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Abstract

Let C[a, b] be the set of all real-valued continuous functions defined on
a closed interval [a, b] ⊂ R. In this paper, we construct the Henstock-
Kurzweil integral on a closed interval [f, g] ⊂ C[a, b] and investigate
some of its properties of the Henstock-Kurzweil integral. Futhermore,
we prove a monotone convergence theorem of the Henstock-Kurzweil
integral on C[a, b].
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1 Introduction

There have been many contributions to the study of integration for mappings,
taking values in ordered spaces. Among the authors, we quote Riec̆an [8],
Duchon and Riec̆an [5], Riec̆an and Vrábelová [9]. Henstock-Kurzweil-type
integral for Riesz spaces-valued functions, defined on an interval [a, b] ⊂ R,
was studied in detail by Boccuto, Riec̆an and Vrábelová [3]. In the book, they
assumed that Riesz spaces are Dedekind complete, that is, every bounded
above subset of Riesz spaces has a supremum.

In this paper, we will construct the Henstock-Kurzweil integral of C[a, b]
space-valued functions, where C[a, b] means the collection of all real-valued
continuous functions defined on a closed interval [a, b]. Before, we show that
C[a, b] as a Riesz space but it is not Dedekind complete.

Some properties of elements of C[a, b] were studied by Bartle and Sherbert
[2]. They mentioned some of its properties are bounded, it has an absolute
maximum and an absolute minimum, it can be approximated uniformly by
step functions, uniformly continuous, and Riemann integrable. A property of
C[a, b] is not a complete Dedekind Riesz space. Further discussion of C[a, b]
can be shown in classical Banach spaces such as Albiac and Kalton [1], Diestel
[4], Lindenstrauss and Tzafriri [6], Meyer-Nieberg [7], and others.

2 Preliminaries

Before we begin the discussion, we give an introductory about C[a, b] as a
Riesz space and a commutative Riesz algebra. It is well-known that C[a, b] is
a commutative algebra with e as its unit element, where e(x) = 1 for every
x ∈ [a, b], over a field R. If f, g ∈ C[a, b] we define

f ≤ g ⇔ f(x) ≤ g(x), f < g ⇔ f(x) < g(x), and f = g ⇔ f(x) = g(x)

for every x ∈ [a, b]. The relation ”≤” is a partial ordering in C[a, b]. Therefore
(C[a, b],≤), briefly C[a, b], is a partially ordered set. From now on, f ≤ g can
be written by g ≥ f , in the case f < g is similar. If f and g are elements
of C[a, b] such that f ≤ g or f ≥ g, we say that f and g are comparable. If
neither f ≤ g nor f ≥ g, then f and g are incomparable. Further, the C[a, b]
satisfies

f ≤ g ⇒ f + h ≤ g + h for every h ∈ C[a, b],

f ≤ g ⇒ αf ≤ αg for every α ∈ R+.

Therefore, C[a, b] is also Riesz space. If f, g ∈ C[a, b], we define fg by

(fg)(x) = f(x)g(x), for every x ∈ [a, b].
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On the Henstock-Kurzweil integral of C[a, b] space-valued functions 1833

Hence, C[a, b] is called a commutative Riesz algebra with e as its unit element.
More depth discussion of Riesz spaces and commutative Riesz algebras can be
found in [7] and [11].

In the paper, if f, g ∈ C[a, b] with f < g, we define bounded intervals in
C[a, b] as follows

(f, g) = {h ∈ C[a, b] : f < h < g}, is called an open interval

and

[f, g] = {h ∈ C[a, b] : f ≤ h ≤ g}, is called a closed interval.

We say that two intervals in C[a, b] are disjoint if their intersection is empty,
that is, if they have no common elements. Similary, we will say that two
intervals in C[a, b] are non-overlapping if their intersection is either empty or
contains at most one element.
For f, g ∈ C[a, b], we define f

g
, f ∨ g, f ∧ g, and |f | as follows

f
g
(x) = f(x)

g(x)
for every x ∈ [a, b] whenever g(x) 6= 0,

(f ∨ g)(x) = supx∈[a,b]{f(x), g(x)},

(f ∧ g)(x) = infx∈[a,b]{f(x), g(x)},

|f |(x) = |f(x)| for every x ∈ [a, b].

