

SINTESIS γ-Al₂O₃ MESOPORI MENGGUNAKAN METODE EVAPORATION-INDUCED SELF-ASSEMBLY (EISA) DENGAN VARIASI pH DAN RASIO MASSA PREKURSOR TERHADAP SURFAKTAN NATRIUM-ALGINAT

SKRIPSI

Oleh

Firda Marta Safitri NIM 161810301044

JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2021

SINTESIS γ-Al₂O₃ MESOPORI MENGGUNAKAN METODE EVAPORATION-INDUCED SELF-ASSEMBLY (EISA) DENGAN VARIASI pH DAN RASIO MASSA PREKURSOR TERHADAP SURFAKTAN NATRIUM-ALGINAT

SKRIPSI

diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Kimia (S1) dan mencapai gelar Sarjana Sains

Oleh

Firda Marta Safitri NIM 161810301044

JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2021

PERSEMBAHAN

Skripsi ini saya persembahkan untuk:

- 1. Ayah Khamid dan Ibu Khusnol Hotimah. Terimakasih untuk semua dukungan dan pengorbanannya selama ini. Terimakasih untuk segala kasih sayang, doa, nasihat dan semangat yang tiada henti dengan tulus dan ikhlas;
- 2. Keluarga besar yang selalu memberikan semangat, doa serta dukungannya;
- Almamater TK PGRI 1, SDN 1 Mimbaan, SMPN 1 Situbondo, SMAN 1 Situbondo, serta dosen-dosen di Jurusan Kimia FMIPA UNEJ yang telah memberikan ilmu dan bimbingan dengan penuh kesabaran serta keikhlasan;

ΜΟΤΤΟ

"Wahai orang-orang yang beriman, jadikanlah sabar dan shalat sebagai penolongmu, sesungguhnya Allah bersama orang-orang yang sabar." (Q.S Al-Baqarah: 153)**)

> "Keajaiban adalah nama lain dari kerja keras" (Kang Taejoon)^{**)}

^{*)} Departemen Agama Proyek Pengabdian Kitab Suci Al-Qur'an. 1975. *Al Qur'an dan Terjemahannya*. Jakarta: PT. Bumi Restu.

^{**)}Ki-Sang, Jeon.2012. *To The Beautiful You*. Korea Selatan:S.M. Entertaiment

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama : Firda Marta Safitri

NIM : 161810301044

menyatakan dengan sesungguhnya bahwa karya ilmiah yang berjudul "Sintesis γ -Al₂O₃ Mesopori Menggunakan Metode Evaporation-Induced Self-Assembly (EISA) Dengan Variasi pH Dan Rasio Massa Prekursor Terhadap Surfaktan Natrium-Alginat" adalah benar-benar hasil karya sendiri, kecuali jika dalam pengutipan substansi disebutkan sumbernya, dan belum pernah diajukan pada institusi mana pun, dan bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini Saya buat dengan sebenarnya, tanpa adanya tekanan dan paksaan dari pihak mana pun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar

Jember, Januari 2021

Yang menyatakan,

Firda Marta Safitri NIM 161810301044

SKRIPSI

SINTESIS γ-Al₂O₃ MESOPORI MENGGUNAKAN METODE EVAPORATION-INDUCED SELF-ASSEMBLY (EISA) DENGAN VARIASI pH DAN RASIO MASSA PREKURSOR TERHADAP SURFAKTAN NATRIUM-ALGINAT

Oleh Firda Marta Safitri NIM 161810301044

Pembimbing

Dosen Pembimbing Utama : Suwardiyanto, S.Si., M.Si., Ph.D. Dosen Pembimbing Anggota : Yudi Aris Sulistiyo. S.Si., M.Si.

PENGESAHAN

Skripsi yag berjudul "Sintesis γ-Al₂O₃ Mesopori Menggunakan Metode *Evaporation-Induced Self-Assembly* (EISA) Dengan Variasi pH Dan Rasio Massa Prekursor Terhadap Surfaktan Natrium-Alginat" karya Firda Marta Safitri telah diuji dan disahkan pada:

hari, tanggal :

tempat : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember

Tim Penguji:

Ketua,

Anggota I,

Suwardiyanto, S.Si., M.Si., Ph.D. NIP. 197501191998021001 Yudi Aris Sulistiyo, S.Si., M.Si. NIP. 198809242014041001

Anggota II,

Anggota III,

Dr. Bambang Piluharto, S.Si., M.Si. NIP. 197107031997021001 Novita Andarini, S.Si., M.Si. NIP. 197211122000032001

Mengesahkan, Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam,

> Drs. Achmad Sjaifullah, M.Sc., Ph.D NIP. 195910091986021001

RINGKASAN

Sintesis γ-Al₂O₃ Mesopori Menggunakan Metode Evaporation-Induced Self-Assembly (EISA) Dengan Variasi pH Dan Rasio Massa Prekursor Terhadap Surfaktan Natrium-Alginat: Firda Marta Safitri. 161810301044;2021: 49 halaman; Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

Aluminium oksida atau alumina (Al₂O₃) memiliki ciri dalam berbagai struktur metastabil, yang disebut alumina transisi (seperti γ -, η -, δ -, θ -, κ - dan χ -) dan α -Al₂O₃ sebagai fase alumina stabil. Fase alumina yang paling baik digunakan dalam *support* katalis yaitu gamma alumina (γ -Al₂O₃). Gamma alumina (γ -Al₂O₃) digunakan sebagai *support* katalis karena memiliki luas permukaaan yang besar (diatas 250 m²/g) dan memiliki distribusi pori yang seragam. Sintesis γ -Al₂O₃ dengan struktur mesopori yang seragam telah banyak dilakukan dengan berbagai metode. Metode sintesis γ -Al₂O₃ dengan penambahan surfaktan menggunakan proses *evaporation-induced self-assembly* (EISA) menghasilkan luas permukaaan yang besar dengan ukuran pori dalam bentuk meso. Oleh karena itu, metode EISA merupakan metode yang paling tepat untuk menghasilkan γ -Al₂O₃ mesopori yang seragam.

Penelitian dilakukan dengan menggunakan dua tahapan. Tahapan pertama dilakukan variasi pH untuk mengetahui pH optimum. Tahapan kedua menggunakan variasi rasio massa prekursor terhadap surfaktan alginat dengan menggunakan pH optimum yang diperoleh dari variasi pertama.Variasi pH pada penelitian ini yaitu pH 7, pH 8 dan pH 9, sedangkan variasi rasio massa prekursor terhadap surfaktan alginat yaitu 1:0,00 ; 1:0,75 ; 1:1 ; 1:1,25. Sintesis γ -Al₂O₃ dilakukan dengan waktu evaporasi pada suhu 60°C selama 4 hari dan dikasinasi pada suhu 500°C selama 3 jam. Hasil sintesis γ -Al₂O₃ dikarakterisasi struktur kristalnya menggunakan XRD dan luas permukaan, ukuran pori serta volume pori yang diukur dengan isotermal adsorpsi-desorpsi N₂.

Hasil karakterisasi sintesis pada variasi pH yang diukur menggunakan isotermal adsorpsi-desorpsi N₂ menunjukkan kurva isotermal adsorpsi-desorpsi N₂ menunjukkan model tipe IV yang ditandai *hysteresis loop* yang termasuk jenis H2b. Model isotermal dan *hysteresis loop* menunjukkan material alumina memiliki struktur mesopori. Hasil sintesis juga menunjukkan pH 7 memiliki luas permukaan, ukuran pori dan volume pori yang paling besar yaitu S_{bet} 676,4 m²/g, r_p = 7,94 nm dan V_p total = 0,460 cm³/g). Sedangkan pH 8 memiliki S_{bet} 218,5 m²/g, r_p = 1,65 nm dan V_p total = 0,355 cm³/g) dan pH 9 memiliki S_{bet} 207,6 m²/g, r_p = 1,64 nm dan V_p total = 0,351 cm³/g). Hal ini terjadi akibat prekursor Aluminium dalam spesies Al(OH)₃ yang tidak bermuatan berinteraksi dengan gugus karboksilat (COO⁻) dari surfaktan alginat. Semakin banyak interaksi prekursor aluminium dan surfaktan menjadi 8 dan 9, jumlah spesies aluminium akan bergeser menjadi Al(OH)₄⁻ dan surfaktan alginat semakin bermuatan negatif, sehingga interaksi elektrostatisnya menjadi tolak menolak.

Penelitian variasi rasio massa dilakukan menggunakan pH optimum yaitu pH 7. Rasio massa surfaktan mengalami kenaikan luas permukaan, jari-jari pori dan volume pori pada variasi 0,75 dan 1,00 g. Pada variasi 0,75 g memiliki luas permukaan, volume pori dan ukuran pori yang lebih rendah yaitu S_{bet} 215,9 m²/g, $r_p = 2,18$ nm dan V_p total = 0,335 cm³/g dibanding pada variasi 1,00 g. Hal tersebut terjadi karena surfaktan tidak sepenuhnya mengisi kerangka mesostruktur alumina, sehingga terdapat ruang kosong didalamnya. Namun, ketika penambahan surfaktan pada 1,25 g (S_{bet} 108,3 m²/g, r_p = 1,63 nm dan V_p total = 0,251 cm³/g) terjadi penurunan luas permukaan, jari-jari pori dan volume pori. Keadaan ini terjadi karena agregat mesostruktur akan semakin besar, maka bentuk amorf yang tidak stabil akan menyebabkan kerangka mesopori alumina menjadi *collapse* setelah kalsinasi. Hasil sintesis yang diperoleh berdasarkan karakterisasi XRD menunjukkan struktur kristal γ-Al₂O₃ pada penambahan surfaktan optimum (MA-1,00-7) dan tanpa penambahan surfaktan (MA-0,00-7) menghasilkan struktur α-Al₂O₃.

PRAKATA

Puji syukur kehadirat Allah SWT atas segala rahmat serta hidayah-Nya, sehingga penulis dapat menyelesaikan skripsi yang berjudul "Sintesis γ -Al₂O₃ Mesopori Menggunakan Metode *Evaporation-Induced Self-Assembly* (EISA) Dengan Variasi pH Dan Rasio Massa Prekursor Terhadap Surfaktan Natrium-Alginat". Skripsi ini disusun sebagai salah satu syarat menyelesaikan pendidikan strata satu (S1) pada Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.

Penyusunan skripsi ini tidak lepas dari bantuan moril maupun materil dari berbagai pihak, sehingga penulis menyampaikan terima kasih kepada:

- Drs. Achmad Sjaifullah, M.Sc., Ph.D., selaku Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember;
- Dr. Bambang Piluharto, S.Si., M.Si, selaku ketua Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember;
- Suwardiyanto, S.Si., M.Si., Ph.D., selaku Dosen Pembimbing Utama dan Yudi Aris Sulistiyo, S.Si., M.Si., selaku Dosen Pembimbing Anggota yang telah meluangkan waktu, tenaga, dan pikiran dalam penyusunan skripsi ini;
- Dr. Bambang Piluharto, S.Si., M.Si, selaku Dosen Penguji I dan Novita Andarini, S.Si., M.Si., selaku Dosen Penguji II yang telah meluangkan waktunya guna menguji serta memberikan kritik dan saran demi kesempurnaan skripsi ini;
- Ika Oktavianawati, S.Si., M.Sc., selaku Dosen Pembimbing Akademik yang telah membimbing dan selalu memberikan motivasi serta dukungan kepada penulis selama menjadi mahasiswa;
- Keluarga kedua Jangkrik's Family, Ikatan Cewe Magadir, Kos u cp, Demis Bolo-Bolo serta Teman – Teman EXTASY 2016 yang selalu memberikan kebahagiaan, kehangatan, bantuan serta semangat selama masa kuliah hingga studi penulis terselesaikan dengan baik;

- 7. Teman seperjuangan Amalia Anggreini yang selalu bekerjasama untuk terselesainya penelitian dengan baik;
- 8. Semua pihak yang selalu mendoakan dan tidak dapat disebutkan satu persatu. Penulis juga menerima segala bentuk kritik dan saran yang bersifat membangun dari semua pihak demi kesempurnaan skripsi ini dan semoga skripsi ini dapat bermanfaat terhadap perkembangan ilmu pengetahuan.

Jember, Januari 2021

Penulis

DAFTAR ISI

Halaman

HALAMAN JUDUL	i
HALAMAN PERSEMBAHAN	ii
HALAMAN MOTTO	iii
HALAMAN PERNYATAAN	iv
HALAMAN PEMBIMBINGAN	v
HALAMAN PENGESAHAN	vi
RINGKASAN	vii
HALAMAN PRAKATA	ix
DAFTAR ISI	xi
DAFTAR TABEL	xiii
DAFTAR GAMBAR	xiv
DAFTAR LAMPIRAN	xv
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan Penelitian	4
1.4 Batasan Masalah	4
1.5 Manfaat Penelitian	4
BAB 2. TINJAUAN PUSTAKA	5
2.1 Alumina	5
2.1.1 Struktur γ-Al ₂ O ₃	6
2.1.2 γ -Al ₂ O ₃ sebagai katalis support	7
2.2 Mesopori γ-Al ₂ O ₃	8
2.3 Hard-Template dan Soft-Template	10
2.4 Evaporation-induced self-assembly (EISA)	15
2.5 Alginat	17
2.6 Uji Karakterisasi	20
2.6.1 X-Ray Diffraction (XRD)	20
2.6.2 Brauner-Emmet-Teller (BET) dan Barret-Joiner-H	alenda
(BJH)	23
2.6.2 Loop Histeresis	26
BAB 3. METODOLOGI PENELITIAN	29
3.1 Waktu dan Tempat Penelitian	29
3.2 Alat dan Bahan	29
3.2.1 Alat	29
3.2.2 Bahan	29
3.3 Diagram Alir Penelitian	30
3.4 Prosedur Penelitian	31
3.4.1 Preparasi Larutan	31
3.4.2 Sintesis mesopori γ-Al ₂ O ₃	31

3.4.3 Karakterisasi X-Ray Diffraction (XRD)	31
3.4.4 Karakterisasi Gas Sorption Analyzer (GSA)	31
3.4.5 Tabulasi Data	32
BAB 4. HASIL DAN PEMBAHASAN	33
4.1 Sintesis γ-Al ₂ O ₃ mesopori	33
4.2 Pengaruh Variasi pH Antara Alumina dan Surfaktan Na	trium-
Alginat terhadap Luas Permukaan Dan Pori γ-Al ₂ O ₃	34
4.3 Pengaruh Variasi Rasio Massa Surfaktan terhadap	I noc
	Luas
Permukaan Dan Pori γ-Al ₂ O ₃	
Permukaan Dan Pori γ-Al ₂ O ₃ BAB 5. PENUTUP	37 44
Permukaan Dan Pori γ-Al ₂ O ₃ BAB 5. PENUTUP 5.1 Kesimpulan	37 44 44
Permukaan Dan Pori γ-Al ₂ O ₃	37 44 44 44
Permukaan Dan Pori γ-Al ₂ O ₃ BAB 5. PENUTUP 5.1 Kesimpulan 5.2 Saran	Luas 37 44 44 44 45

DAFTAR TABEL

Halama

Ĩ	lalalilali
1.1 Hubungan kondisi sintesis γ -Al ₂ O ₃ mesopori	8
2.1 Perbedaan Hard-Template dan Soft-Template	11
2.3 Beberapa Jenis Soft-Template	13
3.1 Tabulasi Data	
4.1 Data luas permukaan spesifik, ukuran pori dan volume pori dengan va	riasi
pH	35
4.2 Data luas permukaan spesifik, ukuran pori dan volume pori dengan va	riasi
rasio massa surfaktan alginat	

DAFTAR GAMBAR

2.1	Transisi alumina vs suhu kalsinasi	5
2.2	Transisi alumina vs luas permukaan	6
2.3	Struktur spinel γ-Al ₂ O ₃	7
2.4	Model pori pada material berpori	9
2.5	Mesopori γ-Al ₂ O ₃ yang dikarakterisasi dengan TEM	10
2.6	Skema metode hard-template	12
2.7	Mekanisme Pembentukan Mesopori menggunakan Soft-Template	15
2.8	Sintesis mesopori alumina dengan metode EISA menggunakan template P123	16
2.9	Efek potensial mekanisme PEG1000 pada sintesis mesopori alumina	17
2.10	Komponen alginat: blok G – G, M – M dan M – G	18
2.11	Sodium Alginat yang teroksidasi	19
2.12	Skema Alat Uji XRD	20
2.13	Difraksi Sinar X pada kisi kristal	21
2.14	Karakterisasi XRD Mesopori γ-Al ₂ O ₃ menggunakan template PEG1000	22
2.15	a. Sudut kecil karakterisasi XRD mesopori alumina b. Sudut panjang	
	karakterisasi XRD mesopori alumina	23
2.16	Tipe Kurva Isoterm Adsorpsi	25
2.17	Klasifikasi Loop Histeresis	27
3.1	Diagram Alir Penelitian	30
4.1	a. Kurva Isoterm Adsorpsi-Desorpsi $N_{2;}$ b. Distribusi Pori pada Variasi pH	
		35
4.2	Distribusi spesies aluminium sebagai fungsi pH	36
4.3	Ilustrasi hipotesis interaksi prekursor aluminium dengan alginat dalam variasi pH	
4.3	Ilustrasi hipotesis interaksi prekursor aluminium dengan alginat dalam variasi pH	36
4.3 4.4	Ilustrasi hipotesis interaksi prekursor aluminium dengan alginat dalam variasi pH a. Kurva Isoterm Adsorpsi-Desorpsi N ₂ ; b. Distribusi Pori pada Variasi pH	36
4.3 4.4	Ilustrasi hipotesis interaksi prekursor aluminium dengan alginat dalam variasi pH a. Kurva Isoterm Adsorpsi-Desorpsi N ₂ ; b. Distribusi Pori pada Variasi pH	36 38
4.34.44.5	Ilustrasi hipotesis interaksi prekursor aluminium dengan alginat dalam variasi pH a. Kurva Isoterm Adsorpsi-Desorpsi N ₂ ; b. Distribusi Pori pada Variasi pH Difraktogram Sinar-X	36 38 40

