(G) are two sets which form graph G. [4], [5], [6], [7], [2] A split
graph is a graph derived by adding new vertex v′ in every vertex v such that v′ adjacent to v
in graph G. An m-splitting graph is a graph which has m v′-vertices, denoted by mSpl(G).
[3] The local adjacency metric dimension is one of graph topic. Suppose there are three
neighboring vertex a, b, c in path a − c. Path a − c is called local if a, b, c where each has
representation: a is not equals b and a may equals c. [1] Let’s say, x, y ∈ G. For an order set
of vertices W = {w1, w2, . . . , wk}, the adjacency representation of v with respect to W is the
ordered k-tuple rA(x|W ) = (dA(x,w1), dA(x,w2), . . . , dA(x,wk)), where dA(x,w) represents
the adjacency distance x− w. dA(x,w) defined by 0 if x = wi, 1 if x adjacent with w, and 2 if
x does not adjacent with w. W is a local adjacency resolving set of G if for every two distinct
vertices x, y and x adjacent with y then rA(x|W ) 6= rA(y|W ). A minimum local adjacency
resolving set in G is called local adjacency metric basis. The cardinality of vertices in the basis
is a local adjacency metric dimension of G (dimA,l(G)).

2. Result
2.1. m−Splitting of Complete Graph
A m−splitting of complete graph (mSpl(Kn)) is a graph obtained from a complete graph (Kn)
by adding new vertex v′ in every vertex v as n such that v′ adjacent v in Kn. m−splitting
graph is graph which has the number of vertex v′ as m. Let G =m Spl(Kn) with vertex set
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Figure 1. 1Spl(K4) Graph

V (G) = {u1, u2, . . . , ui}
⋃
{u11, u12, . . . , uki }, where ui is vertex of Kn and uki is copy of vertex ui

around Kn for i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . ,m}. We can see at 2.1 as illustration.

Theorem 2.1: Let G be m−splitting of complete graph (mSpl(Kn)) with |V (G)| = 2n. For
n ≥ 4 and m,n ∈ N , then dimA,l(G) = n− 1

Proof 2.1 Choose S = {u1, u2, . . . , un−1} ⊂ V (G). We will show that S is a local adjacency
resolving set of G. The local adjacency representations of vertices from V (G)− S are as follow:

rA(ui|S) = (11 . . . 1)
rA(uk1|S) = (2111 . . . 1)
rA(uk2|S) = (1211 . . . 1)
rA(uk3|S) = (1121 . . . 1)

...
rA(uki |S) = (11 . . . 112)

As we see that all of the adjacency representations of adjacent vertices are distinct. So,
S = {u1, u2, . . . , un−1} is a local adjacency resolving set for G. The cardinality of S, |S| = n−1 is
minimum, because if |S| < n−1 certainly there are a 6= b ∈ V (G)−S such that r(a|S) = r(b|S).
Suppose S1 = {u1, u2, . . . , un−2}, |S| = n− 2 < n− 1. Then, rA(ui|S) = (11 . . . 1) = rA(ui−1|S)
and ui ∼ ui−1. Thus, dimA,l(G) = n− 1. �

2.2. m−Splitting of Complete Bipartite Graph
A m−splitting of complete bipartitr graph (mSpl(Kn,t)) is a graph obtained from a complete
bipartite graph (Kn,t) by adding new vertex v′ in every vertex v as n+t such that v′ adjacent v in
Kn,t. m−splitting graph is graph which has the number of vertex v′ as m. Let G =m Spl(Kn,t)
with vertex set V (G) = {u1, u2, . . . , ui}

⋃
{u11, u12, . . . , uki }, where ui is vertex of Kn,t and uki is

copy of vertex ui around Kn,t for i ∈ {1, 2, . . . , n + t} and k ∈ {1, 2, . . . ,m}. We can see at 2.2,
2.2, and as illustration.
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Figure 2. 1Spl(K2,2) Graph

Figure 3. 1Spl(K2,3) Graph

Theorem 2.2: Let G be m−splitting of complete bipartite graph (mSpl(Kn,t)) with
|V (G)| = n + t. For n, t > 1 and n, t,m ∈ N , then dimA,l(G) = 1

Proof 2.2 We divide the proof till some cases. We prove this theorem by see the construct of
the based graph, complete bipartite graph (Kn,t) for n, t > 1 and n, t,m ∈ N .

(i) Case 1. For n = t. Choose S = {a1} ⊆ V (G). We will show that S is a local adjacency
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resolving set of G. We know that d is defined by

d(u,w) =

 0 if v = w ;
1 if v adjacent with w;
2 if v does not adjacent with w.

Suppose we call the ”inside” vertices of G is the set of vertices in Kn,t and the ”outside”
vertices of G is the set of vertices outside Kn,t (or in m−split of Kn,t). Based on the
construction of Kn,t, then there are three cases to prove the theorem, such that:

(a) When the resolving vertices set are inside the G. Choose resolving vertice of S as much
as 1. Suppose we put any vertices of S inside G. Based on the construction of Kn,t,
every vertex in (vki ) has neighbour as (vi). Suppose we have (vb) for b ∈ {1, 2, . . . , n}
and (vc) for c ∈ {1, 2, . . . , t}. When we put a1 in (vb) then every vertex in (vc) and (vkc )
has same r such that 1. Otherwise, every vertex in (vb) and (vkb )has same r such that
2 except r(a1) = 0. But every vertex in (vc) or (vb) is not adjacent. Then it ensures
that all vertices in S are distinct.