Bartle and Sherbert [2] showed that if f and g are elements in C[a, b], then
f + g, fg, f

g
, f ∨ g, f ∧ g and |f | are also elements in C[a, b].

A sequence {fn} of elements of C[a, b] is said to be convergent to f ∈ C[a, b],
if for every ε > 0 there is a positive integer K such that for every n ≥ K, the
terms fn satisfy

|fn − f | < εe.

A sequence {fn} which converges to f in C[a, b] will be written

lim
n→∞

fn = f or fn → f as n→∞.

More depth discussion of the sequence properties can be found in [10].

Let [f, g] be the closed interval subset of C[a, b]. A division of [f, g] is any
finite set {h0, h1, · · · , hn} ⊂ [f, g], where h0 = f, hn = g and hi−1 < hi for
all i = 1, 2, · · · , n. A partition of [f, g] is a finite collection {([hi−1, hi], ti) :
i = 1, 2, · · · , n} of interval and element pairs such that ti ∈ [hi−1, hi] for every
i = 1, 2, · · · , n, where {h0, h1, · · · , hn} is a division of [f, g]. Let θ be the null
element in C[a, b], where θ(x) = 0 for every x ∈ [a, b]. A function δ : I →
C[a, b] is said to be a gauge on I if δ(h) > θ for every h ∈ I.
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Definition 2.1 Let δ be a gauge on [f, g]. A partition D = {([hi−1, hi], ti) :
i = 1, 2, · · · , n} is said to be δ-fine of [f, g] if [hi−1, hi] ⊂ (ti − δ(ti), ti + δ(ti))
for every i = 1, 2, · · · , n.

Observe, if δ1 and δ2 are two gauges on [f, g] ⊂ C[a, b] with δ1(h) ≤ δ2(h)
for every h ∈ [f, g], then for every δ1-fine partition D of [f, g] is a δ2-fine par-
tition D of [f, g].

Lemma 2.2 If {[fn, gn]} ⊂ C[a, b] is a sequence of closed intervals such
that

i. [fn+1, gn+1] ⊆ [fn, gn] for every n ∈ N,

ii. limn→∞ |fn − gn| = θ,

then there is a unique h ∈ C[a, b] such that h ∈ [fn, gn] for every n ∈ N.

Proof. From condition (i), for every x ∈ [a, b] we have a sequence of closed
intervals {[fn(x), gn(x)]} ⊂ R such that

[fn+1(x), gn+1(x)] ⊆ [fn(x), gn(x)], for every n ∈ N.

Based on [2], there is a unique number h(x) that lies in all of the intervals
[fn(x), gn(x)]. It is clear that h is a real-valued function defined on a closed
interval [a, b]. Next, we will prove that h ∈ C[a, b].
Based on condition (ii), if given ε > 0 arbitrary, there is a positive integer N
such that for every n ≥ N we have

|fn − gn| <
εe

3
.

Therefore, for every positive integer n ≥ N and for every x ∈ [a, b] we obtain

|fn(x)− gn(x)| < ε

3
.

Since fn(x) ≤ h(x) ≤ gn(x) for every x ∈ [a, b] and for every positive integer
n ≥ N , we obtain

|fn(x)− h(x)| < ε

3
. (1)

On the other hand, since fn ∈ C[a, b] for every n, then for every ε > 0 there is
an η > 0 such that whenever x, y ∈ [a, b] with |x− y| < η, we have

|fn(x)− fn(y)| < ε

3
. (2)
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By the inequalities (1) and (2), if n ≥ N and x, y ∈ [a, b] with |x − y| < η,
then we obtain

|h(x)− h(y)| ≤ |h(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− h(y)| < ε.

Therefore, h ∈ C[a, b] and h ∈ [fn, gn] for every n ∈ N. �

The next theorem guarantees the existence of δ-fine partitions of [f, g] for
each gauge δ on [f, g].

Theorem 2.3 If δ is a gauge on [f, g] ⊂ C[a, b], then there is a δ-fine
partition of [f, g]

Proof. Suppose that [f, g] does not have a δ-fine partition. We devide [f, g]
into [f, f+g

2
] and [f+g

2
, g]. We can choose an interval [f1, g1] from the set

{[f, f+g
2

], [f+g
2
, g]} so that [f1, g1] does not have a δ-fine partition. Using in-

duction, we construct intervals [f1, g1], [f2, g2], · · · in C[a, b] so that for every
n ∈ N is satisfied the following properties:

i. [fn+1, gn+1] ⊆ [fn, gn],

ii. there is no δ-fine partition of [fn, gn], and

iii. gn − fn = g−f
2n

.