DAFTAR LAMPIRAN

3	3.1	Preparasi Sampel	52
Z	4.1	Proses Sintesis γ-Al ₂ O ₃ Mesopori	53
Z	4.2	Kurva BET	54
		4.2.1 Kurva BET Variasi pH	54
		4.2.2 Kurva BET Variasi Rasio Masa	55
Z	1.3	Data Karakterisasi Adsorpsi-Desorpsi N2 MA-1,00-7	56
		4.3.1 Data Luas Permukaan Spesifik (Multi-Point BET)	56
		4.3.2 Data Isoterm	56
		4.3.3 Data Distribusi Pori Adsorpsi	57
		4.3.4 Data Distribusi Pori Desorpsi	57
		4.3.5 Data Ukuran Jari-Jari Pori Rata-Rata	57
		4.3.6 Data Volume Pori Total	58
Z	1.4	Data Karakterisasi Adsorpsi-Desorpsi N2 MA-1,00-8	58
		4.4.1 Data Luas Permukaan Spesifik (Multi-Point BET)	58
		4.4.2 Data Isoterm	58
		4.4.3 Data Distribusi Pori Adsorpsi	59
		4.4.4 Data Distribusi Pori Desorpsi	59
		4.4.5 Data Ukuran Jari-Jari Pori Rata-Rata	59
		4.4.6 Data Volume Pori Total	59
Z	1.5	Data Karakterisasi Adsorpsi-Desorpsi N2 MA-1,00-9	60
		4.5.1 Data Luas Permukaan Spesifik (Multi-Point BET)	60
		4.5.2 Data Isoterm	60
		4.5.3 Data Distribusi Pori Adsorpsi	61
		4.5.4 Data Distribusi Pori Desorpsi	61
		4.5.5 Data Ukuran Jari-Jari Pori Rata-Rata	61
		4.5.6 Data Volume Pori Total	61
Z	1.6	Data Karakterisasi Adsorpsi-Desorpsi N2 MA-0,75-7	62
		4.6.1 Data Luas Permukaan Spesifik (Multi-Point BET)	62
		4.6.2 Data Isoterm	62

	4.6.3 Data Distribusi Pori Adsorpsi	63
	4.6.4 Data Distribusi Pori Desorpsi	63
	4.6.5 Data Ukuran Jari-Jari Pori Rata-Rata	63
	4.6.6 Data Volume Pori Total	63
4.7	Data Karakterisasi Adsorpsi-Desorpsi N2 MA-1,25-7	64
	4.7.1 Data Luas Permukaan Spesifik (Multi-Point BET)	64
	4.7.2 Data Isoterm	64
	4.7.3 Data Distribusi Pori Adsorpsi	65
	4.7.4 Data Distribusi Pori Desorpsi	65
	4.7.5 Data Ukuran Jari-Jari Pori Rata-Rata	65
	4.7.6 Data Volume Pori Total	65
4.8	Data Karakterisasi XRD MA-0,00-7	66
4.9	Data Karakterisasi XRD MA-1,00-7	67
4.10	Data ICSD #14045 α-Al ₂ O ₃	68
4.11	Data ICSD #95302 γ-Al ₂ O ₃	69

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Aluminium oksida atau alumina (Al₂O₃) memiliki ciri dalam berbagai struktur metastabil, yang disebut alumina transisi (seperti γ -, η -, δ -, θ -, κ - dan χ -) dan α -Al₂O₃ sebagai fase alumina stabil (Boumaza *et al.*, 2009). Alumina transisi sering digunakan sebagai *support* katalis, dimana permukaannya dapat dimodifikasikan dengan senyawa aktif (Trueba dan Trasatti, 2005). Material *support* katalis yang baik memiliki syarat luas permukaan spesifik, ukuran pori, volume pori yang besar dan memiliki fase kristalin (Taromi dan Kaliaguine, 2018). Namun demikian, alumina memiliki luas permukaan dan volume pori yang relatif rendah (Renuka *et al.*, 2012).

Fase alumina yang paling baik digunakan dalam *support* katalis yaitu gamma alumina (γ -Al₂O₃) (Elliott, 2007). Gamma alumina (γ -Al₂O₃) digunakan sebagai *support* katalis tidak hanya karena memiliki luas permukaaan yang besar (diatas 250 m²/g), tetapi memiliki distribusi pori yang seragam (Pan *et al.*, 2013). Selain itu, gamma alumina (γ -Al₂O₃) memiliki permukaan yang menjadi tempat terdispersinya senyawa aktif yang dapat memperbesar kemungkinan interaksi antara antara situs aktif dan reaktan tanpa mengurangi aktivitas instrinsiknya (Liherlinah, 2009). *Support* katalis γ -Al₂O₃ juga memiliki banyak sifat menguntungkan seperti stabilitas termal yang tinggi. Aktivitas katalitik dari material *support* γ -Al₂O₃ sebagian besar tergantung pada sifat tekstural. *Support* katalis γ -Al₂O₃ dengan distribusi ukuran mesopori memiliki luas permukaan dan volume pori lebih besar (Yuan *et al.*, 2008).

Sintesis γ -Al₂O₃ dengan struktur mesopori yang seragam telah banyak dilakukan dengan berbagai metode (Liu *et al.*, 2008). Kordouli *et al* (2018) melakukan sintesis nanopartikel γ -Al₂O₃ dengan metode co-presipitasi menghasilkan luas permukaan 262 m²/g yang harus distabilisasi untuk mencegah timbulnya kristal berukuran mikro. Ameen *et al* (2019) menggunakan metode sonokimia dengan modifikasi impregnasi basah pada sintesis γ -Al₂O₃

menghasilkan luas permukaan yang rendah yaitu 134 m²/g. Metode sintesis pada penelitian Zhang *et al* (2002) dengan variasi surfaktan menggunakan proses *evaporation-induced self-assembly* (EISA) menghasilkan luas permukaan yang tinggi yaitu 367 m²/g dengan ukuran pori dalam bentuk meso yaitu 5,6 nm. Oleh karena itu, metode EISA merupakan metode yang paling tepat untuk menghasilkan γ -Al₂O₃ mesopori yang seragam.

Metode sol-gel dengan menggunakan proses EISA merupakan proses penambahan surfaktan sebagai agen pengarah struktur mesopori (Liu et al., 2008). Macam-macam template pada proses EISA dibedakan menjadi dua, yaitu hard dan soft template (Brandhuber et al., 2005). Karbon merupakan salah satu jenis hard template yang memiliki kelemahan yakni proses pembuatannya rumit dan membutuhkan waktu yang lama (Yuan et al., 2008). Sedangkan, jenis soft template yang sintesis mesopori γ-Al₂O₃ terdiri dari surfaktan, polimer dan biopolimer (Xie et al., 2016). Zhang dan Pannavia (2002) menggunakan template blok kopolimer dengan Pluronik (P-123) menghasilkan luas permukaan spesifik 367 m²/g. Selain itu, penggunaan jenis template blok kopolimer dilakukan oleh Zhang et al (2016) menggunakan PEG (polietilenglikol) dengan berat molekul 1000 dan menghasilkan luas permukaan sebesar 464 m²/g. Namun, jenis sintesis dengan template blok kopolimer membutuhkan waktu reaksi yang panjang (lebih dari 3 hari). Sedangkan, Shen et al (2018) menggunakan surfaktan berupa biopolimer jenis protein kolagen yaitu berupa gelatin, menghasilkan luas permukaan mesopori γ -Al₂O₃ sebesar 262 m^2/g . Kekurangan gelatin merupakan biopolimer rantai pendek sehingga luas permukaan yang dihasilkan relatif rendah. Sehingga, jenis soft template yang baik digunakan untuk sintesis mesopori γ -Al₂O₃ dengan metode EISA vaitu jenis biopolimer dengan rantai panjang.

Senyawa biopolimer turunan selulosa dengan rantai panjang memiliki kesamaan struktur dengan blok kopolimer, tetapi lebih ramah lingkungan. Senyawa biopolimer turunan selulosa memiliki potensi sebagai template untuk sintesis mesopori γ -Al₂O₃. Salah satu senyawa biopolimer turunan selulosa yang memiliki potensi tersebut yakni alginat. Alginat pada penelitian Cheryl-Low *et al* (2015) menunjukkan terjadi interaksi crosslinking yang kuat pada Al³⁺ dan alginat

3

membentuk *beads*. Ion Al³⁺ bertindak sebagai ion khelat yang baik untuk mengkhelat alginat. Selain itu, alginat digunakan sebagai template sintesis CeO₂ dapat menghasilkan luas permukaan 187 m²/g pada suhu kalsinasi 450 °C (Lavorato *et al.*, 2014). Suhu kalsinasi mempengaruhi luas permukaan mesopori γ -Al₂O₃ (Zhang dan Pinnavaia, 2002).

Suhu kalsinasi mesopori γ -Al₂O₃ menggunakan template gelatin yaitu 600 °C meghasilkan luas permukaan 262 m²/g dengan perbandingan rasio massa gelatin 0, 0,07, 0,27, 0,81, dan 1,9 g (Shen *et al., 2018*). Variasi suhu kalsinasi mesopori γ -Al₂O₃ menggunakan template PEG1000 yaitu 600 °C, 750 °C dan 850°C. Hasil tersebut menunjukkan bahwa suhu 600 °C memiliki luas permukaan terbesar 464 m²/g (Zhang *et al.,* 2016). Selain suhu kalsinasi, pH juga mempengaruhi proses terbentuknya material berpori. Hal ini dibuktikan pada penelitian (Kim *et al.,* 2002) menghasilkan luas permukaan terbesar 392 m²/g pada pH 7 dan dengan bentuk bentuk struktur mesopori yang teratur (*relatively well organized mesostructured*). Hasil penelitian Shen *et al* (2018) pada sintesis γ -Al₂O₃ mesopori juga menjelaskan pengaruh pH terhadap luas permukaan. Semakin tinggi pH semakin rendah luas permukaannya. Data yang dihasilkan pada pH 8, pH 9 dan pH 10 berturut-turut menghasilkan luas permukaan 262 m²/g, 190 m²/g dan 124 m²/g.

Berdasarkan uraian diatas, penelitian tentang sintesis γ -Al₂O₃ mesopori dengan metode EISA dapat dilakukan. Surfaktan yang digunakan yaitu alginat dengan variasi pH pada 7,8, dan 9, serta variasi perbandingan rasio massa surfaktan 0; 0,25; 0,75; dan 1,25. Suhu kalsinasi yang digunakan untuk sintesis γ -Al₂O₃ mesopori yaitu 600 °C selama 3 jam.

1.2 Rumusan Masalah

Adapun rumusan masalah dalam penelitian ini adalah :

- Bagaimana pengaruh pH campuran antara alumina dengan surfaktan natriumalginat terhadap luas permukaan dan pori γ-Al₂O₃?
- Bagaimana pengaruh rasio massa surfaktan natrium-alginat terhadap luas permukaan, pori dan stuktur kristal γ-Al₂O₃ ?

1.3 Tujuan

Adapun tujuan dalam penelitian ini adalah :

- Mempelajari pengaruh pH campuran antara alumina dengan surfaktan natriumalginat terhadap luas permukaan dan pori γ-Al₂O₃
- Mempelajari pengaruh rasio massa surfaktan natrium-alginat terhadap luas permukaan, pori dan stuktur kristal γ-Al₂O₃

1.4 Batasan masalah

Adapun batasan masalah dalam penelitian ini adalah :

- Surfaktan biopolimer yang digunakan adalah natrium-alginat (M_w ~ 600000 g/mol)
- 2. Prekursor yang digunakan adalah aluminium nitrat nonahidrat Al(NO)₃.9H₂O

1.5 Manfaat Penelitian

Manfaat dalam penelitian ini yaitu memberikan informasi mengenai surfaktan biopolimer natrium-alginat sebagai *soft template* sintesis γ-Al₂O₃ mesopori menggunakan metode *evaporation-induced self-assembly* (EISA).

BAB 2. TINJAUAN PUSTAKA

2.1. Alumina (Al₂O₃)

Aluminium oksida atau biasa disebut alumina (Al₂O₃) merupakan material keramik yang digunakan sebagai al ini digunakan misalnya sebagai katalis support, fabrikasi perangkat elektronik, bahan pahat, pelindung terhadap korosi pada paduan pembentuk alumina, dan bisa digunakan sebagai alternatif untuk implan. Alumina memiliki fase yang khas yang berada pada struktur metastabil, yang disebut alumina transisi (γ -, η -, δ -, θ -, κ - dan χ -) dan fase α -Al₂O₃ yang stabil (Boumaza *et al.*, 2009).

Alumina sebelum mencapai fase yang paling stabil, berbagai alumina transisi terbentuk, terutama fase γ , δ , dan θ yang dapat terbentuk secara bersamaan. Tahap pembentukan alumina yang pertama yaitu tahap oksidasi dan kemudian terbentuk fase-fase transisi pada sifat alumina tidak dipahami dengan jelas. Fase-fase alumina sangat sulit dicirikan transisi strukturnya pada waktu tertentu dan tengan metode yang klasik (Favaro *et al.*, 2010).

Gambar 2.1 Transisi alumina vs suhu kalsinasi (Sumber : Lamouri *et al.*, 2016)

Material γ -Al₂O₃ konvensional diperoleh dengan penggunaan dehidrasi termal dari boehmite di atas 400–450 ° C. γ -Al₂O₃ konvensional memiliki luas permukaan dan volume pori masing-masing di bawah 250 m²/g dan 0,50 cm³/g. Luas permukaan juga dipengaruhi faktor kalsinasi. Transformasi fase γ -Al₂O₃ menjadi

 α -Al₂O₃ ditandaidengan penurunan luas permukaan akibat peningkatan suhu kalsinasi yang ditunjukkan pada Gambar 2.2. Material γ -Al₂O₃ yang memiliki luas permukaan yang besar sering digunakan sebagai kataali penyangga (Pradhan, 2014).

Gambar 2.2 Transisi alumina vs Luas permukaan (Sumber :Pradhan, 2014)

2.1.1 Struktur γ -Al₂O₃

Fase γ -alumina (γ -Al₂O₃) merupakan transisi alumina yang sering digunakan sebagai katalis dan support katalis dalam industri otomotif dan perminyakan (Samain *et al.*, 2014). Sifat tekstural yang diinginkan pada γ -alumina seperti luas permukaan, volume pori, distribusi ukuran pori, dan karakteristik asam/basa utamanya disebabkan oleh komposisi permukaan, struktur mikro, dan komposisi fase (Digne *et al.*, 2002). Struktur mikro dan stabilitas termal material sangat bergantung pada metode dan kondisi proses sintetis, namun penjelasan strukturalnya meragukan karena kesamaan struktur dari alumina transisi (Trueba dan Trasatti, 2005). Struktur Al₂O₃ secara konvensional dianggap sebagai cacat kristal tipe spinel, dimana atom-atom oksigen disusun dalam *close packaging* kubik dan atom-atom Al menempati situs oktahedral dan tetrahedral. Struktur γ -Al₂O₃ tipe spinel dapat dilihat pada Gambar 2.3

Gambar 2.3 Struktur spinel γ -Al₂O₃ (Sumber : Ionescu *et al.*, 2002)

Struktur γ -Al₂O₃ yang berasal dari alumina amorf memiliki kisi kubik (Samain *et al.*, 2014). Kisi kubik dan distorsi tetragonal ditemukan pada boehmite AlO(OH) atau gibbsite Al(OH)₃ yang berasal dari turunan γ -Al₂O₃ (Peintinger *et al.*, 2014). Keberadaan struktur tetragonal pada struktur γ -Al₂O₃ telah dilakukan oleh Paglia et al (2004). Struktur tetragonal γ -Al₂O₃ yang diperoleh dari kristalin boehmite berkisar pada suhu 450-750 °C (Paglia *et al.*, 2004). Proses reduksi distorsi tetragonal dihasilkan dengan meningkatkan suhu, tetapi tidak diperoleh pada tahap γ -Al₂O₃ kubik. Fase baru telah diidentifikasi dengan urutan kation yang lebih jelas di atas 750 °C. Fase tersebutut yang disebut sebagai γ '-Al₂O₃. Fase γ '-Al₂O₃ yang mendekati struktur δ -Al₂O₃ di atas 900 °C (French *et al.*, 2005).

2.1.2 γ-Al₂O₃ sebagai katalis support

 γ -Al₂O₃ digunakan sebagai katalis *support* dalam proses pengilangan minyak dan proses kimia. Karakteristik *support* yang berbeda memiliki dampak langsung pada aktivitas akhir katalis, di antaranya adalah luas permukaan, kekuatan mekanik dan sifat transfer massa. Optimalisasi sisi aktif katalis misal pada optimalisasi selektivitas dan laju kinetik kimia yang sering digunakan dalam aplikasi pembuatan katalis *support* (Kolitcheff *et al.*, 2017). Alumina transisi sering digunakan sebagai *pra-shaped* support untuk menyiapkan katalis multi fase yang terdiri dari fase aktif yang didispersikan pada carrier atau support (Schwarz, Contescu dan Contescu, 1995). Sifat-sifat fase aktif tergantung terutama pada cara

di mana komponen aktif katalis (prekursor) dimasukkan ke dalam *support* (Spanos *et al.*, 1992).

