

RANCANG BANGUN MESIN BLOWER PEMISAH JAGUNG (Bagian Dinamis)

PROYEK AKHIR

Oleh Vijiy Maulana NIM. 151903101007

PROGRAM STUDI DIPLOMA III TEKNIK MESIN

JURUSAN TEKNIK MESIN

FAKULTAS TEKNIK

UNIVERSITAS JEMBER

2020

RANCANG BANGUN MESIN BLOWER PEMISAH JAGUNG (Bagian Dinamis)

PROYEK AKHIR

diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Teknik Mesin (DIII) dan mencapai gelar Ahli Madya

Oleh

Vijiy Maulana NIM 151903101007

PROGRAM STUDI DIPLOMA III TEKNIK MESIN

JURUSAN TEKNIK MESIN

FAKULTAS TEKNIK

UNIVERSITAS JEMBER

2020

PERSEMBAHAN

Laporan Proyek Akhir ini saya persembahkan untuk :

- 1. Allah SWT atas segala berkah rahmat dan hidayah-Nya, serta kepada junjungan kita Nabi Muhammad SAW;
- 2. Bapak Yasin, Ibu Alfiah dan kakak Yessi Alfiana, terima kasih atas dorongan, pengorbanan, usaha, kasih sayang, nasehat dan air mata yang menetes dalam setiap untaian do'a yang senantiasa mengiringi setiap langkah bagi perjuangan dan keberhasilan penulis untuk menyelesaikan proyek akhir ini;
- 3. Guru-guru saya dari TK DHARMAWANITA, SDN CANGKRING 02, SMPN 1 JENGGAWAH, SMAN 1 JENGGAWAH, dosen, dan seluruh civitas akademika Universitas Jember khususnya Fakultas Teknik Jurusan Teknik Mesin yang telah menjadi tempat menimba ilmu dan telah membimbing penulis dengan penuh kesabaran;
- 4. Dulur-dulur Teknik Mesin D3 dan S1 angkatan 2015, yang telah memberikan do'a, dukungan, semangat, ide, kritikan dan sarannya;
- Almamater Fakultas Teknik Jurusan Teknik Mesin Universitas Jember;
- 6. Warga KONTRAAN atau Kosan yang selalu memberi semangat, dukungan dan juga bantuan do'a

MOTTO

" Jadilah lebih baik meskipun bukan yang terbaik"

" Lakukan apapun yang kau inginkan, jangan khawatir dengan hasilnya, GUSTI ALLAH MBOTEN SARE "

"Carilah ilmu sekuat otakmu, berkerjalah sekuat tenagamu namun jangan lupa darimana asalmu "

"Solidarity Forever"

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama : Vijiy Maulana

NIM : 151903101007

Menyatakan dengan sesungguhnya bahwa proyek akhir yang berjudul "RANCANG BANGUN MESIN BLOWER PEMISAH JAGUNG" ini adalah benarbenar hasil karya sendiri, kecuali kutipan yang sudah saya sebutkan sumbernya, belum pernah diajukan pada institusi manapun, dan bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa ada tekanan dan paksaan dari pihak manapun serta bersedia mendapat sanksi akademik jika ternyata dikemudian hari pernyataan ini tidak benar.

Jember, 14 Januari 2020 Yang menyatakan,

<u>Vijiy Maulana</u> 151903101007

PROYEK AKHIR

RANCANG BANGUN MESIN BLOWER PEMISAH JAGUNG

(Bagian Dinamis)

Oleh

Vijiy Maulana NIM 151903101007

Pembimbing:

Dosen Pembimbing Utama : Dr. Ir. Nasrul Ilminnafik, S.T., M.T.

Dosen Pembimbing Anggota : Ir. Moch. Edoward R., S.T., M.T.

PENGESAHAN

Proyek akhir berjudul "Rancang Bangun Mesin Blower Pemisah Jagung (Bagian Dinamis)" telah diuji dan disahkan pada:

Hari, tanggal : Jumat, 14 Januari 2020

Tempat : Fakultas Teknik Universitas Jember

Pembimbing

Pembimbing I, Pembimbing II,

 Dr, Ir, Nasrul Ilminnafik S.T., M.T.
 Ir. Moch. Edoward R., S.T., M.T

 NIP 197111141 99903 1 002
 NIP 19870430 201404 1 001

Penguji

Penguji I, Penguji II,

<u>Ir. Hari Arbiantara Basuki, S.T., M.T.</u>

NIP 19670924 199412 1 001

NIP 196812055 199702 1 002

Mengesahkan, Dekan Fakultas Teknik Universitas Jember

<u>Dr. Ir., Triwahju Hardianto, S.T., M,T.</u> NIP 19700826199702 1 001

RINGKASAN

Rancang Bangun Mesin Blower Pemisah Jagung (Bagian Dinamis); Vijiy maulana, 151903101007; 2019; 89 halaman; Jurusan Teknik Mesin Fakultas Teknik Universitas Jember.