From conditions (i) and (iii), by Lemma 2.2, there is an element h0 ∈ C[a, b]
such that h0 ∈ [fn, gn] for every n ∈ N. On the other hand, δ(h0) > θ,
it follows from condition (iii), there is a positive integer N ∈ N such that
{([fN , gN ], h0)} is a δ-fine partition of [fN , gN ], a contradiction to (ii). This
contradiction completes the proof. �

3 The Henstock-Kurzweil Integral

The aim of this section is to introduce the Henstock-Kurzweil integral for
C[a, b] space-valued functions defined on a closed interval [f, g] subset of C[a, b].

Let D = {([hi−1, hi], ti) : i = 1, 2, · · · , n} be a partition of [f, g]. If F is a
C[a, b] space-valued function defined on [f, g], we write

S(F,D) =
n∑
i=1

F (ti)(hi − hi−1).

Next, we define the Henstock-Kurzweil integral of a C[a, b] space-valued func-
tion in the following.
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Definition 3.1 A function F : [f, g] ⊂ C[a, b] → C[a, b] is said to be
Henstock-Kurzweil integrable, briefly HK-integrable, on [f, g] if there is s ∈
C[a, b] with the following property: for every ε > 0 there is a gauge δ on [f, g]
such that if D = {([hi−1, hi], ti) : i = 1, 2, · · · , n} is any δ-fine partition of
[f, g], then

|S(F,D)− s| < εe.

It is important to know that the element s in Definition 3.1 is uniquely
determined.

The collection of all functions that are HK-integrable on [f, g] will be de-
noted by HK[f, g]. The element s ∈ C[a, b] which is mentioned in Definition
3.1, is called Henstock-Kurzweil integral, briefly HK-integral, of F over [f, g]
and it is written by

s = (HK)

∫ g

f

F.

We now give some basic properties of the Henstock-Kurzweil integral.

Theorem 3.2 If F,G ∈ HK[f, g] and α ∈ R, then αF, F + G ∈ HK[f, g].
Furthermore,

(HK)

∫ g

f

(F +G) = (HK)

∫ g

f

F + (HK)

∫ g

f

G

and

(HK)

∫ g

f

αF = α(HK)

∫ g

f

F.

Proof. Let ε > 0 be given. Since F ∈ HK[f, g], there is a gauge δ1 on [f, g]
such that for every δ1-fine partition D1 on [f, g] we have∣∣∣S(F,D1)− (HK)

∫ g

f

F
∣∣∣ < εe

2
.

Similary, there is a gauge δ2 on [f, g] such that for every δ2-fine partition D2

on [f, g] we have ∣∣∣S(G,D2)− (HK)

∫ g

f

G
∣∣∣ < εe

2
.

Define a gauge δ on [f, g] by setting δ(h) = δ1(h) ∧ δ2(h) for every h ∈ [f, g].
Then, for every δ-fine partition D of [f, g] we obtain∣∣∣S(F +G,D)−

(
(HK)

∫ g

f

F + (HK)

∫ g

f

G
)∣∣∣ ≤ ∣∣∣S(F,D)− (HK)

∫ g

f

F
∣∣∣

+
∣∣∣S(G,D)− (HK)

∫ g

f

G
∣∣∣

<
εe

2
+
εe

2
= εe.
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Since ε > 0 is arbitrary, we conclude that F +G ∈ HK[f, g] and

(HK)

∫ g

f

(F +G) = (HK)

∫ g

f

F + (HK)

∫ g

f

G.

Let α be a real number. Since F ∈ HK[f, g], there is a gauge δ0 on [f, g] such
that for every δ0-fine partition D of [f, g] we have∣∣∣S(F,D)− (HK)

∫ g

f

F
∣∣∣ < εe

|α|+ 1
.

If B is a δ0-fine partition of [f, g], then∣∣∣S(αF,B)− α(HK)

∫ g

f

F
∣∣∣ =

∣∣∣αS(F,B)− α(HK)

∫ g

f

F
∣∣∣

= |α|
∣∣∣S(F,B)− (HK)

∫ g

f

F
∣∣∣

< |α| εe

|α|+ 1
< εe.