Kondisi sintesis		Luas permukaan	Ukuran Pori	Volume pori	Sumber referensi
		(m ² /g)	(nm)	(cm ³ /g)	
Suhu kalsinasi	550	367	5.6	0.51	Zhang et al., 2002
(°C)	600	464	7.8	1.7	Zhang <i>et al.</i> , 2016
	750	296	12.2	1.2	Zhang et al., 2016
	850	246	12.4	1.2	Zhang <i>et al.</i> , 2016
Rasio massa	0.0	337	7.8	1.2	Zhang et al., 2016
surfaktan (g)	0.27	242	6.3	0.51	Shen et al., 2018
	0.3	394	9.6	1.3	Zhang <i>et al.</i> , 2016
	0.81	262	6.3	0.53	Shen et al., 2018
	1.35	239	7.3	0.55	Shen et al., 2018
	1.8	457	6.6	1.7	Zhang <i>et al.</i> , 2016
	3.6	461	6.6	1.8	Zhang et al., 2016
	7.2	398	6.6	1.4	Zhang et al., 2016
рН	8	367	5.6	0.51	Zhang <i>et al.</i> , 2002
	9	190	5.8	0.45	Shen et al., 2018
	10	124	5.3	0.38	Shen et al., 2018

Tabel 1.1 Hubungan kondisi sintesis γ-Al₂O₃ mesopori dengan luas permukaan, ukuran pori dan volume pori

2.2 Mesopori γ-Al₂O₃

Sebagian besar katalis merupakan padatan berpori. Tekstur pori muncul dari metode bebrapa preparasi padatan :

- 1. Presipitasi dari larutan berasal dari partikel prekursor yang menggumpal dan membentuk struktur berpori;
- Kristalisasi hidrotermal menghasilkan senyawa mikropori kristal lainnya, yang memiliki susunan yang khas pada unit kerangka intrakristalin dengan ukuran rongga molekul;
- 3. Eliminasi material yang mudah menguap selama proses termal (pembakaran, penguapan) yang menghasilkan rongga sebagai hasil dari penataan ulang padatan dan cara untuk menghilangkan material
- 4. Disolusi selektif beberapa komponen dapat menghasilkan pori

5. Prosedur pembentukan yang berbeda, digunakan untuk memperoleh katalis yang cocok untuk reaktor industri (tableting, ekstrusi, pengeringan semprot), menghasilkan agregat partikel yang stabil yang mengandung struktur berpori yang sesuai dengan rongga intrapartikel

(Rouquerol et al., 1994).

Katalis yang mengandung satu atau lebih kelompok pori-pori, yang ukuran dan volumenya tergantung pada metode pembuatan pori. Pori dikelompokkan dalam kelas yang berbeda tergantung pada ukurannya :

1. mikropori (ukuran <2 nm), ultramikropori (ukuran <0,7 nm),

2. mesopori (2 nm <ukuran <50 nm),

3. makropori (ukuran> 50 nm).

Bentuk pori memilik bentuk teratur dan tidak teratur. Bentuk geometris yang paling mirip digunakan yaitu bentuk pori: silinder (dalam beberapa oksida seperti alumina dan magnesia), celah (dalam karbon aktif dan lempung) dan celah antara bola padat yang terhubung (dalam silika dan banyak padatan yang diperoleh dari gel), seperti yang ditunjukkan pada Gambar 2.2. Silinder (ukuran = diameter) dan celah (ukuran = jarak antar dinding) adalah model yang paling banyak digunakan.

Gambar 2.4 Model pori pada material berpori (Sumber : Leofanti *et al.*, 1998)

Alumina berpori merupakan material sintetis yang banyak digunakan dalam katalisis, adsorpsi, dan pemisahan. Transisi alumina atau alumina aktif secara komersial telah digunakan sebagai alumina berpori, tetapi terdapat masalah penonaktifan dalam katalisis dengan memasukkan sumbat pori untuk pembentukan kokas dalam mikropori. Sintesis alumina mesopori dengan terkontrol porositas dan stabilitas termal yang tinggi (Yuan *et al.*, 2008).

Alumina mesopori yang disintesis sebagian. Sintesis alumina mesopori dengan dinding amorf menggunakan metode sol-gel yang dikontrol dengan reagen

hidrolisis serta kondensasi (Zhang *et al.*, 2002). Penelitian Route *et al.*, (2006) mengembangkan penelitian mengenai alumina mesoporous berbentuk kristal yang dibuat dengan tempalate CMK-3 sebagai *hard template*. Namun, prosedur sintesis ini membutuhkan banyak metode dan memakan waktu yang lama. Sintesis mesopori γ -Al₂O₃ dengan yang diharapkan yaitu dengan mesostruktur tinggi. Sifat stabilitas termal dan sifat katalisis mesopori γ -Al₂O₃ yang dipesan belum dipelajari secara rinci. Penelitian Yuan *et al.*, (2008) melakukan sintesis yang mudah diakses, untuk mensintesis alumina mesopori yang sangat tertata dengan dinding kerangka fase amorf γ -Al₂O₃ dan kristalin melalui metode sol-gel sederhana dengan kopolimer blok sebagai *soft template*. Kerangka γ -Al₂O₃ tersebut yang ditunujukkan pada Gambar 2.5 menggunakan karakterisasi TEM. Mesopori γ -Al₂O₃ memiliki luas permukaan tinggi, ukuran pori yang seragam, dan sejumlah besar situs aktif asam Lewis pada permukaan, dan menunjukkan selektivitas ukuran reaktan dalam hidrogenasi aseton, D-glukosa, dan D - (+) - cellobiose.

Gambar 2.5 Mesopori γ-Al₂O₃ yang dikarakterisasi dengan TEM (Sumber :Yuan *et al.*, 2008)

2.3 Hard-Template dan Soft-Template

Metode sintesis menggunakan template tidak membutuhkan kondisi preparasi khusus, mudah dilakukan serta mudah diimplementasikan. Metode template ini

dapat mengontrol morfologi, ukuran partikel, dan struktur material secara efektif selama proses sintesis nanomaterial. Berdasarkan perbedaan strukturnya, jenis template dapat dibedakan menjadi dua, yakni *soft-template* dan *hard-template* (Xie *et al.*, 2016). Metode sintesis tersebut dapat dibedakan seperti pada Tabel 2.2.

Tabel 2.2 Perbedaan Hard-Template dan Soft-Template

	Hard-Template	Soft-Template		
Metode Sintesis	 Sintesis dari cetakan mesopori Infiltrasi atau logam metal Kristalisasi Penghilangan <i>hard-template</i> 	 Perakitan (<i>co-assembly</i>) dari surfaktan atau polimer dengan prekursor logam membentuk mesopori Kristalisasi dan pembakaran template 		
Ilustrasi	Mesoporous silica (template)	Liquid solution surfactants + inorganic substrates $\begin{array}{c} \text{Cooperative} \\ \text{aggregation} \end{array}$ Condensation of inorganics (A)		
	(Sumber : Sierra <i>et al.</i> , 2019)	Liquid crystal formation (B) Incorporation and transformation of inorganic precursos (Sumber : Marcos <i>et al.</i> , 2019)		
Kelebihan	 Metode yang banyak digunakan untuk pembentukan kristalin oksida (<i>crystalline oxide</i>) Menghasilkan pori yang seragam 	 Struktur dan ukuran pori hasil sintesis dapat dikendalikan Mudah membentuk <i>framework</i> dan dihilangkan templatenya dibandingkan <i>hard-template</i> Tidak membutuhkan banyak peralatan dan kondisi yang ketat (<i>strict</i>) Reaksi yang ada dapat dionntrol atau dikendalikan 		
Kekurangan	 Ukuran dan struktur pori sulit dikendalikan Memungkinkan terjadinya nukleasi di luar pori, sehingga menghasilkan <i>yield</i> yang rendah Membutuhkan biaya tinggi dan preparasi yang rumit Pemisahan antara template dan produk dapat menyebabkan kerusakan pada struktur <i>nanotube, nanowire,</i> atau <i>hollow balls</i> 	 Stabilitas termal rendah untuk soft- template yang berbasis hidrokarbon Memungkinkan terjadinya kerusakan (collapse) kerangka pori selama proses kristalisasi dan penghilangan soft- template 		

(Sumber: He et al., 2018).

Hard-template merupakan material yang memiliki struktur kaku (*rigid*), dimana kestabilan strukturnya ditentukan oleh ukuran dan morfologi dari partikel sampel. Beberapa contoh dari *hard-template* yaitu: membran berpori, busa plastik, serat karbon, dan aluminium anodik berpori oksida. Pembuatan *hard-template* memiliki keuntungan karena struktur dan pengaruhnya terhadap ukuran partikel. Morfologi merupakan parameter yang penting untuk karakterisasi dari sifat material, khususnya pada material mesopori. Morfologi, bersama dengan ukuran partikel, luas permukaan, dan struktur pori menentukan sifat dari material mesopori dan pengaplikasinya secara tepat (Xie *et al.*, 2016). Jalur sintesis *hard-template*, juga dikenal sebagai *nanocasting. Nanocasting* merupakan teknik langsung lainnya untuk mendapatkan struktur mesopori. Teknik ini didasarkan pada penggunaan template yang dibentuk sebelumnya dibuat dari agregat nanopartikel, karbon atau silika mesopori (Marcos *et al.*, 2019). Teknik *nanocasting* menggunakan silikamesopori ditunjukkan pada Gambar 2.6

Gambar 2.6 Skema metode hard-template (Sumber : Marcos et al., 2019)

Metode sintesis *hard-template* dapat menggunakan template dengan ukuran dan struktur *nanohole* yang berbeda. Hal tersebut dapat dilakukan melalui pertumbuhan fisik atau kimia maupun pengendapan material dalam nanopori untuk fabrikasi nanomaterial. *Hard-template* sering digunakan sebagai "reaktor mikro" dalam sintesis nanomaterial karena stabilitas strukturnya. Prekursor dapat dimasukkan ke dalam pori-pori maupun permukaan pori dari *hard-template* melalui proses impregnasi. Struktur *hard-template* yang *rigid* (kaku) membatasi kristalisasi atau agregasi prekursor. Partikel dengan morfologi yang berbeda dapat diperoleh dengan memilih *hard-template* dengan struktur yang berbeda pula (Xie *et al.*, 2016).

Soft-template tidak memiliki struktur kaku (*rigid*) seperti halnya *hard-template*. Proses sintesis material dengan menggunakan *soft-template* lebih sederhana dengan tingkat kepresisian yang tinggi, sehingga memiliki prospek yang baik pada pengembangan sintesis nanomaterial. *Soft-template* pada umumnya berupa surfaktan, polimer dan biopolimer (Lee *et al.*, 2006). Beberapa contoh dari *soft-template* dapat dilihat pada Tabel 2.3.

	Keterangan	Kegunaan	Sumber Referensi
Surfaktan	 Bersifat amphifilik (hidrofilik dan lipofilik pada kepala dan ekor surfaktan) Dapat berupa anionik, kationik, non- ionik dan <i>zwitterionic</i> Gugus fungsi dari molekul amphifilik mudah membentuk struktur <i>liquid crystal</i>, misel,mikroemulsi, dan <i>self- assembled film</i> di dalam larutan Contoh: CTAB (<i>cetyltrimethylammonium bromide</i>) 	Dapat digunakan untuk mensintesis silika mesopori, mikrosphere silika	(Huo <i>et al.</i> , 1994; Barrabino., 2011; Rida et al., 2014)
High Polymer	 Memiliki berat mokelul yang besar Memiliki stabilitas yang baik, memiliki struktur molekular yang beragam Dapat berperan sebagai template maupun prekursor organik dan membentuk struktur <i>liquid crystal</i> melalui metode <i>self-assembly</i> Contoh: Kopolimer blok (Pluronik-123, PEG) 	Banyak digunakan untuk sintesis material mesopori	(Xie <i>et al.</i> , 2016; Zhang dan Pinnavia., 2002)
Biopolimer	 Keadaanya melimpah di alam Strukturnya kompleks, tidak beracun, templatenya <i>easy removal</i> Sangat potensial digunakan sebagai template untuk sintesis material Contoh: DNA, Protein, Polisakarida, dll 	Dapat digunakan sebagai template untuk sintesis nanomaterial	(Xie <i>et al.</i> , 2016; Liu et al 2013)

Tabel 2.3 Beberapa Jenis Soft-Template

Jalur sintesis metode *soft-template* untuk membentuk mesopori melalui dua jalur yang berbeda : perakitan sendiri (*co-assembly*) dan proses templating pada *liquid crystal*. Proses perakitan sendiri (*co-assembly*) melibatkan interaksi spesies anorganik dengan surfaktan melalui ikatan kovalen, gaya elektrostatik, atau ikatan hidrogen, interaksi polimerisasi dan ikatan *cross-linking*. Selama sintetis terjadi proses *matching* antara kerapatan muatan pada permukaan anorganik dan antarmuka surfaktan mengatur proses perakitan. Pemisahan fase dan reorganisasi yang dihasilkan menghasilkan penataulangan tiga dimensi yang berenergi terendah. Hal tersebut saling ketergantungan proses terhadap pengaruh kerapatan muatan antar spesies, komposisi hibrida anorganik atau organik Sedangkan proses templating *liquid crystal* didasarkan pada pembentukan template yang diperoleh dari misel mesofasa semi-cair yang diproduksi oleh surfaktan. Pertumbuhan kristal dan kondensasi terjadi ketika prekursor anorganik ditambahkan dan meningkat. Proses pertumbuhan kristal yang terus meningkat mengakibatkan ruang terbatas di sekitar surfaktan membentuk *ceramic-like frameworks*. Setelah kondensasi, templat organik dihilangkan dan struktur meso dapat terbentuk (Marcos *et al.*,2019)

Polimer dengan berat molekul yang besar (*high* polymer) sebagai template dan prekursor organik membentuk struktur mesopori tertentu dengan metode *selfassembly*. Selektivitas dari polimer dan fase kristal tertentu berinteraksi satu sama lain dalam fase awal nukleasi kristal. Interaksi ini dapat mempercepat atau menghambat pertumbuhan kristal, sehingga akan mengontrol dan meningkatkan morfologi, ukuran, dan distribusi partikel (Xie *et al.*, 2016).

Kopolimer blok merupakan salah satu jenis *high polymer*. Kopolimer blok dihubungkan oleh rantai polimer dengan dua atau lebih sifat yang berbeda. Ikatan hidrogen terjadi ketika bagian hidrofilik dari surfaktan dan prekursor berinteraksi satu sama lain yang akan menghasilkan fase mesoskopik selama proses sintesis dari material mesopori. Diameter pori dari fase mesoskopik ditentukan oleh ikatan hidrofobik dari kopolimer blok, sehingga semakin besar berat molekul yang memiliki bagian hidrofobik, semakin kuat sifat hidrofobiknya dan semakin besar pula diameter pori yang dihasilkan dari proses sintesis (Yu *et al.*, 2002).

Senyawa biopolimer juga dapat digunakan sebagai *soft-template* untuk sintesis material berpori. Senyawa ini mudah diperoleh, memiliki struktur yang kompleks, tidak beracun, serta mudah dihilangkan (*easy removal*). Biopolimer yang umum digunakan sebagai template adalah DNA, protein, serta polisakarida. *Soft-template* dapat berperan sebagi material anorganik sekaligus surfaktan yang secara langsung

mengalami *supramolecular self-assembly*, membentuk fase organik-anorganik. Ikatan yang terdapat pada fase tersebut yaitu ikatan elektrostatik, ikatan hidrogen, dan ikatan kovalen. Ikatan antara material anorganik dan surfaktan bersifat lemah (saling tolak-menolak) karena memiliki sifat elektrik yang sama, sehingga perlu ditambahkan fase intermediet sebagai *link* (penghubung) antara keduanya, membentuk fase organik-anorganik (Xie *et al.*, 2016). Skema pembentukan material mesopori menggunakan *soft-template* seperti pada Gambar 2.7.

Gambar 2.7 Mekanisme Pembentukan Mesopori menggunakan Soft-Template (Sumber: Xie et al., 2016)

2.4 Evaporation-induced self-assembly (EISA)

Proses *evaporation-induced self-assembly* (EISA) merupakan salah satu metode sintetis yang paling penting untuk material mesopori dengan bantuan surfaktan dan diperantarai supramolekul material mesopori. Proses *evaporation-induced self-assembly* merupakan proses perakitan dari molekul organik amfifilik yang melekat pada anorganik. Reaksi komplek yang menghasilkan larutan dan berat molekul spesies anorganik dapat larut dan terus berubah seiring waktu. Spesies yang terionisasi kuat tidak dapat berinteraksi dengan kelompok hidrofilik molekul surfaktan, dan terjadi sebagai ion bebas dalam larutan prekursor. Semua spesi, termasuk ion bebas seperti itu, ditampung dalam kerangka yang dihasilkan di sekitar rakitan surfaktan (Kimura, 2016). Perakitan menggunakan molekul organik amfifilik juga disebut dengan perakitan menggunakan surfaktan. Template surfaktan yang sering digunakan dalam sintesis mesopori alumina berupa triblok

kopolimer Pluronik123 (P123). Pluronik123 membentuk gugus etilen-oksida(EO) dan propilen-oksida (PO) pada proses EISA. Proses sintesis mesopori alumina ditujukkan pad Gambar 2.8

Gambar 2.8 Sintesis mesopori alumina dengan metode EISA menggunakan template P123 (Sumber: (Hartmann, Sachse and Galarneau, 2012).