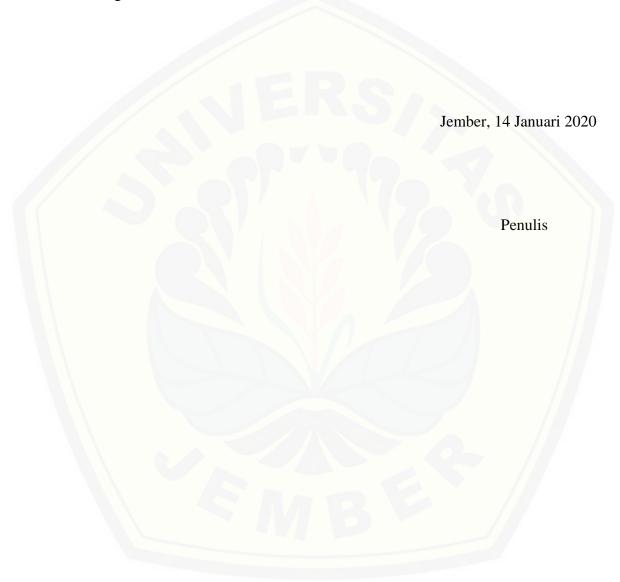
Jagung merupakan komoditas tanaman pangan yang banyak diusahakan petani karena merupakan bahan pangan pokok kedua setelah beras. Pemanfaatan jagung selain sebagai bahan substitusi beras juga dapat digunakan untuk pakan ternak dan bahan baku industri. Tanaman jagung (*Zea mays*) sudah ditanam sejak ribuan tahun yang lalu yang merupakan produk pertanian, mengandung nilai gizi dan serat kasar yang cukup tinggi. Oleh karenanya, komoditas ini cukup memadai dijadikan makanan pokok manusia maupun ternak.

Seiring dengan kemajuan teknologi tepat guna banyak alat teknologi yang diciptakan untuk mengolah hasil pertanian, hal ini disebabkan oleh meningkatnya hasil tani sehingga timbul pemikiran untuk mengolah hasil pascapanen sebelum dipasarkan dengan tujuan untuk meringankan pekerjaan. Pemisahan kotoran jagung merupakan cara penangan pascapanen jagung yang perlu mendapat perhatian. Pemisahan kotoran jagung bertujuan untuk memisahkan jagung dari kualitas jagung terbaik dengan jagung kualitas yang tidak dapat dipasarkan. Proses pemisahan yang dilakukan oleh industri rumah tangga masih dilakukan dengan cara tradisional.

Penulis merencanakan dan membuat mesin pemisah kotoran jagung yang tepat guna dengan biaya pembuatan dan pemeliharaan yang relatif murah serta memiliki tingkat kemudahan dalam pengoperasian dan pemeliharaan yang relatif murah serta memiliki tingkat kemudahaan dalam pengoperasian dan pemeliharaannya merupakan salah satu pendukung tujuan tersebut.

Berdasarkan hasil perancangan dan pengujian mesin blower pemisah kotoran jagung, maka dapat disimpulkan. Daya yang direncanakan sebesar 0,03 kw maka motor listrik yang digunakan ¼ Hp dengan putaran poros 1200 rpm, Pulley motor 75 mm, pulley poros 200 mm. Perbandingan reduksi yang di perlukan 1:3 dengan

menghasilkan 400 rpm, Sabuk V dengan tipe A sebanyak 1 buah , L=864 mm, Bahan poros yang digunakan S30C. Diameter poros 20 mm dan panjang poros 200 mm. Bantalan yang digunakan untuk menumpu poros adalah bantalan gelinding bola sudut dengan tipe 6004ZZ


PRAKATA

Puji syukur kehadirat Allah SWT atas segala rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan proyek akhir yang berjudul "Rancang Bangun Mesin Blower Pemisah Kotoran Jagung(Bagian Dinamis)". Laporan proyek akhir ini disusun untuk memenuhi salah satu syarat menyelesaikan pendidikan diploma tiga (DIII) pada Jurusan Teknik Mesin Fakultas Teknik Universitas Jember.