Since ε > 0 is arbitrary, we conclude that αF ∈ HK[f, g] and

(HK)

∫ g

f

αF = α(HK)

∫ g

f

F.

The proof is complete. �

Theorem 3.3 Let f < r < g. If F ∈ HK[f, r] and F ∈ HK[r, g], then
F ∈ HK[f, g] and

(HK)

∫ g

f

F = (HK)

∫ r

f

F + (HK)

∫ g

r

F.

Proof. Let ε > 0 be given. Since F ∈ HK[f, r], there is a gauge δ1 on [f, r]
such that for every δ1-fine partition D1 of [f, r] we have∣∣∣S(F,D1)− (HK)

∫ r

f

F
∣∣∣ < εe

2
.

Similarly, since F ∈ HK[r, g], there is a gauge δ2 on [r, g] such that for every
δ2-fine partition D2 of [r, g] we have∣∣∣S(F,D2)− (HK)

∫ g

r

F
∣∣∣ < εe

2
.
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Define a gauge on [f, g] by setting

δ(h) =


δ1(h) ∧ (r − h) , if f ≤ h < r
δ1(h ∧ r) ∧ δ2(h ∨ r) , if h = r or h is incomparable to r
δ2(h) ∧ (h− r) , if r < h ≤ g

Take an arbitrary δ-fine partition D = {([hi−1, hi], ti) : i = 1, 2, · · · , p} of [f, g].
Our choice of δ implies that r = hi for some i ∈ {1, 2, · · · , p}, we conclude
that D = D1 ∪ D2 for some δ-fine partitions D1 and D2 of [f, r] and [r, g],
respectively. Consequently∣∣∣S(F,D)−

(
(HK)

∫ r

f

F + (HK)

∫ g

r

F
)∣∣∣ ≤ ∣∣∣S(F,D1)− (HK)

∫ r

f

F
∣∣∣

+
∣∣∣S(F,D2)− (HK)

∫ g

r

F
∣∣∣

<
εe

2
+
εe

2
= εe.

Since ε > 0 is arbitrary, we conclude that F ∈ HK[f, g] and

(HK)

∫ g

f

F = (HK)

∫ r

f

F + (HK)

∫ g

r

F.

�

The following theorem gives a necessary and sufficient condition for a func-
tion F to be HK-integrable on [f, g].

Theorem 3.4 (Cauchy Criterion). F ∈ HK[f, g] if and only if for every
ε > 0 there is a gauge δ on [f, g] such that for every two δ-fine partitions P
and Q of [f, g], we have

|S(F,P)− S(F,Q)| < εe.

Proof. (⇒) Let ε > 0 be given. Since F ∈ HK[f, g], there is a gauge δ on [f, g]
such that for every δ-fine partition D of [f, g] we have∣∣∣S(F,D)− (HK)

∫ g

f

F
∣∣∣ < εe

2
.

If P and Q are two δ-fine patitions of [f, g], we obtain∣∣∣S(F,P)− S(F,Q)
∣∣∣ ≤ ∣∣∣S(F,P)− (HK)

∫ g

f

F
∣∣∣+
∣∣∣S(F,Q)− (HK)

∫ g

f

F
∣∣∣

<
εe

2
+
εe

2
= εe.
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(⇐) For each n ∈ N, there is a gauge δn on [f, g] such that for each pair of
δn-fine partitions P and Q of [f, g] we have

|S(F,P)− S(F,Q)| < e

n
.

For each n ∈ N, define a gauge δ∗n on [f, g] by setting

δ∗1(h) = δ1(h), for every h ∈ [f, g],

and

δ∗n(h) = δ∗n−1(h) ∧ δn(h), for every h ∈ [f, g], n = 2, 3, · · ·

Consequently, for every m,n ∈ N with m ≥ n we obtain

δ∗m(h) ≤ δ∗n(h), for every h ∈ [f, g].

For every n ∈ N, let Dn be a δ∗n-fine partition of [f, g] and we define

rn = S(F,Dn).

Cleary, if m > n then both Dm and Dn are δ∗n-fine partitions of [f, g]. Hence,

|rn − rm| <
e

n
, for m > n.