Proses pelepasan sufaktan pada template dilakukan dengan menguapkan pelarut dalam proses pengeringan. Pembentukan tersebut menghasilan "zona organik" seperti cairan di dalam struktur alumina, yang nantinya akan menghasilkan pembentukan pori (Caragheorgheopol et al., 2010). Gambar 2.9 menunjukkan efek potensial dan mekanisme PEG1000 ditambahkan pada sintesis mesopori alumina. Konsentrasi PEG1000 rendah, sebagai pengarah struktur PEG1000 tersebar secara seragam ke dalam pelarut pada langkah 1. Perlakuan selanjutnya yaitu hidrolisis aluminium isopropoksida, molekul PEG1000 dapat teradsorpsi pada permukaan lapisan boehmite yang terbentuk melalui hidrogen obligasi. Mesopori alumina seperti menunjukkan pori yang lebih sempit karena pori-pori ukuran lebih seragam terbentuk dengan menghapus PEG1000. Peningkatan konsentrasi PEG1000 dilakukan dengan bagian dari molekul PEG1000 yang ditransfer ke misel dan hanya molekul PEG1000 yang bekerja pada langkah 1 ke 3. Misel PEG1000 mendistribusikan di antara lapisan boehmite pada dan pori-pori terbentuk dengan membakar misel PEG1000 dalam langkah ke II yang ditunjukkan pada Gambar 2.9.

Gambar 2.9 Efek potensial mekanisme PEG1000 pada sintesis mesopori alumina (Sumber : (Zhang *et al.*, 2017)

2.5 Alginat

Alginat adalah jenis polisakarida yang berasal dari kelompok alga coklat dan bakteri. Rumus molekul natrium alginat adalah (C6H7O6Na)n. Alginat mengandung 2 unit monomer yaitu asam 1,4-linked β-D-mannuronat (M) dan asam residu α-Lguluronat (G) (Abdalla et al, 2015). Alginat, yang diekstraksi dari rumput laut coklat menarik untuk disintesis sebagai material terstruktur dalam skala besar karena bersifat non-toksisitas Alginat sebagai sejenis biopolimer alami, terdiri dari rantai linier (1-4) monomer asam β -D-mannuronat dan asam ∞ -l-guluronat yang dapat dihubungkan silang dengan kation logam multivalen dengan ikatan elektrostatik yang kuat (Yu et al, 2016). Alginat dalam bentuk komersil sering dijumpai dalam bentuk natrium alginat (sodium alginate, SA) yaitu suatu garam natrium dari asam alginat yang larut dalam air (Andrawina and Kurniawati, 2012). Natrium alginat merupakan garam natrium dari asam alginat, yang merupakan kopolimer dari asam β-D-mannuronat (M) dan asam ∞ -l-guluronat (G) memiliki ikatan 1,4-glikosidik. Ikatan 1,4-glikosidik terjadi akibat adanya kation multivalen seperti Ca²⁺, Cd²⁺, Ba²⁺, Zn^{2+,} Al³⁺ (Sinha et al., 2015). Ikatan alginat dengan kation multivalen mengakibatkan interaksi cross-linking antar ion molekul gugus COO⁻ yang terletak pada backbone pada natrium alginat dan kation logam (Goh et al., 2012). Konformasional isomer pada alginat berbeda dalam susunan struktural cincin hexopyranose. Alginat membentuk setidaknya tiga berbagai bentuk segmen

polimer: segmen yang mengandung MM dan GG diselingi dengan daerah segmen MG bergantian seperti ditunjukkan pada Gambar 2.10. Distribusi ukuran polydisperse alginat diamati menggunakan metode kromatografi permeasi gel (Berth, 1992).

Gambar 2.10 Komponen alginat: blok G – G, M – M dan M – G (Sumber :Goh *et al.*, 2012)

Alginat diproduksi dari dua sumber, yaitu alga dan bakteri. Alginat yang tersedia secara komersial terutama berasal dari alga cokelat. Spesies alga yang yang memproduksi alginat yaitu, *Laminaria hyperborea, Ascophyllum nodosum* dan *Macrocystis pyrifera* (Sutherland, 1991). Alginat bukan merupakan kopolimer acak, tetapi mengandung bagian-bagian dari polymannuronate (-MMMMM-), polyguluronate (-GGGGGG-) serta daerah bolak-balik G dan M. Rasio G : M tergantung pada sumber rumput laut dan dapat bervariasi mulai dari B 30 % G hingga B 70% G (Danks *et al.*, 2016).

Biopolimer alginat telah ditunjukkan untuk memberikan tingkat kontrol pada pertumbuhan nukleasi dan pertumbuhan oksida logam kristalin (Schnepp *et al.*, 2010). Alginat merupakan biopolimer struktural yang ditemukan dalam rumput laut dan mengandung blok-blok monomer gluronat yang dapat diikat oleh ikatan elektrostatik yang kuat dengan kation logam multivalen. Stabilitas termal yang tinggi dan struktur jaringan gel yang diperpanjang dalam media air membuat biopolimer mampu mempertahankan dispersi kation logam yang diatur sebelumnya pada suhu yang relatif tinggi. Suhu yang relatif tinggi tersebut dapat mempengaruhi nukleasi dan pertumbuhan fase kristal (Said and Hassan, 1993). Parameter yang akan menentukan dan membatasi kelarutan alginat dalam air yaitu: pH, total *ionic strength* dan total *gelling ions*. Disosiasi konstanta untuk monomer asam mannuronat dan guluronat masing-masing adalah 3,38 dan 3,65. Nilai pKa dari polimer alginat hanya berbeda sedikit dari residu monomer. Larutan alginat dapat berperilaku dalam dua cara yang berbeda ketika pH dalam larutan diturunkan. Penurunan pH yang tiba-tiba menyebabkan pengendapan molekul asam alginat, sementara pelepasan proton yang lambat dan terkontrol dapat menghasilkan pembentukan gel asam alginat. Pengendapan molekul asam ke dalam larutan alginat mengarah ke presipitasi dalam kisaran pH yang relatif sempit. Kisaran pH ini tergantung pada berat molekul alginat tetapi juga pada komposisi dan urutan kimianya; alginat yang mengandung lebih banyak struktur bolak-balik (blok-MG) akan mengendap pada nilai pH yang lebih rendah dibandingkan dengan alginat yang mengandung lebih banyak struktur blok homogen (poli-M dan poli-G) memiliki nilai pH yang tinggi.

Blok-blok homopolimerik lebih mudah terjadi pengendapan dengan pembentukan daerah kristal yang distabilkan oleh ikatan hidrogen. Hal tersebut terjadi peningkatan derajat *disorder* dalam rantai alginat (Draget, 2009). Alginat dalam bentuk garamnya juga memilik derajat oksidasi. Reaktan yang diperoleh untuk menghasilkan sodium alginat yang teroksidasi dapat menggunakan natrium periodat untuk mengurangi berat molekulnya dan meningkatkan kemampuan biodegradasi. Hal tersebut dapat dilihat pada Gambar 2.11.

Gambar 2.11 Sodium Alginat yang teroksidasi (Sumber : (Ding et al., 2017)
2.6 Uji Karakterisasi

2.6.1 X-ray Diffraction (XRD)

Difraksi sinar-X (XRD) merupakan metode yang digunakan untuk menentukan struktur kristal dari suatu padatan. Sampel ditempatkan pada titik fokus hamburan sinar-X tepat ditengah *plate* dengan perekat pada sisi baliknya. Skema alat uji XRD dipaparkan dalam Gambar 2.13

Gambar 2.12 Skema Alat Uji XRD (Sumber: Nurhayati, 2011)

Prinsip kerja XRD secara umum (Nurhayati,2011), seperti yang ditunjukkan Gambar 2.13, sebagai berikut :

- a. Generator tegangan tinggi berfungsi sebagai catu daya sumber sinar-X.
- b. Sampel berbentuk pelet diletakkan diatas tatakan yang dapat diatur.
- c. Berkas Sinar-X didifraksikan oleh sampel dan difokuskan melewati celah, kemudian masuk kealat pencacah. Apabila sampel berputar sebesar 2θ maka alat berputar sebesar θ .
- d. Intensitas difraksi sinar-X direkam dalam bentuk kurva terhadap jarak antara bidang d

Seberkas Sinar-X yang menumbuk permukaan bidang kristal *Miller*, akan menyebabkan sebagian sinar dihamburkan atau diteruskan kelapisan atom atau molekul yang lainya. Sinar-X yang dihamburkan bersifat koheren, dapat berinteraksi secara konstruktif atau dekstruktif. Interferensi konstruktif terjadi apabila berkas sinar-X yang dihamburkan berada dalam keadaan satu fasa. Kondisi satu fasa tercapai apabila jarak AB+BC sama dengan harga bilangan bulat (n) dari panjang gelombang.

$AB+BC=n\lambda$

AB + BC = 2d sin θ , sehingga interferensi konstruktif dari berkas sinar-X pada sudut θ , adalah :

$$n\lambda = 2d \sin \theta$$

Persamaan tersebut dikenal sebagai persamaan *Bragg*, sedangkan sinar-X akan dipantulkan jika sudut datang sinar-X sama dengan:

$$2\theta = n\lambda/2d$$

Dimana n merupakan orde difraksi, d jarak antar kisi kristal, θ sudut difraksi dan λ merupakan panjang gelombang sinar-X. Dari hasil uji akan didapatkan nilai d, sudut 2 θ dan intensitasnya yang dibandingkan dengan data standar maka akan dapat diketahui senyawa dan struktur kristal sampel yang di uji (Cullity, 1956).

Persamaan *Bragg* tidak dapat menentukan struktur secara lengkap, tetapi hanya dapat menentukan parameter sel kristal saja, tidak seperti metode komputasi kristalografik yang dapat menentukan posisi-posisi atomnya dengan menggunakan data intensitas. Diraksi sinar-X hanya memprediksi ukuran kristalin. Ukuran kristal yang semakin kecil maka puncak difraksi yang dihasilkan akan semakin lebar, karena bidang pantul sinar-X yang terbatas. Hal tersebut merupakan dasar dari metode *Scherrer* (Abdullah, 2008). Difraksi sinar-X pada suatu kisi kristal ditunjukkan pada Gambar 2.14.

Gambar 2.13 Difraksi Sinar X pada kisi kristal (Sumber: Cullity, 1956)

Hubungan antara lebar puncak difraksi sinar-X dan ukuran kristal dapat di dituliskan dengan persamaan schrerer :

$$D \approx K \frac{\lambda}{B \cos \theta B}$$

Ukuran kristalin dituliskan dengan simbol D, dan B adalah FWHM (*Full Width Half Maxiumum*) satu puncak difraksi yang dipilih, θ adalah sudut *Bragg*, λ panjang gelombang sinar-X yang digunakan dan K adalah konstanta material yang nilainya kurang dari satu, biasanya ≈ 0.9 (Abdullah, 2008).

2.14. Karakterisasi XRD Mesopori γ-Al₂O₃ menggunakan template PEG1000 (Sumber : Zhang et al., 2017)

Penggambaran pola difraktogram XRD untuk γ -Al₂O₃ mesopori dengan template PEG1000 ditunjukkan pada 2.15 ditandai dengan munculnya puncak difraksi 2 θ =38°, 2 θ =46°, dan 2 θ =67°. Pola difraktogram lainnya dari γ -Al₂O₃ meopori yang disintesis dengan menggunakan surfaktan berupa Pluronik P-123 seperti pada Gambar 2.16.

2. 15. a. Sudut kecil karakterisasi XRD mesopori alumina b. Sudut panjang karakterisasi XRD mesopori alumina (Sumber : Yuan et al., 2008)
2.6.2 *Brauner-Emmet-Teller* (BET) dan *Barret-Joiner-Halenda* (BJH)

Metode *Brauner-Emmet-Teller* (BET) berfungsi untuk menganalisa luas permukaan spesifik, ukuran pori, dan distribusi ukuran pori material solid. Dasar pengukuran BET adalah fisisorpsi gas, umumnya adalah nitrogen, argon dan helium. Gas yang digunakan yaitu yang bersifat hanya teradsorp secara fisik pada permukaan material solid dan dapat di-deadsorpsi dengan menurunkan tekanan gas pada temperatur yang sama, biasanya temperatur didih dari gas tersebut. Alat uji ini pada dasarnya hanya mengukur jumlah gas yang dapat diserap oleh suatu permukaan padatan pada tekanan dan suhu tertentu. Secara sederhana, jika kita mengetahui berapa volume gas spesifik yang dapat diserap oleh suatu permukaanpadatan pada suhu dan tekanan tertentu dan kita mengetahui secara teoritis luas permukaan dari satu molekul gas yang diserap, maka luas permukaan total padatan tersebut dapat dihitung (Nurhayati, 2011).

Sampel yang dibutuhkan pada metode ini hanya dalam jumlah yang kecil (berkisar 0,1-0,01 gram). Persiapan utama dari sampel sebelum dianalisa adalah dengan menghilangkan gas–gas yang terserap (*degassing*). Pada metode BET ini molekul padatan yang paling atas dianggap berada pada kesetimbangan dinamis. Jika permukaan hanya dilapisi oleh satu molekul saja, maka molekul-molekul gas ini berada dalam kesetimbangan fase uap padatan. Jika terdapat dua atau lebih

lapisan, maka lapisan teratas berada pada kesetimbangan dalam fase uap padatan. Bentuk isoterm tergantung pada macam gas adsorbat, sifat adsorben dan sturktur pori (Nurhayati, 2011).

Hasil pengujian yang dilakukan, akan mendapatkan kurva isoterm adsorpsi. Kurva isoterm adsorpsi terdiri dari 6 tipe menurut IUPAC yang ditunjukkan pada Gambar 2.12. Penjelasan dari masing-masing tipe kurva adalah sebagai berikut :

- a. Tipe I berbentuk konkaf terhadap aksis P/P₀, merupakan tipe Langmuir, dengan ciri-ciri pembatasan adsorpsi pada monolayer. Tipe ini diamati pada adsorpsi kimia (kemisorpsi), pada tekanan jauh dibawah P₀. Sedangkan pada adsorpsi fisika (fisisorpsi) mengindikasikan material mikropori. Pengisian mikropori ini dilakukan padatekanan relatif yang rendah karena kecilnya ukuran pori dan tingginya potensi adsorpsi.
- b. Tipe II adalah sangat umum dalam kasus adsorpsi fisika dan sesuai dengan pembentukan multilayer dan adsorpsi pada sampel bubuk. Biasanya terjadi pada material nonpori atau makropori. Titik belok (titik B) menunjukkan proses pada monolayer sudah selesai dan adsorpsi multilayer dimulai.
- c. Tipe III berbetuk konveks terhadap aksis P/ P₀. Tipe ini relatif jarang terjadi, sebagai contoh yaitu adsorpsi nitrogen pada polietilen, adsorpsi nitrogen pada es dan dikarakterisasi oleh panas adsorpsi yang sama atau kurang dari panas *liquefaction adsorbat*.
- d. Tipe IV dan V sesuai untuk fenomena kondensasi kapiler dan menunjukkan efek histeresis. Biasanya terjadi pada padatan berpori.
- e. Tipe VI yaitu *Highly uniform surface, Layer by layer adsorption, Stepped isotherm.* Contohnya adsorpsi molekul non pori sederhana pada permukaan yang seragam (e.g. *basal plane of graphite*).

(Nurhayati, 2011)

Gambar 2.16 Tipe Kurva Isoterm Adsorpsi (Nurhayati, 2011)

Luas permukaan total dari suatu padatan dengan metode BET dapat dihitung menggunakan persamaan 2.1:

$$S_t = \frac{W_{M} \times N \times A}{M}$$
(2.1)

keterangan :

St = Luas permukaan total (m^2)

Wm = Berat adsorbat sebagai monolayer

N = Bilangan Avogadro $(6,23 \times 10^{23})$

A = Luas permukaan nitrogen $(16,2 \text{ Å}^2 = 16,2 \text{ x } 10^{-20} \text{ m}^2)$

M = Berat molekul N_2 (28 g/mol)

Berdasarkan persamaan tersebut, maka luas permukaan spesifik dapat dihitung menggunakan persamaan 2.2:

$$S_{BET} = \frac{S_t}{W_{sampel}}$$
(2.2)

keterangan :

St = Luas permukaan total padatan (m^2)

Ws = Berat sampel

(Setianingsih, 2018)

Perhitungan jari-jari pori dilakukan menggunakan metode *Barret, Joyner, Halenda* (BJH). Perhitungan ini dilakukan berdasarkan penentuan volume pori spesifik yang ditentukan berdasarkan volume adsorpsi gas N₂ pada P/P0 \approx 1, menggunakan persamaan 2.4:

$$Vp = Vliq = \frac{P \times Vads \times Vm}{R \times T}$$
(2.4)

keterangan:

 $P = Tekanan uap N_2 cair = 1 atm$

R = Konstanta untuk gas = 82,057 mL.atm mol⁻¹K⁻¹

 $T = Suhu N_2 cair = 273 K$

Vads = Volume gas N₂ yang teradsorpsi

Vm = Volume molar N_2 cair = 34,6 mL/mol

Persamaan tersebut dapat disederhanakan menjadi:

$$Vp = Vgas x 1,53.10^{-3} \text{ cm}^3 / g$$
 (2.5)

dimana :

Vgas = Jumlah gas N₂ yang diadsorpsi pada P/P0≈1

1

Dengan asumsi bahwa geometri pori adalah silinder, maka diperoleh persamaan 2.6 sebagai berikut:

$$= \frac{2Vp}{S_{BET}}$$
 (2.6)

dimana:

r = Jari-jari pori rata-rata (nm)

Vp = Volume pori spesifik (cm^3/g)

 S_{BET} = Luas permukaan spesifik padatan (m2 /g)

(Setianingsih, 2018).