(b) When the resolving vertices set are outside the G. Choose resolving vertices of S as
much as 1. Suppose we put any vertices of S outside G. Without loss the generality,
let j be even number of N . Let vki , v

k
i+2, . . . v

k
i+j in S. Then there must be minimum an

outside vertex (vki+1) adjacent to inside vertex (vi) which have same r = (2).

Based on two points above, we focus in the first point of case. As we see that all of the
adjacency representations of adjaceny vertices are distinct. So, S = {a1} is a local adjacency
resolving set for G. The cardinality of S, |S| = 1 is minimum. Thus, dimA,l(G) = 1 for
n = t.

(ii) Case 2. For n is odd and r is even and otherwise. Choose S = {a1} ⊆ V (G). We will show
that S is a local adjacency resolving set of G. We know that d is defined by

d(u,w) =

 0 if v = w ;
1 if v adjacent with w;
2 if v does not adjacent with w.

Suppose we call the ”inside” vertices of G is the set of vertices in Kn,t and the ”outside”
vertices of G is the set of vertices outside Kn,t (or in m−split of Kn,t). Based on the
construction of Kn,t, then there are three cases to prove the theorem, such that:

(a) When the resolving vertices set are inside the G. Choose resolving vertice of S as much
as 1. Suppose we put any vertices of S inside G. Based on the construction of Kn,t,
every vertex in (vki ) has neighbour as (vi). Suppose we have (vb) for b ∈ {1, 2, . . . , n}
and (vc) for c ∈ {1, 2, . . . , t}. When we put a1 in (vb) then every vertex in (vc) and (vkc )
has same r such that 1. Otherwise, every vertex in (vb) and (vkb )has same r such that
2 except r(a1) = 0. But every vertex in (vc) or (vb) is not adjacent. Then it ensures
that all vertices in S are distinct.

(b) When the resolving vertices set are outside the G. Choose resolving vertices of S as
much as 1. Suppose we put any vertices of S outside G. Without loss the generality,
let j be even number of N . Let vki , v

k
i+2, . . . v

k
i+j in S. Then there must be minimum an

outside vertex (vki+1) adjacent to inside vertex (vi) which have same r = (2).

Based on two points above, we focus in the first point of case. As we see that all of the
adjacency representations of adjaceny vertices are distinct. So, S = {a1} is a local adjacency
resolving set for G. The cardinality of S, |S| = 1 is minimum. Thus, dimA,l(G) = 1 for n
is odd and r is even and otherwise.
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Figure 4. 1Spl(K2,4) Graph

(iii) Case 3. For n and r are even or for n and r are odd. Choose S = {a1} ⊆ V (G). We will
show that S is a local adjacency resolving set of G. We know that d is defined by

d(u,w) =

 0 if v = w ;
1 if v adjacent with w;
2 if v does not adjacent with w.

Suppose we call the ”inside” vertices of G is the set of vertices in Kn,t and the ”outside”
vertices of G is the set of vertices outside Kn,t (or in m−split of Kn,t). Based on the
construction of Kn,t, then there are three cases to prove the theorem, such that:

(a) When the resolving vertices set are inside the G. Choose resolving vertice of S as much
as 1. Suppose we put any vertices of S inside G. Based on the construction of Kn,t,
every vertex in (vki ) has neighbour as (vi). Suppose we have (vb) for b ∈ {1, 2, . . . , n}
and (vc) for c ∈ {1, 2, . . . , t}. When we put a1 in (vb) then every vertex in (vc) and (vkc )
has same r such that 1. Otherwise, every vertex in (vb) and (vkb )has same r such that
2 except r(a1) = 0. But every vertex in (vc) or (vb) is not adjacent. Then it ensures
that all vertices in S are distinct.

(b) When the resolving vertices set are outside the G. Choose resolving vertices of S as
much as 1. Suppose we put any vertices of S outside G. Without loss the generality,
let j be even number of N . Let vki , v

k
i+2, . . . v

k
i+j in S. Then there must be minimum an

outside vertex (vki+1) adjacent to inside vertex (vi) which have same r = (2).

Based on two points above, we focus in the first point of case. As we see that all of the
adjacency representations of adjaceny vertices are distinct. So, S = {a1} is a local adjacency
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resolving set for G. The cardinality of S, |S| = 1 is minimum. Thus, dimA,l(G) = 1 for n
and r are even or for n and r are odd.

�

3. Concluding Remark
We have discussed about the local adjacency metric dimension of some m splitting related wheel
graphs for several sets of value (n, t,m) in this paper. Two basic theorems are about complete
graph and complete bipartite graph which has any solutions for being a basic graph of operation
m splitting.

Open Problem
Find local adjacency metric of mSpl(Hn) graph for any n and m where H is any graph.
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