Penyusunan proyek akhir ini tidak lepas dari bantuan berbagai pihak, oleh karena itu, penulis menyampaikan terima kasih kepada:

- 1. Dekan Fakultas Teknik Universitas Jember Dr. Ir. Entin Hidayah, M.U.M atas kesempatan yang diberikan kepada penulis untuk menyelesaikan proyek akhir ini;
- 2. Ketua Jurusan Teknik Mesin Hari Arbiantara B., S.T., M.T. atas kesempatan yang diberikan kepada penulis untuk menyelesaikan proyek akhir ini;
- 3. Dr. Nasrul Ilminnafik, S.T., M.T. selaku Dosen Pembimbing Utama dan Moch. Edoward R, S.T., M.T. selaku Dosen Pembimbing Anggota yang penuh kesabaran memberi bimbingan, dorongan, meluangkan waktu, pikiran, perhatian dan saran kepada penulis selama penyusunan proyek akhir ini sehingga dapat terlaksana dengan baik;
- 4. Hari Arbiantara B, S.T., M.T. selaku Dosen Penguji I dan Hary Sutjahjono, S.T., M.T. selaku Dosen Penguji II, terima kasih atas saran dan kritiknya;
- 5. Muh Nurkoyim K., S.T, M.T. selaku Dosen Pembimbing Akademik yang selalu memberikan bimbingan dan arahan kepada penulis selama kuliah;
- 6. Seluruh Dosen Jurusan Teknik Mesin Fakultas Teknik Universitas Jember yang telah memberikan ilmu, bimbingan, pengorbanan, saran dan kritik kepada penulis;
- 7. Bapak Moh. Syafik dan Ibu Wahyu Wilujeng yang telah memberikan segalanya kepada penulis;
- 8. Dulur-dulurku DIII dan S1 Teknik Mesin 2015 yang selalu memberi dukungan dan saran kepada penulis;

9. Pihak lain yang tidak bisa disebutkan satu-persatu. Penulis juga memahami bahwa tulisan ini juga jauh dari kata sempurna, untuk itu penulis juga menerima segala kritik dan saran dari semua pihak demi kesempurnaan proyek akhir ini. Akhirnya penulis berharap, semoga tulisan ini dapat bermanfaat bagi semua orang, Amin.

DAFTAR ISI

HALAMAN COVER	i
HALAMAN JUDUL	ii
HALAMAN PERSEMBAHAN	iii
HALAMAN MOTTO	iv
HALAMAN PERNYATAAN	V
HALAMAN PEMBIMBING	vi
HALAMAN PENGESAHAN	vii
RINGKASAN	viii
PRAKATA	X
DAFTAR ISI	xii
DAFTAR GAMBAR	XV
DAFTAR TABEL	xvi
DAFTAR LAMPIRAN	xvii
BAB 1. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	2
1.4 Tujuan	2
1.5 Manfaat	2
BAB 2. TINJAUAN PUSTAKA	3
2.1 Jagung	3
2.2 Taksonomi dan Morfologi Tanaman Jagung	3
2.3 Jens-jenis Jagung	4
2.3.1 Jagung Mutiara	5
2.3.2 Jajung Gigi Kuda	5

	2.3.3 Jagung Manis	5
	2.3.4 Jajung Berondong	5
	2.3.5 Jajung Tepung	5
	2.3.6 Jajung Ketan	5
	2.3.7 Jajung Pod	5
	2.4 Penanganan Panen dan Paska Panen Tanaman Jagung	6
	2.5 Mesi Blower Pemisah Kotoran Jagung	
	2.6 Prinsip Kerja Mesin	7
	2.7 Perencanaan Elemen Mesin	8
	2.7.2 Perencanaan Daya	8
	2.7.3 Perencanaan Poros	8
	2.7.4 Perencanaan pulley	10
	2.7.4 Perencanaan Sabuk V (V-Belt)	11
	2.7.5 Perencanaan Pasak	12
	2.7.7 Perencanan Bantalan	13
BA	B 3. METODOLOGI PENELITIAN	15
	3.1 Alat dan Bahan	15
	3.1.1 Alat	15
	3.1.2 Bahan	15
	3.2 Waktu dan Tempat	16
	3.2.1 Waktu	
	3.2.2 Tempat	16
	3.3 Metode Pelaksanaan	16
	3.3.1 Pencarian data	16
	3.3.2 Studi Pustaka	16
	3.3.3 Perencanaan dan Perancangan	16
	3.3.4 Proses Pembuatan	17
	3.3.5 Proses Perakitan	17
	3.3.6 Pengujian Alat	17