2.6.3 Loop Histeresis

Bentuk-bentuk histeresis yang ada berkaitan dengan metastabilitas dari proses adsoprsi atau efek jaringan yang ada. Klasifikasi loop hysteresis menurut IUPAC (1985) dapat dibedakan menjadi 6 tipe berbeda seperti Gambar 2.18.

Gambar 2.17 Klasifikasi Loop Histeresis (Sumber: Thommes *et al.*, 2015).

Penjelasan klasifikasi isotherm menurut IUPAC sebagai berikut:

- a. Loop histeresis tipe H1 ditemukan pada material yang memiliki ukuran mesopori seragam, misalnya pada silika (MCM-41, MCM 48, SBA-15), dan karbon mesopori. Histeresis tipe H1 juga ditemukan pada jaringan pori yang memiliki bentuk *ink-bottle*, dimana distribusi ukuran pori pada bagian ujungnya mirip dengan distribusi ukuran pori pada bagian rongganya
- b. Loop histeresis tipe H2 menunjukkan adanya material berpori dengan struktur dan distribusi pori yang tidak teratur. Loop histeresis tipe H2(a), menunjukkan adanya *blocking* atau perkolasi pori pada distribusi pori yang kurang seragam, biasanya terdapat pada silika gel maupun silika mesopori (SBA-16). Loop hysteresis tipe H2(b) juga menunjukkan adanya *blocking* pada pori, namun dengan distribusi ukuran pori yang jauh lebih lebar, misalnya pada *mesocellular silica foam*
- c. Loop histeresis tipe H3 memiliki pola adsoprsi menyerupai isotherm tipe II. Loop histeresis tipe ini dapat diberikan oleh partikel agregat non rigid seperti clay. Histeresis tipe ini juga dapat diberikan oleh jaringan makropori yang tidak sepenuhnya terisi dengan kondensat pori
- d. Loop histeresis tipe H4 terjadi pada material dengan pori berbentuk slit (*slit-shape pore*), dan sering ditemukan pada kristal yang teragregasi seperti zeolit, zeolit mesopori, dan karbon mikro-mesopori
- e. Loop histeresis tipe H5 merupakan tipe histeresis yang jarang muncul pada pola isotherm adsorpsi-desorpsi. Tipe ini memiliki bentuk khas yang

berhubungan dengan struktur pori terbuka dan mesopori yang tertutup secara parsial, contoh: silika dengan *template* heksagonal (Thommes *et al.*, 2015).

BAB 3. METODOLOGI PENELITIAN

3.1 Tempat dan Waktu Penelitian

Penelitian ini dilakukan di Laboratorium Kimia Anorganik Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember. Karakterisasi XRD dilakukan di Laboratorium Teknik Geologi Universitas Gajah Mada dan Pusat Penelitian Fisika LIPI. Karakterisasi Adsorpsi-Desorpsi N₂ dilakukan di Laboratorium Teknik Kimia Institut Teknologi Bandung. Waktu penelitian dilaksanakan pada bulan Maret 2020 – September 2020.

3.2 Alat dan Bahan

3.2.1 Alat

Alat yang digunakan pada penelitian ini diantaranya adalah gelas beaker 100 mL dan 250 mL, gelas ukur 100 mL, batang pengaduk,spatula, pipet tetes, pipet volume, labu ukur 100 mL, pipet volume 1 mL dan 10 mL buret, *hot plate*, stirer magnetik dan anak stirer, neraca analitik, oven, *furnace tubular*, botol semprot, cawan porselen, *ball* pipet, pH meter, alat *X-Ray Diffraction* (XRD) dan BET (*Brunauer-Emmuet-Teller*).

3.2.2 Bahan

Bahan yang digunakan pada penelitian ini diantaranya yaitu, Al(NO₃)₃.9H₂O (Sigma-Aldrich ACS reagent \geq 98%), Natrium Alginat (M_w ~ 600000 g/mol), NH₄OH (p.a 25%), dan akuades.

3.3 Diagram Alir Penelitian

Gambar 3.1 Diagram Alir Penelitian

3.4 Prosedur Penelitian

3.4.1 Preparasi Larutan

a. Larutan NH4OH 2 M

Larutan NH4OH (p.a 25%) diambil sebanyak 32 mL, kemudian ditambahkan dengan akuades di dalam labu ukur 100 mL sampai tanda batas.

b. Larutan prekursor

Padatan Al(NO₃)₃.9H₂O sebanyak 13,89 g dilarutkan dalam 50 mL akuades dan diaduk sampai larut. pH larutan diukur menggunakan pH-meter 3.4.2 Sintesis mesopori γ-Al₂O₃

Sintesis alumina mesopori dilakukan dengan variasi rasio massa dari penambahan surfaktan serta pengaturan nilai pH. Sodium alginat (Na-Alginat) masing-masing diambil sebanyak 0,75; 1,00; dan 1,25 g kemudian dilarutkan dalam 100 mL akuades, diaduk hingga larut seluruhnya. pH larutan diukur menggunakan pH meter. Larutan prekursor Al lalu dimasukkan ke dalam buret, kemudian ditambahkan setetes demi setetes ke dalam beaker yang berisi larutan sodium alginat disertai pengadukan. Pengkondisian pH (7,8,9) dilakukan dengan menambahkan NH4OH sedikit demi sedikit ke dalam larutan sambil diaduk hingga terbentuk gel. Gel yang telah terbentuk dioven pada suhu 60°C selama 4 hari agar proses *evaporation-induced self-assembly* (EISA) dapat berjalan. Gel kering yang diperoleh kemudian dicuci dengan akuades dan dioven kembali pada suhu 60°C. Proses kalsinasi dilakukan pada suhu 500°C selama 3 jam.

3.4.3 Karakterisasi X-Ray Diffraction (XRD)

Katalis mesopori mesopori γ -Al₂O₃ diuji kristalinitasnya dengan X-ray diffraction (XRD) menggunakan radiasi Cu-*K* α (40 kV dan 30 mA) yang diemisikan melalui monokromator. Difraktogram dipindai mulai 10° - 60° (2 θ) dengan laju pemindaian 1° per menit. Interferensi konstruktif radiasi sinar-X akan terbaca sebagai puncak dalam grafik yang dihasilkan (Taromi *et al.*, 2018).

3.4.4 Karakterisasi Gas Sorption Analyzer (GSA)

Karakterisasi GSA dilakukan untuk mengetahui luas permukaan, ukuran pori, serta distribusi ukuran pori. Luas permukaan ditentukan menggunakan metode BET (*Brunauer Emmer-Teller*), ukuran pori dan distribusi pori ditentukan

menggunakan BJH (*Barret Joyner Hallenda*) dengan jalur adsorpsi dan desorpsi. Serbuk alumina yang dihasilkan dimasukkan dalam tabung dan dipanaskan pada tekanan vakum untuk menghilangkan gas-gas yang terdapat pada sampel. Kemudian, tempat sampel didinginkan dengan nitrogen (77 K) dan sejumlah gas nitrogen dimasukkan kedalam tabung tersebut. Setelah kesetimbangan tercapai, tekanan diukur dan diketahui volume sistem pada temperatur dan volume yang ditambahkan setiap saat.

3.4.5 Tabulasi Data

Tabel 3.1 Sampel yang akan dikarakterisasi pada hasil penelitian

Sai	npel	Karakterisasi BET + BJH	Karakterisasi XRD
pH	MA-1,00-7	ν	Sampel dengan luas
	MA-1,00-8		_ permukaan spesifik +
	MA-1,00-9		pori optimum dan sampel
Rasio massa	MA-0,00-Opt	V//-/	tanpa penambahan
Alginat pada	MA-0,75-Opt		surfaktan
Aluminium	MA-1,00-Opt	- /	
	MA-1,25-Opt		
Keterangan :			
MA-x-y			
MA : Mesopo	ori γ-Al ₂ O ₃		
x : Massa s	surfaktan		
y : Nilai pl	Н		
Opt : Nilai pl	H Optimum		

BAB 5. PENUTUP

5.1 Kesimpulan

Berdasarkan hasil penelitian yang telah dilakukan dapat disimpulkan bahwa:

- Sintesis γ-Al₂O₃ mesopori pada saat pH optimum (pH 7) terjadi interaksi elektrostatis dan ikatan hidrogen dengan surfaktan natrium-alginat sehingga memiliki luas permukaan dan ukuran pori yang optimum (S_{bet} 676,4 m²/g, D_p = 15,88 nm dan V_p total = 0,460 cm³/g)
- Rasio massa prekursor : surfaktan yang optimum adalah 1:1. Rasio massa yang mencapai batas optimum, akan menghasilkan penurunan luas permukaan dan ukuran pori. Sampel tanpa penambahan surfaktan memiliki struktur kristal α-Al₂O₃, sedangkan sampel pada penambahan surfaktan optimum memiliki struktur kristal γ-Al₂O₃.

5.2 Saran

Saran untuk penelitian lebih lanjut yaitu melakukan sintesis γ -Al₂O₃ mesopori dengan dengan menggunakan jenis surfaktan yang lain untuk mengetahui pengaruh terhadap sifat tekstural alumina. Proses evaporasi dan waktu aging juga perlu dilakukan pengoptimalan. Hal tersebut untuk mengetahui pengaruh waktu aging pada metode *evaporation-induced self-assembly* (EISA) terhadap struktrul kristal, luas permukaan dan pori γ -Al₂O₃ mesopori.

DAFTAR PUSTAKA

Abdullah, M. 2008. Pengantar Nanosains. Bandung: ITB.

- Abou Rida, M. dan Harb, F. 2014. Synthesis and Characterization of Amorphous Silica Nanoparticles from Aqueous Silicates Using Cationic Surfactants. *Journal of Metals, Materials and Minerals*, 24(241): 37–42.
- Afshar Taromi, A. dan Kaliaguine, S. 2018. Green diesel production via continuous hydrotreatment of triglycerides over mesostructured Γ-alumina supported NiMo/CoMo catalysts. *Fuel Processing Technology*. 171:20–30.
- Alvarez, C.M., N. Zilkova, J.P. Pariente, dan J. Cejka. 2008. Synthesis, Characterization and Catalytic Applications of Organized Mesoporous Aluminas. *Catalysis Review : Science and Engineering*. 50(2): 222-286.
- Ameen, M., Azizan, M. T., Ramli, A., Yusup, S., dan Alnarabiji, M. S. 2018. Catalytic Hydrodeoxygenation of Rubber Seed Oil over Sonochemically Synthesized Ni-Mo/γ-Al2O3 Catalyst for Green Diesel Production. Ultrasonics Sonochemistry. 51: 90–102.
- Andrawina, L. dan Kurniawati, A. 2012. Framework for Community of Practice based on SECI method and KM cycle. *International Conference on ICT and Knowledge Engineering*.
- Bagshaw, S. A. dan Pinnavaia, T. J. 1996. Mesoporous Alumina Molecular Sieves. Angewandte Chemie (International Edition in English). 35(10):1102–1105
- Barrabino, A. 2011. Synthesis of mesoporous silica particles with control of both pore diameter and particle size. *Thesis*:1–63.
- Bell, T., González-Carballo, J., Tooze, R., & Torrente-Murciano, L. 2017. γ-Al₂O₃ nanorods with tuneable dimensions a mechanistic understanding of their hydrothermal synthesis. *RSC Advances*. 7(36) : 22369-22377.
- Berth, G. 1992. Methodical aspects of characterization of alginate and pectate by light scattering and viscometry coupled with GPC. *Carbohydrate Polymers*, 19(1): 1–9.
- Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J. B., Berthet, P., Huntz,A.M., Roy, P., dan Tétot, R. 2009.Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study. *Journal of Solid State Chemistry*.182(5):1171–1176.
- Brandhuber, D., Torma, V., Raab, C., Peterlik, H., Kulak, A., dan Hüsing, N. 2005. Glycol-Modified Silanes in the Synthesis of Mesoscopically Organized Silica

Monoliths with Hierarchical Porosity. *Chemistry of Materials*. 17(16): 4262–4271.

- Cabrera, S., Haskouri, J. E., Alamo, J., Beltrán, A., Beltrán, D., Mendioroz, S., Marcos, M. D., dan Amorós, P. 1999. Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Advanced Materials. 11(5): 379–381.
- Caragheorgheopol, A., Rogozea, A., Ganea, R., Florent, M., dan Goldfarb, D. 2009. Investigation of the Surfactant Role in the Synthesis of Mesoporous Alumina. *The Journal of Physical Chemistry C*. 114(1): 28–35.
- Carstens, S., Meyer, R., & Enke, D. 2020. Towards Macroporous α-Al₂O₃— Routes, Possibilities and Limitations. *Materials*. 13(7): 1787.
- Chai, F., Tan, R., Cao, F., Zhai, F., Wang, X., Shao, C., dan Liu, Y. 2007. Dendritic and tubular tungsten oxide by surface sol-gel mineralisation of cellulosic substance. *Materials Letters*. 61(18): 3939–3941
- Cheryl-Low, Y. L., Theam, K. L. dan Lee, H. V. 2015. Alginate-derived solid acid catalyst for esterification of low-cost palm fatty acid distillate, *Energy Conversion and Management*. 106: 932–940.
- Danks, A. E., Hall, S. R. dan Schnepp, Z. 2016. The evolution of "sol-gel" chemistry as a technique for materials synthesis. *Materials Horizons*. Royal Society of Chemistry. 3(2): 91–112.
- Digne, M., Sautet, P., Raybaud, P., Euzen, P., dan Toulhoat, H. 2002. Hydroxyl Groups on γ-Alumina Surfaces: A DFT Study. *Journal of Catalysis*. 211(1): 1–5.
- Ding, W., Zhou, J., Zeng, Y., Wang, Y., dan Shi, B. 2017. Preparation of oxidized sodium alginate with different molecular weights and its application for crosslinking collagen fiber. *Carbohydrate Polymer*. 157: 1650–1656.
- Draget, K. I. 2009. Alginates. Handbook of Hydrocolloids: Second Edition:. 807–828.
- Eding, H. J., Huggins, M. L., & Brown, A. G. 1962. Phase transformations in alumina. ID Falls, ID: U.S. Atomic Energy Commission, Idaho Operations Office.
- Elliott DC. 2007. Historical developments in hydroprocessing bio-oils. Energy Fuels 21:1792–815.
- Favaro, L., Boumaza, A., Roy, P., Lédion, J., Sattonnay, G., Brubach, J. B., Huntz a.M., dan Tétot, R. 2010. Experimental and ab initio infrared study of χ-, κ-

and α -aluminas formed from gibbsite. *Journal of Solid State Chemistry*, 183(4): 901–908.

- French, R. H., Müllejans, H. dan Jones, D. J. 2005. Optical Properties of Aluminum Oxide: Determined from Vacuum Ultraviolet and Electron Energy-Loss Spectroscopies. *Journal of the American Ceramic Society*. 81(10): 2549– 2557.
- Goh, C. H., Heng, P. W. S. dan Chan, L. W. 2012, Alginates as a useful natural polymer for microencapsulation and therapeutic applications. *Carbohydrate Polymers*. 88(1): 1–12.
- Hadjiivanov, K., Kantcheva, M. dan Davydov, A. .1991. 'of Ions', 87(6): 907-911.
- Hartmann, S., Sachse, A. dan Galarneau, A. 2012. Challenges and Strategies in the Synthesis of Mesoporous Alumina Powders and Hierarchical Alumina Monoliths. *Materials*. 5(2): 336–349.
- He, Z. dan Wang, X .2013. Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. *Catalysis for Sustainable Energy*. 1: 28–52.
- Ionescu, A., Allouche, A., Aycard, J.-P., Rajzmann, M., dan Hutschka, F. 2002. Study of γ-Alumina Surface Reactivity: Adsorption of Water and Hydrogen Sulfide on Octahedral Aluminum Sites. *The Journal of Physical Chemistry B*. 106(36): 9359–9366.
- Johansson E. M. 2010. Controlling the Pore Size and Morphology of Mesoporous Silica, Department of Physics. Chemistry and Biology (IFM).
- Kim, Y., B. Lee, dan J. Yi. 2002. Synthesis of Mesoporous γ-Alumina Through Preand Post Hydrolysis Methods . Korea J. Chem. Eng. 19(5): 908-910.
- Kimura, T. 2016. Evaporation-induced Self-assembly Process Controlled for Obtaining Highly Ordered Mesoporous Materials with Demanded Morphologies. *Chemical Record*, 16(1): 445–457.
- Kolitcheff, S., Jolimaitre, E., Hugon, A., Verstraete, J., Carrette, P.-L., dan Tayakout-Fayolle, M. 2017. Tortuosity of mesoporous alumina catalyst supports: Influence of the pore network organization. *Microporous and Mesoporous Materials*. 248: 91–98.
- Kordouli, E., Pawelec, B., Bourikas, K., Kordulis, C., Fierro, J. L. G., dan Lycourghiotis, A. 2018. Mo promoted Ni-Al₂O₃ co-precipitated catalysts for green diesel production. *Applied Catalysis B: Environmental.* 229: 139–154.
- Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi, G., & Trelkat, J. F. 2016. Control of the γ -alumina to α -alumina

phase transformation for an optimized alumina densification. *Boletín De La Sociedad Española De Cerámica Y Vidrio.* 56(2): 47-54.