Therefore, {rn} is a Cauchy sequence. According to [6], that is a Cauchy
sequence if and only if a convergent sequence, then the sequence {rn} converges
to some r ∈ C[a, b]. Passing to the limit as m → ∞ in the above inequality,
we have

|rn − r| <
e

n
, for every n ∈ N.

Indeed, given ε > 0, let K ∈ N with K > 2e/ε. For any δ∗K-fine partition D of
[f, g], we obtain

|S(F,D)− r| ≤ |r − rK |+ |S(F,D)− S(F,DK)| < e

K
+

e

K
< εe.

Since ε > 0 is arbitrary, we conclude that F ∈ HK[f, g] and

r = (HK)

∫ g

f

F.

The proof is complete. �

The following theorem is a consequence of Theorem 3.4.

Theorem 3.5 If F ∈ HK[f, g] and [r, s] ⊆ [f, g], then F ∈ HK[r, s]
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Proof. Let ε > 0 be given. Since F ∈ HK[f, g], by Theorem 3.4, there is a
gauge δ on [f, g] such that for every P and Q are two δ-fine partitions of [f, g]
we have

|S(F,P)− S(F,Q)| < εe.

Since [r, s] is a subinterval of [f, g], there is a finite collection {[u1, v1], [u2, v2],
· · · , [uK , vK ]} of pairwise non-overlapping subintervals of [f, g] such that [r, s] /∈
{[u1, v1], [u2, v2], · · · , [uK , vK ]} and

[f, g] = [r, s] ∪
K⋃
i=1

[ui, vi].

For every i ∈ {1, 2, · · · , K} we fix a δ-fine partition Di of [ui, vi]. If P ′ and
Q′ are δ-fine partitions of [r, s] then P ′ ∪

⋃K
i=1Di and Q′ ∪

⋃K
i=1Di are δ-fine

partitions of [f, g]. Thus

|S(F,P ′)− S(F,Q′)| =
∣∣∣S(F,P ′) +

K∑
i=1

S(F,Di)− S(F,Q′)−
K∑
i=1

S(F,Di)
∣∣∣

=
∣∣∣S(F,P ′ ∪

K⋃
i=1

Di)− S(F,Q′ ∪
K⋃
i=1

Di)
∣∣∣ < εe.

Based on Theorem 3.4, we conclude that F ∈ HK[r, s]. �

Theorem 3.6 If F ∈ HK[f, g] where F (h) ≥ θ for every h ∈ [f, g] then

(HK)

∫ g

f

F ≥ θ.

Proof. Let ε > 0 be given. Since F ∈ HK[f, g], there is a gauge δ on [f, g] such
that for every δ-fine partition D = {([hi−1, hi], ti) : i = 1, 2, · · · , n} of [f, g], we
have

|S(F,D)− (HK)

∫ g

f

F | < εe.

Since F (h) ≥ θ for every h ∈ [f, g] then

S(F,D) =
n∑
i=1

F (ti)(hi − hi−1) ≥ θ.

Therefore

θ ≤ S(F,D) < (HK)

∫ g

f

F + εe.
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Since ε > 0 is arbitrary, it follows that

(HK)

∫ g

f

F ≥ θ.

�

Theorem 3.7 If F,G ∈ HK[f, g] and F (h) ≤ G(h) for every h ∈ [f, g],
then

(HK)

∫ g

f

F ≤ (HK)

∫ g

f

G.

Proof. Define a function H on [f, g] by setting H(h) = G(h)− F (h) for every
h ∈ [f, g]. It is clear that H(h) ≥ θ for every h ∈ [f, g]. Since F,G ∈ HK[f, g],
according to Theorem 3.2 then H ∈ HK[f, g]. Further, based on Theorem 3.6
we obtain

(HK)

∫ g

f

H = (HK)

∫ g

f

G− (HK)

∫ g

f

F ≥ θ.

Therefore

(HK)

∫ g

f

F ≤ (HK)

∫ g

f

G.

�

4 A Monotone Convergence Theorem

The aim of this section is to prove monotone convergence theorem in C[a, b]
space for the Henstock-Kurzweil. Before, we introduce the notion of Henstock-
Kurzweil primitive and we prove the Henstock’s lemma.