3.3.7 Penyempurnaan Alat	17
3.3.8 Pembuatan Laporan	17
3.4 Diagram Alir Perancangan dan Pembuatan	18
3.5 Diagram Rencana Perancangan dan Pembuatan	19
BAB 4. PEMBAHASAN	20
4.1 Hasil Perancangan dan Pembuatan Alat	20
4.1.1 Hasil Desain Alat	20
4.1.2 Cara Kerja Alat	21
4.2 Analisis Hasil Perancangan dan Perhitungan	21
4.2.1 Perencanaan Daya	21
4.2.2 Perencanaan Poros	21
4.2.3 Perencanaan Bantalan	22
4.2.4 Perencanaan Sabuk V	22
4.2.5 Perencanaan Pulley	22
4.2.6 Perencanaan Pasak	23
4.3 Hasil Uji Mesin Terhadap Bahan Pengujian	23
BAB 5. PENUTUP	25
5.1 Kesimpulan	25
5.2 Saran	25
DAFTAR PUSTAKA	
LAMPIRAN A. PERHITUNGAN	27
LAMPIRAN B. TABEL	43
LAMPIRAN C. DESAIN DAN GAMBAR	51
LAMPIRAN D. SOP	
LAMPIRAN E. PERAWATAN	67

DAFTAR GAMBAR

2.1 Jagung	3
2.2 Mesin Blower Pemisah Kotoran Jagung	7
2.3 Perhitungan Panjang Keliling Sabuk	11
3.1 Diagram Alir	18
4.1 Mesin Blower Pemisah Kotoran Jagung	20
C.1 Pengelasan Rangka	51
C.2 Pemotongan Plat	
C.3 Pengelasan Pada Plat	52
C.4 Proses Setengah Jadi	52
C.5 Pengecetan Pada Badan Mesin.	53
C.6 Pengecetan Pada Penutup Pulley	53
C.7 Pemasangan Motor	
C.8 Pemasangan V-belt	54
C.9 Jagung Sebelum di Uji Coba	55
C.10 Hasil Kotoran Yang Sudah Terpisah Dari Jagung	55
C.11 Hasil Sesudah di Uji Coba	55

DAFTAR TABEL

2.1 Faktor– faktor Koreksi Daya yang Akan Ditransmisikan (fc)	9
2.2 Diameter <i>Pulley</i> yang Dianjurkan (mm)	10
3.1 Diagram Renccana Perancangan dan Pembuatan	.19
4.1 Data Hasil Pengujian	. 23

DAFTAR LAMPIRAN

B.1 Faktor – Faktor Koreksi Daya yang Akan Ditransmisikan	43
B.2 Diameter Pulley Yang Diizinkan dan Dianjurkan (mm)	34
B.3 Panjang Sabuk – V Standar	34
B.4 Faktor Koreksi (fc) Jenis Motor dan Penggunaan	35
B.5 Faktor Koreksi K_{θ}	36
B.6 Jenis Baja pada poros	36
B.7 Standar Baja	37
B.8 Diameter Poros	38
B.9 Harga Faktor Keandalan pada Bantalan	39
B.10 Spesifikasi Bantalan Gelinding	39

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Jagung merupakan kebutuhan yang cukup penting bagi kehidupan manusia dan merupakan komoditi tanaman pangan kedua setelah padi. Akhir-akhir ini tanaman jagung semakin meningkat penggunaannya, sebab hampir seluruh bagian tanaman dapat dimanfaatkan untuk berbagai macam keperluan seperti pembuatan pupuk kompos, kayu bakar, turus (lanjaran), bahan kertas dan sayuran (Anonim, 2007) bahan dasar/bahan olahan untuk minyak goreng, tepung maizena, ethanol, dextrin, aseton, gliserol, perekat, tekstil dan asam organik bahan bakar nabati.

Dengan melihat peningkatan produksi jagung di Indonesia, maka pemanfaatan tanaman jagung memiliki peluang untuk dikembangkan lagi. Penggunaan tanaman jagung di Indonesia semakin meningkat, karena perannya untuk bahan pangan sebagai sumber karbohidrat dan protein, disamping itu juga berperan sebagai bahan pakan ternak, bahan baku industri dan rumah tangga. Selain itu juga, hampir seluruh bagian tanaman jagung dapat dimanfaatkan untuk berbagai macam keperluan seperti pembuatan pupuk kompos, kayu bakar, dan bahan kertas.

Jagung sebagai sumber bahan pangan menurut Hubeis (1984) telah dimanfaatkan untuk makanan pokok (beras jagung), makanan penyela (jagung rebus dan bakar), makanan kecil (berondong, tortilla), tepung, kue, roti, dan bubur. Kegunaan lain dari tanaman jagung ini adalah sebagai bahan baku industri pati.

Pemanfaatan teknologi pengolahan jagung berpeluang dapat meningkatkan nilai komoditi jagung menjadi berbagai produk pangan yang bernilai ekonomi seperti pati jagung (tepung maizena). Kandungan pati yang terkandung didalam jagung relatif tinggi yaitu sekitar 70 % dari bobot biji jagung. Sehingga berpotensi mensubstitusi terigu maupun tapioka hingga 20-100 %.