- Lavorato, C., Primo, A., Molinari, R., dan García, H. 2014. Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. *ACS Catalysis*. 4(2): 497–504.
- Lehklif, B., L. Oudrhiri, F. Zidane, P. Drogul, dan J.F. Blais. 2014. Study of The Electrocoagulation of Electroplating Industry Wastewaters Charged by Nickel(II) and Chromium(VI). J. *Mater. Environ. Sci.* 5(1): 111-120.
- Leofanti, G., Padovan, M., Tozzola, G., dan Venturelli, B. 1998. Surface area and pore texture of catalysts. *Catalysis Today*. 41(1-3): 207–219.
- Liherlinah. 2009. Sintesis nanokatalis Cu/Zn/Al2O3 dengan untuk mengubah metanol menjadi hidrogen. *Tugas Akhir*. Bandung: Program Studi Fisika Institut Teknologi Bandung.
- Liu, Q., Wang, A., Wang, X., dan Zhang, T. 2006. Ordered Crystalline Alumina Molecular Sieves Synthesized via a Nanocasting Route. *Chemistry of Materials*. 18(22): 5153–5155.
- Liu, Q., Wang, A., Wang, X., Gao, P., Wang, X., dan Zhang, T. 2008. Synthesis, characterization and catalytic applications of mesoporous γ-alumina from boehmite sol. *Microporous and Mesoporous* Materials.111(1-3): 323–333.
- Liu, Y., Goebl, J. dan Yin, Y. 2013. Templated synthesis of nanostructured materials', *Chemical Society Reviews*. 42(7): 2610–2653.
- Marcos-Hernández, M., dan Villagrán, D. 2019. Mesoporous Composite Nanomaterials for Dye Removal and Other Applications. *Composite Nanoadsorbents*. 265-293.
- Paglia, G., Buckley, C. E., Rohl, A. L., Hart, R. D., Winter, K., Studer, A. J., dan Hanna, J. V. 2004. Boehmite Derived γ-Alumina System. 1. Structural Evolution with Temperature, with the Identification and Structural Determination of a New Transition Phase, γ'-Alumina. *Chemistry of Materials*, 16(2): 220–236.
- Pan, F., X. Lu, T. Wang, Y. Wang, Z. Zhang, Y. Yan, dan S. Yang. 2013. Synthesis Of Large-Mesoporous γ-Al₂O₃ From Coal-Series Kaolin at Room Temperature. *Materials Letter*. 91: 136–138.
- Pérez, L. L., Zarubina, V., Heeres, H. J., & Melián-Cabrera, I. 2013. Condensation-Enhanced Self-Assembly as a Route to High Surface Area α-Aluminas. *Chemistry of Materials*. 25(20): 3971-3978.

- Pradhan, Abinash. 2014. Production Of Alumina Based Porous Ceramics Using Sodium Alginate As Gelling Agent. *Thesis*. Rourkela: Department Of Ceramic Engineering National Institute Of Technology Rourkela.
- Peintinger, M. F., Kratz, M. J. dan Bredow, T. 2014. Quantum-chemical study of stable, meta-stable and high-pressure alumina polymorphs and aluminum hydroxides. *Journal of Materials Chemistry A*. Royal Society of Chemistry, 2(32): 13143–13158.
- Qin, Y. 2018. Seaweed Hydrocolloids as Thickening, Gelling, and Emulsifying Agents in Functional Food Products. *Bioactive Seaweeds for Food Applications*. 135-152.
- Raman, N. K., Anderson, M. T. dan Brinker, C. J. 1996. Template-based approaches to the preparation of amorphous, nanoporous silicas. *Chemistry* of Materials, 8(8): 1682–1701.
- Renuka, N. K., Shijina, A. V. dan Praveen, A. K. 2012. Mesoporous γ-alumina nanoparticles: Synthesis, characterization and dye removal efficiency. *Materials Letters*. 82:. 42–44.
- Rouquerol, J., Avnir, D., Everett, D. H., Fairbridge, C., Haynes, M., Pernicone, N., Ramsay J. D. F., SIng, K. S. W., dan Unger, K. K. 1994. Guidelines for the Characterization of Porous Solids. *Studies in Surface Science and Catalysis*. 1–9.
- Said, A. A. dan Hassan, R. M. 1993. Thermal decomposition of some divalent metal alginate gel compounds. *Polymer Degradation and Stability*, 39: 393–397.
- Samain, L., Jaworski, A., Edén, M., Ladd, D. M., Seo, D.-K., Javier Garcia-Garcia, F., dan Häussermann, U. 2014. Structural analysis of highly porous γ-Al₂O₃. *Journal of Solid State Chemistry*. 217: 1–8.
- Schnepp, Z., Wimbush, S. C., Mann, S., dan Hall, S. R. 2010. Alginate-mediated routes to the selective synthesis of complex metal oxide nanostructures. *CrystEngComm.* 12(5):1410.
- Schwarz, J. A., Contescu, C. dan Contescu, A. 1995. Methods for Preparation of Catalytic Materials. *Chemical Reviews*. 95(3): 477–510.
- Setianingsih, T. 2018. Karakterisasi Pori dan Luas Muka Padatan. Malang: UB Press.
- Shen, Y. C., Hsu, C. H. dan Lin, H. P. 2018. Biodegradable Gelatin as Template for the Preparation of Mesoporous Alumina. *Journal of the Chinese Chemical Society*, 65(4): 424–429.

- Sinha, P., Ubaidulla, U., Hasnain, M. S., Nayak, A. K., dan Rama, B. 2015. Alginate-okra gum blend beads of diclofenac sodium from aqueous template using ZnSO₄ as a cross-linker. *International Journal of Biological Macromolecules*. 79: 555–563.
- Spanos, N., dan Lycourghiotis, A. 1993. Mechanism of deposition of Co²⁺ and Ni²⁺ ions on the interface between pure and F—doped γ-alumina and the impregnating solution. J. Chem. Soc., Faraday Trans. 89(22): 4101–4107.
- Thomas, V. G., Daneu, N., Mashkovtsev, R. I., Rečnik, A., & Fursenko, D. A. 2019. The internal structure of hydrothermally grown leucosapphire crystals. *CrystEngComm.* 21(7): 1122-1129.
- Thommes, M., K. Kaneko, A.V. Neimark, J.P. Oliver, F.R. Reinoso, J. Rouquerol, dan K.S.W. Sing. 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). *Pure Appl. Chem.* 87(9-10): 1051-1069.
- Taromi, A. A., & Kaliaguine, S. 2018. Green diesel production via continuous hydrotreatment of triglycerides over mesostructured γ-alumina supported NiMo/CoMo catalysts. *Fuel Processing Technology*. 171: 20-30.
- Trueba, M. dan Trasatti, S. P. 2005. γ-alumina as a support for catalysts: A review of fundamental aspects. *European Journal of Inorganic Chemistry*. (17): 3393–3403.
- Vaudry, F., Khodabandeh, S. dan Davis, M. E. 1996. Synthesis of Pure Alumina Mesoporous Materials. *Chemistry of Materials*. 8(7): 1451–1464.
- Xie, Y., D. Kocaefe, C. Chen, dan Y. Kocaefe. 2016. Review of Research on Template Methods in Preparation of Nanomaterials. *Journal of Nanomaterials*. 2016: 1–10.
- Yuan, Q., A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, dan C.H. Yan. 2008. Facile Synthesis for Ordered Mesoporous γ-Aluminas with High Thermal Stability. *Journal of the American Chemical Society*. 130(11): 3465– 3472.
- Zhang, K., Li, C., Yu, J., Gao, S., dan Xu, G. 2016. Synthesis of texture-excellent mesoporous alumina using PEG1000 as structure-directing agent. Chinese Journal of Chemical Engineering. 25(1):137–141.

- Zhang, Z., Hicks, R. W., Pauly, T. R., dan Pinnavaia, T. J. 2002. Mesostructured Forms of γ -Al₂O₃. Journal of the American Chemical Society. 124(8) : 1592–1593.
- Zhang, Z. dan Pinnavaia, T. J. 2002. Mesostructured γ-Al₂O₃ with a Lathlike Framework Morphology. (13): 12294–12301.
- Zhao, X. S., Lu, G. Q., dan Millar, G. J. 1996. Advances in Mesoporous Molecular Sieve MCM-41. Industrial & Engineering Chemistry Research. 35(7): 2075– 2090.

LAMPIRAN

Lampiran 3.1 Preparasi Sampel

1. Perhitungan molaritas larutan NH₄OH 25% : ρ NH₄OH = 0,88 g/mL Kadar larutan NH₄OH p.a = 25% (b/b) Mr NH₄OH = 35,046 g/mol Konsentrasi larutan NH₄OH: M (NH₄OH) = $\frac{0.88 \text{ g/ml}}{35,046 \text{ g/mol}} \times 0,25 \times \frac{1000 \text{ ml}}{1 \text{ L}} = 6,277 \text{ M}$

Pembuatan larutan NH4OH pada konsentrasi 2M:

$$\begin{split} M_1 & x \ V_1 = M_2 \ x \ V_2 \\ 6,277 \ M \ x \ V_1 = 2M \ x \ 100 \ ml \\ V_1 = 31,86 \ mL \approx 32 \ ml \\ \end{split}$$
 Dengan: $M_1 = Konsentrasi \ larutan \ NH_4OH \ p.a \ yang \ dipipet \end{split}$

V₁=Volume larutan NH₄OH p.a yang dipipet

M₂= Konsentrasi larutan NH₄OH akhir

V₂= Volume Hasil Pengenceran

2. Perhitungan Massa Al dalam Al(NO₃)₃.9H₂O

Diketahui:

 $Mr Al(NO_3)_3.9H_2O = 375,13 \text{ g/mol}$

Ar Al = 27 g/mol

Massa Al yang diinginkan dalam $Al(NO_3)_3.9H_2O = 1$ g

Massa Al(NO₃)₃.9H₂O yang dibutuhkan untuk memperolah 1 g Al:

$$=\frac{\frac{375,13\frac{g}{mol}\times 1g}{27\ g/mol}}{27\ g/mol}=13,89\ g$$

Lampiran 4.1 Proses sintesis γ -Al₂O₃ mesopori

Surfaktan Natrium-Alginat yang dilarutkan dalam akuades

Larutan prekursor (Al(NO₃)₂.9H₂O) vang ditambah NH₄OH

Larutan Al-Alginat (Campuran larutan prekursor dengan surfaktan Na-Alginat

Gel kering Al-Alginat setelah dievaporasi 4 hari

Gel Basah Al-Alginat

 $\gamma\text{-}Al_2O_3$ mesopori yang terbentuk pada kalsinasi 500°C selama 3 jam

Lampiran 4.2 Kurva BET

4.2.1 Kurva BET Variasi pH

1. Kurva BET pH 7

2. Kurva BET pH 8

4.2.2 Kurva BET Variasi Rasio Massa

1. Kurva BET Rasio Massa 0,75 (MA-0,75-7)

Lampiran 4.3 Data Karakterisasi Adsorpsi-Desorpsi N2 MA-1,00-7

4.3.1 Data Luas Permukaan Spesifik (*Multi-point* BET)
Multi-Point BET Data

Relative Pressure	Volume @ STP	1 / [W((Po/P) - 1)]	Relative Pressure	Volume @ STP 1/[W((Po/P) - 1)]
[P/Po]	[cc/g]		[P/Po]	[cc/g]	
2.89470e-02 6.06080e-02	2 59.460 2 66.065	4.0113e-01 7.8137e-01	1.83732e-01 2.18860e-01	81.886 89.297	2.1993e+00 2.5104e+00
9.07960e-02 1.18478e-01	2 69.723 I 71.711	1.1460e+00 1.4996e+00	2.50839e-01 2.81089e-01	97.166 105.599	2.7571e+00 2.9625e+00
1.55677e-01	1 77.039	1.9149e+00	3.11168e-01	114.682	3.1516e+00

BEISU	nmary	
Slope =	4.996	
Intercept =	1.5040e-01	
Correlation coefficient, r =	0.999469	
C constant =	99.387	
Surface Area =	676.442 m²/a	

4.3.2 Data Isoterm

		Isothe	erm Data —		
Relative Pressure	Volume @ STP	Relative Pressure	Volume @ STP	Relative Pressure	Volume @ STP
	[cc/g]		[cc/g]		[cc/g]
2.89470e-02 6.06080e-02 9.07960e-02 1.18478e-01 1.55677e-01 2.81860e-01 2.81089e-01 3.11168e-01 3.67844e-01 4.01017e-01 4.36309e-01	59.4602 66.0653 69.723 71.7112 77.0390 81.8861 89.2974 97.1663 105.5991 114.6825 125.6254 134.6605 148.0907 164.5796	4.99143e-0 5.24366e-0 6.21584e-0 6.21584e-0 6.56386e-0 7.45414e-0 7.74570e-0 8.06177e-0 8.06177e-0 8.35178e-0 8.55111e-0 8.55111e-0 0.0000000000000000000000000000000000	1 196.3592 1 211.0846 1 229.0863 1 251.5077 1 271.8215 1 295.5516 1 318.2642 1 350.9643 1 382.7344 1 413.5312 1 454.5330 1 485.9718 1 535.3639 1 539.7764 677 2005	9.54539e-01 9.85092e-01 9.50576e-01 8.86499e-01 7.91308e-01 7.91308e-01 5.61752e-01 4.88462e-01 4.02700e-01 3.28581e-01 2.57843e-01 1.82173e-01 1.01569e-01	747.0170 773.7805 747.0178 747.0057 721.7328 659.9239 500.0004 397.0797 278.8340 186.2983 116.2963 91.0002 87.9005 70.5567

Radius	Pore Volume	Pore Surf	dV(r)	d \$(r)	dV(logr)	d S(logr)
[Å]	[cc/g]	[m²/g]	[cc/Å/g]	[m²/Å/g]	[cc/g]	[cc/g]
31.1475	2.2059e-03	2.8328e+00	9.7221e-04	1.2485e+00	6.9696e-02	8.9504e+0
33.6028	5.2926e-03	6.5072e+00	1.1685e-03	1.3909e+00	9.0361e-02	1.0756e+0
36.0882	7.9811e-03	9.4871e+00	1.1543e-03	1.2794e+00	9.5886e-02	1.0628e+0
38.8133	1.1405e-02	1.3016e+01	1.0970e-03	1.1305e+00	9.7987e-02	1.0098e+0
41.6387	1.4414e-02	1.5907e+01	1.1897e-03	1.1428e+00	1.1402e-01	1.0954e+0
44.4330	1.8238e-02	1.9349e+01	1.2500e-03	1.1253e+00	1.2784e-01	1.1509e+0
48.1466	2.2838e-02	2.3170e+01	1.0530e-03	8.7481e-01	1.1666e-01	9.6917e+0
52.8601	2.6638e-02	2.6046e+01	7.5119e-04	5.6844e-01	9.1361e-02	6.9134e+0
58.3916	3.1242e-02	2.9200e+01	7.6674e-04	5.2524e-01	1.0300e-01	7.0557e+0
64.2174	3.5835e-02	3.2061e+01	8.1333e-04	5.0661e-01	1.2019e-01	7.4863e+0
70.8860	4.2742e-02	3.5958e+01	8.9817e-04	5.0682e-01	1.4646e-01	8.2643e+0
79.3114	4.9233e-02	3.9232e+01	7.0865e-04	3.5740e-01	1.2927e-01	6.5196e+0
89.1243	5.5393e-02	4.1997e+01	5.8862e-04	2.6418e-01	1.2066e-01	5.4152e+0
101.9385	6.3596e-02	4.5216e+01	5.4098e-04	2.1228e-01	1.2675e-01	4.9734e+0
116.8835	6.9698e-02	4.7304e+01	4.1434e-04	1.4179e-01	1.1136e-01	3.8111e+0
138.9294	7.9011e-02	4.9985e+01	3.1716e-04	9.1314e-02	1.0108e-01	2.9102e+0
175.9705	8.8920e-02	5.2237e+01	2.2157e-04	5.0366e-02	8.9293e-02	2.0297e+0
239.7543	1.0488e-01	5.4900e+01	1.9266e-04	3.2143e-02	1.0529e-01	1.7567e+0
361.7395	1.3320e-01	5.8032e+01	1.7574e-04	1.9433e-02	1.4393e-01	1.5915e+0
875.0012	2.2268e-01	6.2122e+01	1.0339e-04	4.7266e-03	1.9006e-01	8.6884e+0
		<u>-</u>	BJH adsorption s	ummary		
		Surface	Area =	621.221 m²/g		
		Pore Vo	lume =	0.446 cc/g		
		Doro Padius	$D_{V}(r) =$	22 165 Å		

BJH Pore Size Distribution Adsorption Data

4.3.3 Data Distribusi Pori Adsorpsi

4.3.4 Data Distribusi Pori Desorpsi

BJH Pore Size Distribution Desorption Data Radius Pore Surf Area [m²/g] dV(r) dS(r) dV(logr) d S(logr) Pore Volume [nm] [cc/g] [cc/Ä/g] [m²/Å/g] [cc/g] [cc/g] 2.7594e-01 2.0252e-01 1.8676e-01 1.7960e-01 1.2696e-01 7.5023e-02 1.7621e-01 35.8850 43.2428 52.4138 66.0948 88.1608 130.7200 283.8543 2.6011e+01 4.0631e+01 5.3183e+01 6.5225e+01 7.3053e+01 7.7532e+01 8.7656e+01 3.3501e-03 2.0394e-03 1.5528e-03 1.1865e-03 6.3054e-04 2.5343e-04 2.8911e-04 4.6720e-02 5621e-01 3.0759e+02 4.6720e-02 7.8282e-02 1.1118e-01 1.5097e-01 1.8548e-01 2.1476e-01 3.5844e-01 3.0759e+02 1.8733e+02 1.4253e+02 1.0869e+02 5.7606e+01 2.2957e+01 2.4831e+01 2.0960e-01 2.7594e-01 2.0252e-01 1.5676e-01 1.1696e-01 1.0984e-01 857.9067 4.6549e+00 5.9420e-01 9.0010e+01 5.6126e-05 1.0902e-01 9.9837e-02