If F ∈ HK[f, g], based on Theorem 3.3 and Theorem 3.5, then F is HK-
integrable on [f, h] for every h ∈ [f, g]. We define a function F on [f, g] by

F(h) = (HK)

∫ h

f

F

for every h ∈ [f, g] is called Henstock-Kurzweil primitive, briefly HK-primitive,
on [f, g]. For simplicity, if I = [s, t] we write F(I) = F(s, t) = F(t)−F(s).

A partial partition of [f, g] is a finite collection {([ui, vi], ti) : i = 1, 2, · · · , p}
of interval and element pairs such that ti ∈ [ui, vi] for i = 1, 2, · · · , p and
{[u1, v1], · · · , [up, vp]} is a collection of non-overlapping subintervals of [f, g].
The partial partition {([ui, vi], ti) : i = 1, 2, · · · , p} is said to be δ-fine if
[ui, vi] ⊂ (ti − δ(ti), ti + δ(ti)) for i = 1, 2, · · · , p.
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Lemma 4.1 (Henstock’s Lemma). Let F ∈ HK[f, g] with HK-primitive
F . For ε > 0, let δ be a gauge on [f, g] such that if D = {([hi−1, hi], ti) : i =
1, 2, · · · , n} is a δ-fine partition of [f, g], then

|S(F,D)−F(f, g)| < εe.

Suppose D′ = {([hij−1, hij ], tij) : j : 1, 2, · · · , k, 1 ≤ k ≤ n} is a δ-fine partial
partition of [f, g] where D′ ⊆ D. Then

∣∣∣ k∑
j=1

(
F (tij)(hij − hij−1)−F(hij−1, hij)

)∣∣∣ ≤ εe.

and
k∑
j=1

∣∣∣F (tij)(hij − hij−1)−F(hij−1, hij)
∣∣∣ ≤ 2εe.

Proof. There are n − k intervals [hm−1, hm] ⊂ [f, g] with ([hm−1, hm], tm) ∈
D\D′. Denote M = {m : ([hm−1, hm], tm) ∈ D\D′}. Let η > 0 be given. By
Theorem 3.5, there is a gauge δm on [hm−1, hm] with δm ≤ δ, such that for
every δm-fine partition Dm of [hm−1, hm] we have

|S(F,Dm)−F(hm−1, hm)| < ηe

n− k
, for every m ∈M.

Put P =
⋃
m∈M Dm ∪ D′. Then P is a δ-fine partition of [f, g] and S(F,P) =

S(F,D′) +
∑

m∈M S(F,Dm). By the additivity of HK-integral we obtain

∣∣∣ k∑
j=1

(
F (tij)(hij − hij−1)−F(hij−1, hij)

)∣∣∣
≤

∣∣∣S(F,P)−F(f, g)
∣∣∣+

∑
m∈M

∣∣∣S(F,Dm)−F(hij−1, hij)
∣∣∣

< εe+ (n− k)
ηe

n− k
= εe+ ηe.

Since η > 0 is arbitrary, the proof of the first inequality is complete.
To prove the second inequality of the Henstock’s lemma, split D into Q1

and Q2, where

Q1 =
{

([hij−1, hij ], tij) ∈ D : F (tij)(hij − hij−1)−F(hij−1, hij) ≥ θ
}
,

Q2 =
{

([hij−1, hij ], tij) ∈ D : F (tij)(hij − hij−1)−F(hij−1, hij) < θ
}
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and denote M1 = {ij : ([hij−1, hij ], tij) ∈ Q1}, M2 = {ij : ([hij−1, hij ], tij) ∈
Q2}. Since Q1 ⊆ D and Q2 ⊆ D, by the first inequality

k∑
j=1

∣∣∣F (tij)(hij − hij−1)−F(hij−1, hij)
∣∣∣

=
∑
ij∈M1

∣∣∣F (tij)(hij − hij−1)−F(hij−1, hij)
∣∣∣

+
∑
ij∈M2

∣∣∣F (tij)(hij − hij−1)−F(hij−1, hij)
∣∣∣

≤ εe+ εe = 2εe.

The lemma is proved. �

A sequence {Fn} of functions on [f, g] ⊂ C[a, b] is said to be increasing on
[f, g] if every h ∈ [f, g] then F1(h) ≤ F2(h) ≤ · · ·. Similary, a sequence {Gn} of
functions on [f, g] ⊂ C[a, b] is said to be decreasing on [f, g] if every h ∈ [f, g]
then G1(h) ≥ G2(h) ≥ · · ·. If a sequence of functions is either increasing or
decreasing on [f, g], we say that it is monotone on [f, g].