1.2 Rumusan Masalah

Rumusan masalah yang akan dibahas dalam perancangan mesin blower pemisah jagung yaitu:

- a. Bagaimana merancang dan membangun mesin blower pemisah jagung dengan menggunakan motor listrik?
- b. Bagaimana membuat dan merakit mesin blower pemisah jagung dengan menggunakan motor listrik yang efektif dan efisien ?

1.3 Batasan Masalah

Dari perancanaan membuat mesin blower pemisah jagung perlu adanya batasan masalah agar pembahasan lebih jelas seperti :

- a. Tidak membahas perhitungan bagian statis
- b. Tidak menghitung kajian ekonomis tehadap hasil produksi jagung

1.4 Tujuan

Tujuan perancangan dalam pembuatan mesin blower pemisah jagung dengan menggunakan pisau horizontal adalah sebagai berikut:

- a. Merancang mesin blower pemisah kotoran jagung menggunakan motor listrik yang berpengaruh terhadap proses penyortiran jagung.
- b. Merakit mesin blower pemisah kotoran jagung dengan meningkatkan prokduktifitas dan kapasitas.

1.5 Manfaat

Manfaat perancangan dalam pembuatan mesin blower pemisah jagung dengan menggunakan pisau horizontal adalah:

- a. Memahami mengenai rancang bangun mesin blower pemisah jagung menggunakan motor listrik.
- b. Dapat meningkatkan efisien baik dari segi biaya dan waktu.
- c. Memberi pengalaman kepada mahasiswa dalam perancangan dan pembuatan alat, terutama pada bidang rekayasa.

BAB 2 TINJAUAN PUSTAKA

2.1 Jagung

Jagung(Zea mays) merupakan salah satu komoditas penting bagi Indonesia. Sebelum tahun 1970 jagung dijadikan bahan pokok makanan selain beras. Tidak hanya digunakan sebagai bahan pangan, jagung juga dibuat berbagai macam olahan seperti emping jagung, marning jagung, brondong jagung. Hampir seluruh bagian tanaman jagung dapat dimanfaatkan untuk berbagai macam keperluan yaitu pakan ternak, pupuk hijau atau kompos, kertas, bahan baku farmasi, perekat, tekstil, minyak goreng, etanol dan sebagainya (Purwanto, 2008).

Biji jagung mempunyai bentuk, warna, dan kandungan *endosperm* yang bervariasi tergantung pada jenisnya. Pada umumnya, biji jagung tersusun dalam barisan yang melekat secara lurus atau berkelok – kelok dan berjumlah antara 8-20 baris biji. Biji jagung terdiri dari tiga bagian utama, yaitu *pericarp* yang merupakan lapisan tipis terluar pada biji, *endosperm* (82%) sebagai cadangan makanan, dan embrio (11,6%). (Rukamana, 2006)

Gambar 2.1 Jagung (Sumber: Rukmana, 2006)

2.2 Taksonomi dan Morfologi Tanaman Jagung

Dalam sistematika (taksonomi) tanaman jagung diklasifisikan sebagai berikut. (Subekti dkk, 2014)

Kingdom : *Plante* (Tumbuhan)

Divisi atau filum : Angiospermae

Kelas : *Monocotyledoneae* (Tumbuhan dengan biji berkeping

satu)

Ordo :Poales

Famili : Poaceae

Geneus : Zea

Spesies : Zea Mays L.

Bagian tubuh tanaman jagung terdiri atas batang, daun, bunga, dan tongkoljagung. (Subekti dkk, 2010)

a. Batang

Tanaman jagung memiliki batang yang tegak, mudah terlihat dan beruasruas. Ruas terbungkus oleh pelepah daun yang muncul dari buku. Tanaman jagung memiliki batang yang tidak mengandung banyak lignin.

b. Daun

Daun pada tanaman jagung merupakan daun sempurna dengan bentuk yang memanjang. Daun yang dimiliki oleh tanaman jagung ini berwarna hijau muda pada saat masih muda, dan berwarna hijau tua pada saat tanaman dewasa, serta berwarna kuning pada saat tanaman sudah tua.

c. Bunga

Bunga yang dimiliki oleh tanaman jagung terdiri atas bunga jantan dan bunga betina, yang masing-masing terpisah atau diklin dalam satu tanaman atau monoecious.

d. Tongkol jagung

Tongkol yang dimiliki oleh tanaman jagung tumbuh dari buku dan terdapat diantara batang daun dengan pelepah daun dari tanaman jagung. Secara umum dalam satu tanaman jagung hanya dapat menghasilkan dua buah atau lebih tongkol yang produktif, meskipun tanaman jagung memiliki sejumlah bunga betina.