Surface Area =	692.010 m ²
Pore Volume =	0 425 cc/a
Pore Radius Dv(r) =	7.942 nm

4.3.5 Data Ukuran Jari-Jari Pori Rata-Rata Average Pore Size

Adsorbate	Nitrogen Molec. Wt.: 28.013 g	Temperature Cross Section:	77.350к 16.200 А²	Liquid Density:	0.808 g/cc
		Average Pore	Size summary		
	Average p	ore Diameter = 1.23	410e+02 nm		

4.3.6 Data Volume Pori Total

Data Reduction Parameters Data							
Adsorbate	Nitrogen	ata					
	Molec. Wt.: 28.013 g	Cross Section:	16.200 A ²	Liquid Density:	0.808 g/cc		
	1	Total pore volume = 4.6	025e-01 cc/g				

Lampiran 4.4 Data Karakterisasi Adsorpsi-Desorpsi N2 MA-1,00-8

4.4.1 Data Luas Permukaan Spesifik (*Multi-point* BET)

	Isotherm Branch Slope Intercept Correlation coeff., r C constant Surface area	Adsorption 15.7578 0.179463 0.999839 88.8056 218.514 m²/g	
Relative Pressure	Table - BET Multi-point BET Volume Adsorbed @STP		1 / [W((P/Po) - 1)]
0.0219057 0.0674104 0.114314 0.154690 0.202949 0.243268 0.285850	cc/g 37.4674 45.6637 51.2854 55.6284 60.3816 64.2837 68.5389		0.4783 1.2665 2.0136 2.6321 3.3740 4.0012 4.6726

4.4.2 Data Isoterm

	Table - Isocherni Isocherni	
Relative Pressure, P/Po	Volume	Adsorbed
	@	STP
	CC	:/g
0.0219057	37. 467	4
0.0674104	45. 663	7
0.114314	51. 285	4
0.154690	55. 628	4
0.202949	60. 381	6
0.243268	64. 283	7
0.285850	68. 538	9
0.332963	74. 445	7
0.375770	79. 317	7
0.422641	85. 073	2
0.465059	91. 304	3
0.508651	98, 164	6
0.552962	106, 32	9
0.594894	114. 55	8
0.639420	125. 00	4
0.683113	134. 96	8
0.725259	146. 48	4
0.770321	158. 44	9
0.814126	170, 14	1
0.856938	181. 41	2
0.903052	191. 36	4
0.949699	197. 66	6
0.911365	195. 88	3
0.870819	193, 57	7
0.829092	191. 64	2
0.791049	189. 49	5
0.746379	183. 92	6
0.708689	176. 03	9
0.669945	166. 31	6
0.628258	153. 42	0
0.587790	139. 09	9
0.548289	125.00	1
0.507746	106. 89	2
0.465923	90. 706	9
0.427543	80. 682	2
0.383678	75. 373	3
0.343208	70. 139	0
0.302668	65. 360	7
0.265556	60. 195	5
0.223443	58. 765	9

	Table - Isotherm Isothermcontinued	
Relative Pressure, P/Po	Volume Ad	sorbed
	cc/g	
0.183967	55.7794	
0.142336	50.4666	
0.102279	48.8098	

4.4.3 Data Distribusi Pori Adsorpsi

		BJH F	ore Size Distribution A Surfac Pore V Pore radius e - BiH Pore Size Distrib	Adsorption results te Area 162.601 r /olume 0.253991 s Dv(r) 1.78176 r putton Adsorption	n²/g cc/g nm	
radius nm	Pore Volu cc/g	ume Pore Sur Area m²/g	f. dV(r) cc/nm/g	dS(r) m²/nm/g	dV(log r) cc/g) dS(log r) m²/g
1.61279	1.150085e-02	1.426208e+01	6.890738e-02	8.545130e+01	2.556645e-01	3.170468e+02
1.78176	2.535939e-02	2.981809e+01	8.102330e-02	9.094745e+01	3.321552e-01	3.728394e+02
1.96792	4.087005e-02	4.558162e+01	7.706467e-02	7.832107e+01	3.488982e-01	3.545863e+02
2.18805	6.018803e-02	6.323936e+01	8.083157e-02	7.388471e+01	4.068373e-01	3.718728e+02
2.44173	7.964756e-02	7.917850e+01	7.250767e-02	5.939039e+01	4.072486e-01	3.335737e+02
2.74895	1.049675e-01	9.759998e+01	7.316454e-02	5.323082e+01	4.624974e-01	3.364897e+02
3.13471	1.284253e-01	1.125665e+02	5.513858e-02	3.517944e+01	3.973745e-01	2.535323e+02
3.61160	1.556957e-01	1.276681e+02	5.161311e-02	2.858183e+01	4.284492e-01	2.372626e+02
4.25798	1.831976e-01	1.405859e+02	3.597876e-02	1.689945e+01	3.517994e-01	1.652424e+02
5.17848	2.092933e-01	1.506644e+02	2.423907e-02	9.361466e+00	2.879797e-01	1.112218e+02
6.54457	2.335982e-01	1.580919e+02	1.468043e-02	4.486289e+00	2.200409e-01	6.724377e+01
9.04474	2.539907e-01	1.626012e+02	6.096924e-03	1.348171e+00	1.255158e-01	2.775444e+01

4.4.4 Data Distribusi Pori Desorpsi BJH Pore Size Distribution Desorption results

			Surfac Pore \	e Area 297.587 r /olume 0.30651 c	n²/g cc/g	
			Pore radius	s Dv(r) 1.63552 r	nm	
		Table	- BJH Pore Size Distrib	oution Desorption		
radius nm	Pore Volu cc/g	me Pore Surf Area	. dV(r) cc/nm/g	dS(r) m²/nm/g	dV(log r cc/g) dS(log r) m²/g
		m²/g				
1. 63552	4.486692e-02	5.486561e+01	2.824684e-01	3.454171e+02	6.29181e-01	1.299792e+03
1. 79297	7.599870e-02	8.959210e+01	1.994859e-01	2.225201e+02	8.230507e-01	9.180864e+02
1. 96753	1.203610e-01	1.346865e+02	2.297820e-01	2.335739e+02	1.040170e+00	1.057336e+03
2. 17223	1.711811e-01	1.814772e+02	2.349148e-01	2.162891e+02	1.174012e+00	1.080928e+03
2.40371	2.091888e-01	2.131015e+02	1.541163e-01	1.282322e+02	9.522441e-01	7.091086e+02
2. 67758	2.474351e-01	2.416693e+02	1.270090e-01	9.486852e+01	7.022294e-01	5.842810e+02
3. 01820	2.810562e-01	2.639482e+02	8.845127e-02	5.861195e+01	5.538930e-01	4.067942e+02
3. 42963	3.056697e-01	2.783017e+02	5.559118e-02	3.241815e+01	4.383944e-01	2.556509e+02
3. 92655	3.251358e-01	2.882168e+02	3.532338e-02	1.799205e+01	3.188417e-01	1.624028e+02
4. 64902	3.382277e-01	2.938489e+02	1.464651e-02	6.300898e+00	1.563034e-01	6.724138e+01
5. 65036	3.429447e-01	2.955185e+02	4.254066e-03	1.505768e+00	5.516918e-02	1.952767e+01
7. 16988	3.469964e-01	2.966487e+02	2.099096e-03	5.855317e-01	3.444420e-02	9.608027e+00
9. 90676	3.516456e-01	2.975873e+02	1.312027e-03	2.648751e-01	2.960700e-02	5.977131e+00

4.4.5 Data Ukuran Jari-Jari Pori Rata-Rata

Average Pore Size results -Average Pore radius 2,9709e+000 nm

4.4.6 Data Volume Pori Total

Total Pore Volume results **Total Pore Volume** for pores smaller than at relative pressure 0,94663

3,5523e-001 cc/g 20,11 nm (radius)

Lampiran 4.5 Data Karakterisasi Adsorpsi-Desorpsi N2 MA-1,00-9

4.5.1 Data Luas Permukaan Spesifik (*Multi-point* BET)

	BET Multi-point BET results	
	Isotherm Branch Slope Intercept	Adsorption 15.7578 0.179463
	Correlation coeff., r C constant	0.999839 88.8056
	Surface area	218.514 m²/g
	Table - BET Multi-point BET	
Relative Pressure	Volume Adsorbed @STP	1/[W((P/Po)-1)]
	cc/g	
0.0219057	37.4674	0.4783
0.0674104	45.6637	1.2665
0.114314	51.2854	2.0136
0.154690	55.6284	2.6321
0.202949	60.3816	3.3740
0.243268	64.2837	4.0012
0.285850	68.5389	4.6726

4.5.2 Data Isoterm

		Table - Isouleilli Isouleilli
	Relative Pressure, P/Po	Volume Adsorbed
		@ STP
		cc/a
	0.0233265	36, 1782
	0.0681702	43. 0201
	0.108403	47. 3675
	0 152236	52 1250
	0.197443	56 5659
	0 243800	61 0586
	0.299452	CE 3706
	0.329503	69 1631
	0.329364	76 1473
	0.376764	70. 1473
	0.463407	00. 5500
	0.40345/	07. 5003
	0.50/510	37. 5337
	0.551526	105. 586
	0.596912	114. 8/4
	0.639377	123. 514
	0.684134	132. 735
	0.727466	142. 868
	0.771125	154.011
	0.813338	165. 992
	0.859226	178. 360
	0.902384	189. 557
	0.946634	198. 895
	0.911288	197. 081
	0.869883	194. 458
	0.829713	192. 306
	0.791054	189. 720
	0.746122	184. 014
	0.705972	176. 148
	0.668677	165. 464
	0.628780	152. 010
	0.590098	127. 276
	0.550171	112. 889
	0.509353	108. 215
	0.468730	100. 6424
	0.428824	95. 2732
	0.388278	88, 2202
	0.346987	79, 7956
	0.306057	73. 0197
	0.264476	65. 5539
	0.2017/0	63, 5555
	0.221/82	60. 1696
		Table - Isotherm Isothermcontinued
I	Relative Pressure, P/Po	Volume Adsorbed @STP
		cc/a
	0.181244	54.3682
	0 141837	48 4770
	0.100765	45,000
	0.102/05	45.2002

Data Distribusi Pori Adsorpsi 4.5.3

BJH Pore Size Distribution Adsorption results						
			Surfac Pore Pore radiu	ce Area 168.755 n Volume 0.259132 Is Dv(r) 1.76686 n	n²/g cc/g m	
		Table	- BJH Pore Size Dist	ribution Adsorption		
radius nm	Pore Volu cc/g	me Pore Surf Area m²/q	. dV(r) cc/nm/g	dS(r) 1 m²/nm/g	dV(log r) cc/g) dS(log r) m²/g
1.60627	9.276793e-03	1.155076e+01	6.937530e-02	8.638086e+01	2.564407e-01	3.193005e+02
1.76686	3.094799e-02	3.608156e+01	1.156036e-01	1.308581e+02	4.698728e-01	5.318746e+02
1.96174	5.054004e-02	5.605573e+01	9.684309e-02	9.873185e+01	4.370593e-01	4.455834e+02
2.18102	6.964005e-02	7.357046e+01	8.084453e-02	7.413456e+01	4.056029e-01	3.719385e+02
2.44462	9.222621e-02	9.204869e+01	7.762904e-02	6.351000e+01	4.364541e-01	3.570726e+02
2.75586	1.127557e-01	1.069475e+02	6.192642e-02	4.494169e+01	3.924856e-01	2.848375e+02
3.14014	1.341665e-01	1.205843e+02	4.898916e-02	3.120190e+01	3.536405e-01	2.252387e+02
3.63316	1.575941e-01	1.334809e+02	4.267421e-02	2.349152e+01	3.563175e-01	1.961475e+02
4.28202	1.829368e-01	1.453177e+02	3.384702e-02	1.580889e+01	3.328703e-01	1.554733e+02
5.17477	2.096555e-01	1.556442e+02	2.577139e-02	9.960392e+00	3.060454e-01	1.182836e+02
6.59060	2.361646e-01	1.636887e+02	1.476923e-02	4,481908e+00	2.227370e-01	6.759233e+01
9.06743	2.591316e-01	1.687545e+02	7.270828e-03	1.603724e+00	1.502564e-01	3.314199e+01

4.5.4 Data Distribusi Pori Desorpsi

		BJH Po	re Size Distribution D	Desorption results		
			Surfac Pore V	e Area 299.164 n /olume 0.30842 c	n²/g c/g	
			Pore radius	Dv(r) 1.64589 n	m	
		Table	- BJH Pore Size Distrib	oution Desorption		
radius nm	Pore Volu cc/g	me Pore Surf. Area	. dV(r) cc/nm/g	dS(r) m²/nm/g	dV(log r) cc/g) dS(log r) m²/g
1.64589	4.858526e-02	5.903820e+01	3.283792e-01	3.990288e+02	6.399290e-01	1.511223e+03
1.80151	8.773667e-02	1. 025034e+02	2.397856e-01	2.662055e+02	8.331720e-01	1.103497e+03
1.97759	1.272304e-01	1. 424445e+02	2.090756e-01	2.114444e+02	1.243655e+00	9.620964e+02
2.18166	1.667600e-01	1. 786827e+02	1.803108e-01	1.652970e+02	9.939796e-01	8.296626e+02
2.41700	2.052336e-01	2. 105184e+02	1.530006e-01	1.266036e+02	8.013184e-01	7.039580e+02
2.68757	2.446130e-01	2. 398232e+02	1.359412e-01	1.011628e+02	6.505020e-01	6.254259e+02
3.01390	2.797906e-01	2.631668e+02	9.691340e-02	6.431089e+01	5.207345e-01	4.457627e+02
3.40591	3.070751e-01	2.791886e+02	6.480386e-02	3.805378e+01	4.004390e-01	2.980524e+02
3.90712	3.263823e-01	2. 890717e+02	3.320829e-02	1.699884e+01	3.017429e-01	1.526472e+02
4.64695	3.397393e-01	2.948204e+02	1.486993e-02	6.399869e+00	1.507569e-01	6.826481e+01
5.66143	3.454269e-01	2.968297e+02	5.030168e-03	1.776995e+00	5.198270e-02	2.308757e+01
7.15271	3.499419e-01	2.980921e+02	2.438071e-03	6.817195e-01	3.861160e-02	1.116473e+01
9.87371	3.552319e-01	2.991637e+02	1.473477e-03	2.984647e-01	3.535438e-02	6.710183e+00

4.5.5 Data Ukuran Jari-Jari Pori Rata-Rata

Average Pore Size results

Average Pore radius 2,8054e+000 nm

4.5.6 Data Volume Pori Total

Total Pore Volume results Total Pore Volume 3,5164e-001 cc/g for pores smaller than 19,00 nm (radius) at relative pressure 0,94970

4.6.1 Data Luas Permukaan Spesifik (*Multi-point* BET)

	BET Multi-point BET results		
	Isotherm Branch Slope Intercept Correlation coeff., r C constant	Adsorption 15.9841 0.140464 0.999909 114.795	
	Surface area	215.976 m²/g	
	Table - BET Multi-point BET		
Relative Pressure	Volume Adsorbed @STP	1 / [W((P/Po) - 1)]	
	cc/g		
0.0211494	39.0243	0.4430	
0.0685212	46.9137	1.2546	
0.112389	51.7170	1.9589	
0.156314	55.9548	2.6493	
0.196412	59.5245	3.2854	
0.241938	63.8382	4.0001	
0.284947	68.1073	4.6815	

4.6.2 Data Isoterm

	- Table - Isotherm Isotherm -
Relative Pressure, P/Po	Volume Adsorbed
	(c)/a
0.0211494	39 0243
0.0685212	46 9137
0 117799	51 7170
0.156314	51. 71.0
0.196417	50 5745
0.150412	53, 3243 63, 9393
0.241330	60 1073
0.204547	77 0001
0.331014	72, 7775
0.3/93/1	//. 1316
0.416/14	0. 0004
0.460643	84. 1757
0.50660/	89. 8798
0.548//1	94. 2197
0.595384	103. 872
0.638701	113. 514
0.683768	125. 790
0.726183	141. 012
0.772188	153. 443
0.814531	168. 429
0.859812	178. 019
0.902526	186. 569
0.949094	197. 992
0.911922	194. 658
0.872980	190. 500
0.831849	187. 384
0.792879	184. 771
0.752598	181. 979
0.710104	178. 152
0.668151	169. 969
0.629427	159. 461
0.589871	143. 855
0.549865	119, 399
0.508363	97. 4233
0.467999	84, 3219
0.424625	77. 1716
0.385914	75. 8495
0.343309	20. 9927
0.304300	58, 0245
0.266775	67 7433
0.200775	50. 7435
0.2222//	58. 7475
Deleting Deserves D/D-	Table - Isotherm Isothermcontinued
Relative Pressure, P/Po	volume Aasorbea @STP
	@31F сс/д
0 185281	55 2207
0.141120	53.2207
0.141129	JZ.2922
0.100/25	4/./166