Theorem 4.2 (Monotone Convergence Theorem). If the following
conditions are satisfied:

i. limn→∞ Fn = F on [f, g] and Fn ∈ HK[f, g] for every n ∈ N;

ii. {Fn} is monotone on [f, g];

iii. {Fn(f, g)} converges to s whenever n → ∞, where Fn is HK-primitive
of Fn on [f, g] for every n ∈ N,

then F ∈ HK[f, g] and

(HK)

∫ g

f

F = s.

Proof. Assume {Fn} is increasing on [f, g]. It follows that {Fn(f, g)} is in-
creasing and converges to s. Let ε > 0 be given. Choose a positive integer K
such that

θ ≤ s−FK(f, g) ≤ εe. (3)

Since Fn ∈ HK[f, g] with its HK-primitive Fn for every n ∈ N, there is a gauge
δn on [f, g] such that for every δn-fine partition D of [f, g] we have∣∣∣S(Fn,D)−Fn(f, g)

∣∣∣ < εe

2n
.
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By condition (i), for every h ∈ [f, g] there is a positive integer m(ε, h) such
that m(ε, h) ≥ K and

|Fm(ε,h)(h)− F (h)| < εe. (4)

Set δ(h) = δm(ε,h)(h) for every h ∈ [f, g]. By taking any δ-fine partition
D = {([hi−1, hi], ti) : i = 1, 2, · · · , p} of [f, g] we obtain

|S(F,D)− s| ≤ I + II + III

where

I =
∣∣∣∑p

i=1 F (ti)(hi − hi−1)− Fm(ε,ti)(ti)(hi − hi−1)
∣∣∣

II =
∣∣∣∑p

i=1 Fm(ε,h)(ti)(hi − hi−1)−Fm(ε,ti)(hi−1, hi)
∣∣∣

III =
∣∣∣∑p

i=1Fm(ε,ti)(hi−1, hi)− s
∣∣∣

By (4) we obtain

I ≤
p∑
i=1

∣∣∣F (ti)(hi − hi−1)− Fm(ε,ti)(ti)(hi − hi−1)
∣∣∣ ≤ ε(g − f).

To estimate II, set S = max{k(t1), k(t2), · · · , k(tp)} ≥ K. Then,

II ≤
p∑
i=1

∣∣∣Fm(ε,h)(ti)(hi − hi−1)−Fm(ε,ti)(hi−1, hi)
∣∣∣

=
S∑

k=K

∑
k(ti)=k

∣∣∣Fm(ε,h)(ti)(hi − hi−1)−Fm(ε,ti)(hi−1, hi)
∣∣∣

in which we have grouped together all terms corresponding to Fk for a fix k.
Note that the set {(Ii, ti) : k(ti) = k} is a δ-fine partition partial of [f, g], so
that Henstock’s lemma implies∑

k(ti)=k

∣∣∣Fm(ε,h)(ti)(hi − hi−1)−Fm(ε,ti)(hi−1, hi)
∣∣∣ ≤ 2εe

2k
.

Summing over k,

II ≤
S∑

k=K

2εe

2k
< 2εe.

Based on Theorem 3.7 and condition (iii), the sequence {Fn(f, g)} is in-
creasing and convergent to s. Since, the number of associated elements in D
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is finite, and so is the number of those differentm(ε, h) in the above sum overD.

Let q be a positive integer by

q = min{m(ε, h) : ([u, v], h) ∈ D}.

Then we have

Fq(f, g) =

p∑
i=1

Fq(hi−1, hi) ≤
p∑
i=1

Fm(ε,h)(hi−1, hi) ≤
p∑
i=1

F(hi−1, hi) = s.

Obviously, we can find m0 such that

|Fm(f, g)− s| < εe, whenever m ≥ m0.

Therefore in defining m(ε, h), we should choose m(ε, h) ≥ m0. Hence

∣∣∣ p∑
i=1

Fm(ε,ti)(hi−1, hi)− s
∣∣∣ ≤ s−Fq(f, g) < εe.

In case {Fn} is decreasing on [f, g], we define Gn(h) = −Fn(h) for every
h ∈ [f, g]. Therefore, {Gn} is increasing on [f, g] and the proof follows in
above. �
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