2.3 Jenis-jenis jagung

Berdasarkan penampilan dan tekstur biji (kernel), jagung diklasifikasikan ke dalam 7 tipe yaitu. (Budiman, 2013)

2.3.1 Jagung mutiara (flint corn) – Zea mays indurata

Biji jagung tipe mutiara berbentuk bulat, licin, mengkilap dan keras karena bagian pati yang keras terdapat di bagian atas dari biji. Pada waktu masak, bagian atas dari biji mengkerut bersama-sama, sehingga menyebabkan permukaan biji bagian atas licin dan bulat

2.3.2 Jagung gigi kuda (dent corn) – Zea mays identata

Bagian pati keras pada tipe biji *dent* berada di bagian sisi biji, sedangkan patilunaknya di tengah sampai ke ujung biji. Pada waktu biji mengering, pati lunak kehilangan air lebih cepat dan lebih mengkerut dari pada pati keras, sehingga terjadi lekukan (dent) pada bagian atas biji.

2.3.3 Jagung manis (sweet corn) – Zea mays saccharata

Bentuk biji jagung manis pada waktu masak keriput dan transparan. Biji jagung manis yang belum masak mengandung kadar gula lebih tinggi dari pada pati. Sifat ini ditentukan oleh satu gen *sugary* yang resesif. Jagung manis umumnya ditanam untuk dipanen muda pada saat masak susu (*milking stage*).

2.3.4 Jagung berondong (pop corn) – Zea mays everta

Pada tipe jagung pop, proporsi pati lunak dibandingkan dengan pati keras jauh lebih kecil dari pada jagung tipe *flint*. Biji jagung akan meletus kalau dipanaskan karena mengembangnya uap air dalam biji.

2.3.5 Jagung tepung (floury corn) -Zea mays amylacea

Zat pati yang terdapat dalam endosperma jagung tepung semuanya pati lunak, kecuali di bagian sisi biji yang tipis adalah pati keras. Pada umumnya tipe jagung *floury* ini berumur dalam (panjang) dan khususnya ditanam di dataran tinggi Amerika Selatan (Peru dan Bolivia).

2.3.6 Jagung ketan (waxy corn) – Zea mays ceratina

Endosperma pada tipe jagung *waxy* seluruhnya terdiri dari amylopectine, sedangkan jagung biasa mengandung \pm 70% amylopectine dan 30% *amylose*. Jagung *waxy* digunakan sebagai bahan perekat, selain sebagai bahan makanan.

2.3.7 Jagung pod (pod corn) – Zea mays tunicata

Setiap biji jagung pod terbungkus dalam kelobot, dan seluruh tongkolnya juga terbungkus dalam kelobot.

2.4 Penanganan Panen dan Pasca Panen Tanaman Jagung

a. Pemanenan

Pemanenan jagung untuk kepentingan penyimpanan dan perdagangan dalam wujud pipilan hendaknya dilakukan setelah tanaman berumur kurang lebih 3,5 bulan. Pada umur demikian biasanya daun-daun buah jagung (kelobot) telah kering, berwarna putih kekuning-kuningan, tetapi untuk lebih meyakinkan sebaiknya diambil beberapa buah dan dikupas, apabila bijinya telah keras, itu tandanya pemanenan dapat segera dilakukan (Kartasapoetra, 1994).

b. Pengeringan awal dan pemipilan

Pengeringan biasanya dilakukan dengan tujuan untuk mempermudah pekerjaan pemipilan jagung, sebab pemipilan tanpa dilakukan pengeringan terlebih dahulu akan menyebabkan banyak butiran yang rusak, terkelupas kulit, terluka atau cacat, pengerjaannya agak lambat. Pengeringan dilakukan sampai kadar air turun menjadi 18-20%. Pengeringan bias dilakukan secara alami maupun dengan alat pengering jenis *Batch Dryer* yang menggunakan temperatur udara pengering antara 50-60%, kelembaban *relative* 40% (untuk jagung konsumsi, tetapi untuk jagung bibit *temperature* yang digunakan yaitu sebesar 43-50%). Untuk itu pemipilan dengan menggunakan *Corn Sheller* yang dijalankan oleh motor. Jagung dalam kondisi kering awal yang masih bertongkol dimasukkan ke dalam ruang/lubang pemipil (hopper) dan karena ada gerakan tekanan, pemutaran yang berlangsung dalam *Corn Sheller* maka butir-butir biji akan terlepas dari tongkol, butir-butir biji tersebut langsung akan keluar dari lubang pengeluaran untuk selanjutnya ditampung dalam wadah atau karung. (Kartasapoetra, 1994).

2.5 Mesin Blower Jagung

Mesin blower pemisah jagung adalah mesin yang digunakan untuk menyortir jagung dari kotorannya. Mesin pemisah kotoran jagung ini digerakkan oleh motor listrik AC ¼ Hp yang berperan untuk menggerakkan poros utama. Poros utama menggunakan *pulley* dan *v-belt*. Poros utama berperan untuk memutar kipas yang berfungsiuntuk meniup udara untuk memisahkan kotoran jagung kualitas buruk yang keluar dari hopper yang sudah ditentukan.