4.6.3 Data Distribusi Pori Adsorpsi

BJH Pore Size Distribution Adsorption results						
			Surfac Pore Pore radiu	ce Area 140.312 r Volume 0.240117 s Dv(r) 2.43126 r	n²/g cc/g 1m	
		Table	e - BJH Pore Size Distri	bution Adsorption		
radius nm	Pore Volu cc/g	ime Pore Sur Area	f. dV(r) cc/nm/g	dS(r) m²/nm/g	dV(log r cc/g) dS(log r) m²/g
1.60771 1.76120 1.95344 2.17080 2.43126 2.74757 3.13520 3.62185 4.28353 5.20349 6.62363 9.08997	3.552767e-03 1.027918e-02 2.158413e-02 2.856192e-02 5.112206e-02 7.355812e-02 1.027077e-01 1.395269e-01 1.679524e-01 2.02031e-01 2.225845e-01 2.225845e-01 2.401174e-01	4.419658e+00 1.205810e+01 2.363253e+01 3.006128e+01 4.861965e+01 6.495123e+01 8.354624e+01 1.038779e+02 1.3779e+02 1.302491e+02 1.364546e+02 1.403122e+02	2.681237e-02 3.855267e-02 5.383359e-02 3.10448e-02 7.617006e-02 6.669009e-02 6.642192e-02 6.642192e-02 3.03069e-02 3.242706e-02 1.148581e-02 5.577733e-03	3.335470e+01 4.378000e+01 5.511682e+01 2.860550e+01 6.265881e+01 4.237166e+01 3.804314e+01 1.682289e+01 1.246358e+01 3.468128e+00 1.227228e+00	9.920028e-02 1.562153e-01 2.419076e-01 1.550559e-01 4.258868e-01 4.258868e-01 4.213875e-01 4.787210e-01 3.543710e-01 3.871998e-01 1.741050e-01 1.155715e-01	1.234056e+02 1.773963e+02 2.476739e+02 1.428557e+02 3.053419e+02 3.053842e+02 3.166889e+02 1.654574e+02 1.488231e+02 5.257085e+01 2.542837e+01

4.6.4 Data Distribusi Pori Desorpsi

BJH Pore Size Distribution Desorption results						
			Surface Pore V	e Area 274.463 Volume 0.307023	m²/g 3 cc/g	
			Pore radius	Dv(r) 2.17831	nm	
		Table	- BJH Pore Size Distrib	ution Desorption		
radius nm	Pore Volur cc/g	ne Pore Surf. Area	dV(r) cc/nm/g	dS(r) m²/nm/c	dV(log r cc/g) dS(log r) m²/g
1 60077	2 127642- 02	m²/g	1 510612- 01	1 000052-102	E 257024- 01	6 002701-+02
1. 79187	4.374422e-02	5.112323e+01	1.275167e-01	1.423278e+02	6.713125e-01	5.867627e+02
1. 97355	7.690655e-02	8.473004e+01	1.771944e-01	1.795694e+02	8.046139e-01	8.153985e+02
2.1/831	1.388591e-01 2.087705e-01	1.416114e+02 1.995009e+02	2./85990e-01 2.777753e-01	2.55/93/e+02 2.300095e+02	1.196166e+00 1.543454e+00	1.281881e+03 1.278044o+03
2. 68945	2.515922e-01	2.313451e+02	1.443997e-01	1.073822e+02	8.933167e-01	6.643109e+02
3.01391	2.793548e-01	2.497680e+02	7.878978e-02	5.228410e+01	5.461607e-01	3.624267e+02
3. 42908	3.002033e-01 3.091844e-01	2.664290e+02	4.350882e-02	2.537193e+01 7.048428e+00	1.288291e-01	2.000392e+02 6.459672e+01
4. 72427	3.153859e-01	2.690544e+02	7.451910e-03	3.154734e+00	8.085210e-02	3.422839e+01
5. 72206	3.209848e-01	2.710113e+02	4.812649e-03	1.682138e+00	6.319017e-02	2.208651e+01
10.0088	3.358357e-01	2.744626e+02	2.405699e-03	4.807192e-01	5.487829e-02	1.096606e+01

4.6.5 Data Ukuran Jari-Jari Pori Rata-Rata

Average Pore Size results Average Pore radius 2,8431e+000 nm

4.6.6 Data Volume Pori Total

 Total Pore Volume results 	1
Total Pore Volume	
for pores smaller than	
at relative pressure	

3,3583e-001 cc/g 19,88 nm (radius) 0,94909

4.7.1 Data Luas Permukaan Spesifik (*Multi-point* BET)

		BET Multi-point BET results	t BET results		
		Isotherm Branch	Adsorption		
		Slope	31.7988		
		Intercept	0.354843		
		Correlation coeff., r	0.999881		
		C constant	90.6137		
		Surface area	108.309 m²/g		
		Table - BET Multi-point BET	·		
	Relative Pressure	Volume Adsorbed	$1 / [W((P/P_0) - 1)]$		
	Relative Flessure	©CTD	1/[W((F/FO)-1)]		
		WSIP			
	0.0040504	10 0012	1 0202		
	0.0240501	18.9912	1.0382		
	0.0651053	22.5379	2.4722		
	0.110647	25.3415	3.9281		
	0.154965	27.6848	5.2999		
	0.196377	29.6544	6.5932		
	0.241136	31.7266	8.0135		
	0.285298	33.9621	9.4043		
172	Data Jaotarm				
F. 7.2	Data Isoteriii	Table - Isotherm Isotherm			
	Relative Pressure, P/Po	V	olume Adsorbed		
			@STP		
			cc/g		
	0.0240501		18. 9912		
	0.0651053		22, 5379		
	0.11064/		25, 3415		
	0.196377		27. 6646		
	0.241136		31. 7266		
	0.285298		33,9621		
	0.328996		36. 1685		
	0.374283		38. 6614		
	0.420466		41. 5058		
	0.466785		44. 4399		
	0.507826		47. 1319		
	0.549643		50.5671		
	0.593432		54. 6243		
	0.687817		67 2043		
	0.725984		75. 7390		
	0.770636		88. 3777		
	0.814109		102. 454		
	0.858128		113.083		
	0.904173		122. 545		
	0.948002		131. 656		
	0.913044		129. 266		
	0.868753		124. 302		
	0.828600		110 700		
	0.750045		115.035		
	0.706857		106. 660		
	0.669422		96, 2881		
	0.627891		83. 8229		
	0.590747		70. 6027		
	0.549471		59. 7360		
	0.507905		51. 1172		
	0.465397		44. 2531		
	0.425612		40. 1191		
	0.383424		37. 5903		
	0.345405		35, 9284		
	0.262529		30, 6539		
	0.224256		29. 4270		
		Table - Isotherm Isothermcontinued			
	Relative Pressure, P/Po		Volume Adsorbed		
			@STP		
			cc/g		
			-		
	0.185687		28.2743		
	0.185687 0.138805		28.2743 25.5907		

Data Distribusi Pori Adsorpsi 4.7.3

BJH Pore Size Distribution Adsorption results						
Surface Area 94.0285 m²/g Pore Volume 0.177249 cc/g Pore radius Dv(r) 2.75503 nm						
		Table	 BJH Pore Size Dist 	ribution Adsorption		
radius nm	Pore Volu cc/g	ime Pore Surf Area	. dV(r) cc/nm/g	dS(r) m²/nm/g	dV(log r cc/g) dS(log r) m²/g
1 60610	4 6504920-03	m²/g 5 700712o±00	2 8414650-02	3 5391440±01	1 0400750-01	1 307410e±02
1 78137	9 3737480-03	1 1093660+01	2.5799480-02	2 8404530+01	1.036772e-01	1 164017e+02
1 96959	1 3623180-02	1 5408710+01	2.3255100 02	2.0101550101	1 0148970-01	1.0305680±02
2 17634	1.995057e-02	2 122343e+01	2.2333022-02	2.598706e+01	1 415832e-01	1 301115e+02
2.42697	2.766582e-02	2.758135e+01	2.780074e-02	2.290981e+01	1.551898e-01	1.278875e+02
2,75503	4 278094e-02	3 855411e+01	3 992504e-02	2.898342e+01	2 528727e-01	1.835719e+02
3.14425	5.503224e-02	4.634693e+01	3.063883e-02	1.948879e+01	2.215229e-01	1.409067e+02
3.61519	7.419079e-02	5.694584e+01	3.534642e-02	1.955438e+01	2.936818e-01	1.624709e+02
4.26636	1.032339e-01	7.056080e+01	3.819908e-02	1.790711e+01	3.742593e-01	1.754467e+02
5.18138	1.350375e-01	8.283687e+01	2.973022e-02	1.147578e+01	3.534351e-01	1.364250e+02
6.57418	1.578997e-01	8.979203e+01	1.332406e-02	4.053450e+00	2.005443e-01	6.100965e+01
9.13468	1.772489e-01	9.402846e+01	5.682372e-03	1.244132e+00	1.181224e-01	2.586241e+01

4.7.4 Data Distribusi Pori Desorpsi BJH Pore Size Distribution Desorption results

			Surfac Pore V Pore radius	e Area 191.424 r Volume 0.204151 Dv(r) 1.63139 r	n²/g cc/g im							
Table - BJH Pore Size Distribution Desorption												
radius nm	Pore Volur cc/g	ne Pore Surf. Area	dV(r) cc/nm/g	dS(r) m²/nm/g	dV(log r cc/g) dS(log r) m²/g						
1.63139 1.78814 1.96679 2.17603 2.41720 2.68616 3.01404 3.41528 3.95276 4.67491 5.62968 7.09951 9.95309	2.537849e-02 4.253301e-02 5.796726e-02 7.903884e-02 1.069410e-01 1.742258e-01 1.745463e-01 2.099594e-01 2.214060e-01 2.299757e-01 2.365286e-01 2.416583e-01 2.516405e-01	m ⁷ /g 3.111277e+01 5.029980e+01 6.599465e+01 8.536161e+01 1.084480e+02 1.347195e+02 1.347195e+02 1.819791e+02 1.819791e+02 1.856454e+02 1.894185e+02 1.914243e+02	1.666285e-01 1.064216e-01 7.870021e-02 9.475896e-02 1.073299e-01 1.269434e-01 8.554986e-02 6.219482e-02 3.144258e-02 1.079310e-02 5.874198e-03 2.812136e-03 2.570736e-03	2.042783e+02 1.190306e+02 8.002903e+01 8.709328e+01 9.451650e+01 9.451650e+01 5.676755e+01 3.642150e+01 1.590916e+01 4.617459e+00 2.086869e+00 7.922055e-01 5.165704e-01	2.054698e-01 3.078767e-01 4.561145e-01 5.968021e-01 1.147438e-01 5.929452e-01 3.884676e-01 2.455304e-01 1.159011e-01 7.589628e-02 4.571661e-02 5.816072e-02	7.667950e+02 4.897574e+02 3.621274e+02 4.360011e+02 4.937957e+02 5.840740e+02 3.934553e+02 2.860483e+02 1.444712e+02 4.958433e+01 2.696294e+01 1.287880e+01 1.168697e+01						

4.7.5 Data Ukuran Jari-Jari Pori Rata-Rata

Average Pore Size results Average Pore radius 3,7698e+000 nm

4.7.6 Data Volume Pori Total

Total Pore Volume results Total Pore Volume 2,5164e-001 cc/g for pores smaller than 19,48 nm (radius) at relative pressure 0,94800

Lampiran 4.8 Data Karakterisasi XRD MA-0,00-7

2-theta(deg)	d(ang.)	Height(cps)	FWHM(deg)	Int. I(cps deg)	Size(ang.)
23.07(2)	3.852(4)	478(64)	0.211(19)	107(12)	401(35)
25.5942(14)	3.47765(19)	40792(589)	0.2167(10)	11066(33)	392.7(19)
31.690(5)	2.8212(5)	883(87)	0.209(11)	254(8)	413(22)
34.02(4)	2.633(3)	516(66)	0.22(3)	141(15)	394(61)
35.1621(14)	2.55019(10)	60597(718)	0.2240(10)	16837(41)	388.6(17)
37.788(2)	2.37878(13)	26292(473)	0.2243(15)	7355(27)	391(3)
38.986(18)	2.3084(10)	920(88)	0.215(18)	251(11)	409(33)
41.70(3)	2.1645(13)	484(64)	0.31(3)	249(19)	285(32)
43.3612(17)	2.08508(8)	65493(746)	0.2427(11)	19535(50)	367.9(17)
46.175(17)	1.9643(7)	947(90)	0.21(3)	317(11)	423(50)
47.143(18)	1.9263(7)	437(61)	0.29(3)	167(9)	317(31)
51.545(14)	1.7716(4)	848(85)	0.23(3)	287(12)	402(48)
52.550(2)	1.74006(8)	26639(476)	0.2720(17)	9074(29)	340(2)
57.492(2)	1.60170(5)	50468(655)	0.2810(14)	17503(44)	336.8(17)
59.40(3)	1.5548(6)	361(55)	0.34(7)	149(25)	283(57)
59.741(9)	1.5466(2)	1504(113)	0.204(13)	375(23)	469(31)
61.307(6)	1.51084(14)	4281(191)	0.384(6)	2004(16)	251(4)
66.506(3)	1.40479(6)	17598(387)	0.295(3)	6495(29)	336(3)
68.198(3)	1.37400(4)	26604(475)	0.300(2)	9848(31)	334(2)
70.41(3)	1.3362(5)	474(63)	0.30(3)	152(11)	337(30)
74.26(2)	1.2760(3)	694(77)	0.30(3)	334(10)	343(36)
76.851(4)	1.23942(6)	6940(243)	0.298(8)	2649(98)	356(10)
77.220(5)	1.23442(7)	3633(176)	0.31(2)	1467(96)	337(21)
80.687(13)	1.18988(15)	2130(135)	0.426(9)	982(16)	256(6)
83.30(3)	1.1590(3)	200(41)	0.46(7)	109(11)	241(37)
84.352(10)	1.14729(11)	1662(119)	0.340(12)	668(17)	329(11)
85.94(5)	1.1301(5)	138(34)	0.29(10)	43(17)	391(137)
86.353(6)	1.12575(6)	1784(123)	0.423(13)	804(18)	269(8)
88.52(3)	1.1037(3)	240(45)	0.30(8)	80(29)	389(105)
88.952(10)	1.09947(10)	2232(138)	0.380(13)	952(36)	306(10)
Digital Repository Universitas Jember

Lampiran 4.9 Data Karakterisasi XRD MA-1,00-7

ent of Geological Engineering, UGM

XS(Å) 366 >1000 174 522 409
366 >1000 174 522 409
>1000 174 522 409
174 522 409
522 409
409
707
630
314
346
174
205
181
>1000
>1000
105
>1000
>1000
>1000
>1000
>1000
95
134
264
278

Digital Repository Universitas Jember

Lampiran 4.10 Data ICSD #10425 a-Al₂O₃

Min Name	Corundum
D(calc)	3.99
Title	A structural investigation of alpha-Al2 O3 at 2170K
Author(s)	Ishizawa, N.;Miyata, T.;Minato, I.;Marumo, F.;Iwai, S.I.
Reference	Acta Crystallographica B (24,1968-38,1982)
	(1980), 36, 228-230
Unit Cell	4.754(1) 4.754(1) 12.99(2) 90. 90. 120.
Vol	254.25
Z	6
Space Group	R -3 c H
SG Number	167
Cryst Sys	trigonal/rhombohedral
Pearson	hR10
Wyckoff	e c
R Value	0.027
Red Cell	RH 4.754 4.754 5.126 62.376 62.376 60 84.749
Trans Red	0.000 1.000 0.000 / 1.000 1.000 0.000 / 0.333 0.667 -0.330
Comments	Compound with mineral name: Corundum
	The structure has been assigned a PDF number (calculated
	powder diffraction data): 01-071-1683
	The structure has been assigned a PDF number (experimental
	powder diffraction data): 43-1484
	Temperature in Kelvin: 300
	Structure type : A1203
	X-ray diffraction from single crystal
Atom # OX	K SITE x y z SOF H
Al 1 +3	12 c 0 0 0.35228(5) 1. 0
0 1 -2	18 e 0.3064(3) 0 0.25 1. 0
Lbl Type	U11 U22 U33 U12 U13 U23
All Al3+ (0.0051(2) 0.0051(2) 0.0019(2) 0.00255(10) 0 0
01 02- (0.0051(3) 0.0051(4) 0.0025(3) 0.00255(20) 0.00035(10) 0.0007(2)
*end for	ICSD #10425

68

Digital Repository Universitas Jember

Lampiran 4.11 Data ICSD #95302 y-Al₂O₃

Chem Name	Aluminium Oxide (2.67/4) - Gamma
Structured	(A12 03)1.333
Sum	A12.666 03.999
ANX	A21X32
Min Name	Alumina
D(calc)	3.68
Title	Theoretical structure determination of gamma-(Al2 O3)
Author(s)	Gutierrez, G.;Taga, A.;Johansson, B.
Reference	Physical Review, Serie 3. B - Condensed Matter (18,1978-)
	(2002), 65(1), 012101/1-012101/4
Unit Cell	7.887 7.887 7.887 90 90 90
Vol	490.61
Z	8
Space Group	F d -3 m Z
SG Number	227
Cryst Sys	cubic
Pearson	cF53
Wyckoff	e d a
Red Cell	F 5.576 5.576 5.576 60 60 60 122.652
Trans Red	0.500 0.500 0.000 / 0.000 0.500 0.500 / 0.500 0.000 0.500
Comments	Compound with mineral name: Alumina
	Modulated structure
	Structure calculated theoretically
	Structure type : defect-spinel
	X-ray diffraction from single crystal
	No R value given in the paper.
	At least one temperature factor missing in the paper.
Atom # O	K SITE x y z SOF H
Al 1 +3	8 a 0.125 0.125 0.125 1. 0
Al 2 +3	16 d 0.5 0.5 0.8333 0
0 1 -2	32 e 0.255 0.255 0.255 1. 0
*end for	ICSD #95302