Gambar. 2.2 Rancang Bangun Mesni Pemisah Kotoran Biji Jagung

2.6 Prinsip Kerja Mesin

Mesin blower pemisah jagung dirancang dengan menggunakan penggerak motor listrik. Prinsip kerja alat ini yaitu yang pertama motor dihidupkan, setelah dihidupkan, putaran dan daya dari motor ditransmisikan oleh pulley penggerak yang terdapat pada motor ke pulley yang digerakkan. Kemudiandari pulley inilah putaran dari motor diteruskan kebaling-baling yang dihubungkan dengan sebuah poros yang didukung oleh satu buah bantalan.

Mesin pemisah kotoran jagung secara umum yaitu terletak pada kipas untuk mengeluarkan jagung kering kualitas buruk. Cara kerja dari sistem mekanik mesin pemisah kotoran jagung yaitu jagung kering diletakkan didalam hopper in sehingga jagung kering akan turun dan akan ditiup oleh kipas untuk memisahkan antara jagung kering kualitas baik dan kualitas buruk ke hopper out untuk mengalirkan jagung kering keluar dan masuk kedalam karung. Mesin pemisah kotoran jagung memiliki 2 hopper out, hopper out yang pertama yang terletak pada atas untuk mengalirkan kotoran jagung sedangkan hopper out yang kedua pada bagian bawah untuk mengalirkan jagung kering kualitas terb agus dan kotoran akan masuk ke atas karna ada tiupan blower dan jagung akan trun memisah dari kotoran.

2.7 Perencanaan Elemen Mesin

2.7.1 Perencanaan Daya

Jika P adalah daya nominal output dari motor penggerak, maka berbagai faktor keamanan biasanya dapat di ambil dalam perencanaan, sehingga koreksi pertama dapat di ambil kecil. Jika faktor koreksi adalah *fc* maka daya rencana P (kW) (Sularso,2002):

$$Pd = fc \cdot P$$
(2.1)

Pd = Daya Rencana (kW)

P = Daya (kW)

fc = Faktor koreksi daya yang ditransmisikan

Motor listrik di pakai sebagai sumber penggerak utama mesin ini, daya yang di perlukan untuk mengoprasikan mesin tersebut dapat di hitung sebagai berikut (Sularso, 2002)

$$P = \frac{\left(\frac{T}{1000}\right)\left(2\pi \cdot \frac{n}{60}\right)}{102}$$
 (2.2)

T = Torsi (kg.mm)

n = putaran poros (rpm)

2.7.2 Perancanaan Poros

Poros merupakan salah satu elemen yang penting dalam perencanaan mesin blower pemisah kotoran jagung. Pada umumnya poros berbentuk silinder. Penerus putaran tersebut dapat menggunakan kopling, *pulley, sprocket* atau roda gigi. Dengan demikian poros akan terjadi tegangan geser akibat adanya momen puntir atau torsi (Sularso,2002)

Jika P adalah daya nominal output dari motor penggerak, maka berbagai macam keamanan biasanya dapat diambil dari perencanaan, sehingga koreksi pertama dapat diambil kecil.

a. Jika faktor koreksi adalah fc maka daya rencana P (kW) (Sularso,2002):

$$Pd = fc \cdot P \dots (2.3)$$

Keterangan:

Pd = Daya Rencana (kW)

P = Daya (kW)

fc = Faktor koreksi daya yang ditransmisikan

Tabel 2.1 Faktor– faktor koreksi daya yang akan di transmisikan (fc)

Daya yang Akan di Transimisikan	Fc
Daya rata- rata yang diperlukan	1,2 - 2,0
Daya maksimum yang diperlukan	0,8 – 1,2
Daya normal	1,0 – 1,5

Sumber: Sularso, Dasar Perencanaan dan Pemilihan Elemen Mesin, 2002

b. Momen Puntir

Jika momen puntir (disebut juga momen rencana) adalah T (kg.mm), maka(Sularso, 2002):

$$T = 9.74 \times 10^{5} \frac{Pd}{n_1}$$
 (2.4)

Keterangan:

T = Momen Puntir (kg.mm)

n1 = Putaran poros (rpm)

c. Tegangan geser yang dijinkan (Sularso, 2002):

$$\tau a = \frac{\sigma B}{s f 1 \, x s f 2} \tag{2.5}$$

Keterangan:

 τa = Tegangan yang diizinkan (kg/mm²)

 σB = Kekuatan tarik bahan (kg/mm²⁾

sf1, sf2 = Faktor keamanan, untuk sf1 memiliki harga 6,0 dan sf2 memiliki harga 2,0

d. Sedangkan untuk mengetahui diameter poros yang dibutuhkan adalah (Sularso,2002):

$$d_s \ge [(5,1/\tau a) C_b . K_t . T]^{1/3}$$
....(2.6)

Keterangan:

 d_s = Diameter poros (mm)

 $\tau \alpha = \text{Tegangan geser yang diijinkan (kg/mm}^2)$

 C_b = Faktor lenturan dengan harga 2,0 dikarenakan terdapat *pulley* dan sabuk- V yang dapat menyebabkan kelenturan.

 K_t = Faktor koreksi momen puntir

1,0 jika beban dikenakn halus

1,0 – 1,5 jika beban terjadi sedikit kejutan atau tumbukan

1,5 – 3,0 jika beban dikenakan dengan kejutan atau tumbukan besar

T = Momen rencana (kg.mm)

2.7.3 Perencanaan Pulley

Pulley merupakan salah satu bagian dari mesin yang berfungsi untuk mentransmisikan daya motor untuk menggerakkan poros, ukuran perbandingan pulley dapat disesuaikan dengan kebutuhan. Antara pulley penggerak dan pulley yang digerakkan, dihubungkan dengan sabuk V sebagai penyalur dari motor penggerak.

Tabel 2.2 Diameter *Pulley* yang dianjurkan (mm)

Penampang	A	В	С	D	Е
Diameter min. yang dizinkan	65	115	175	300	450
Diameter min. yang dianjurkan	95	145	225	350	550

Sumber: Sularso, Dasar Perencanaan dan Pemilihan Elemen Mesin, 2002

a. Diameter lingaran jarak bagi dan diameter luar pulley (sularso, 2002):

$d_{p} \ = \ d_{min} \ \dots$	(2.7)
$D_{p} = d_{P} $	(2.8)
$d_k = d_p + 2xK \qquad$	(2.9)
$D_{\rm b} = D_{\rm p} + 2 \text{ y K}$ (2.11)	

Keterangan:

 D_p = Diameter lingkaran jarak bagi *pulley* besar (mm)

d_p = Diameter lingkaran jarak bagi *pulley* kecil (mm)

 $D_k = Diameter luar pulley besar (mm)$

 d_k = Diameter luar *pulley* kecil (mm)

dmin = Diameter *pulley* minimal (mm)

2.7.4 Perencanaan Sabuk V (V- Belt)

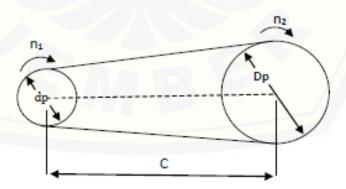
Sabuk V ini adalah salah satu komponen yang digunakan dalam pembuatan mesin pemecah dan pemisah kulit ari kedelai ini. Sabuk V berfungsi untuk mentransmisikan daya diantara 2 buah *pulley*. Pada perencanaan sabuk V ini, besarnya daya yang ditransmisikan tergantung dari beberapa faktor:

a. Kecepatan linier sabuk v (sularso, 2002):

Kecepatan linier sabuk- v ini, dapat diperoleh dengan persamaan berikut:

$$V = \frac{\pi x D x n}{60 \times 1000} (2.11)$$

Keterangan:


V = Kecepatan linier sabuk (m/s)

D = Diameter pulley (mm)

n = Putaran poros motor (rpm)

b. Panjang keliling sabuk (Sularso, 2002):

Berikut adalah panjang keliling sabuk antara diameter penggerak dan diameter yang digerakkan.

Gambar 2.3 Perhitungan panjang keliling sabuk

$$L = 2C + \frac{1}{2}\pi \left(D_p + d_p\right) + \frac{1}{4c} \left(D_p - d_p\right)^2 (2.12)$$

Keterangan:

L = Panjang keliling sabuk (mm)

C = Jarak antar poros (mm)

dp = Diameter *pulley* yang digerakkan (mm)

Dp = Diameter *pulley* penggerak (mm)

2.2.1 Perencanaan Pasak

Pasak merupakan salah satu bangian dari mesin yang dipakai untuk menetapkan bagian seperti kopling, roda gigi, *pulley* dan sproket pada poros. Salah satu fungsi komponen ini untuk mencegah selip antara poros dengan elemen penghubung pada saat poros meneruskan putaran dari motor penggerak. Pasak pada dasarnya dibuat berdasarkan diameter poros.

Material pasak biasanya dipilih dari bahan yang mempunyai kekuatan tarik, kekerasan dan juga kekerasan lebih dari bahan porosnya. Kadang juga dipilih bahan yang lebih lemah karena harganya relatif murah. Sehingga pasak akan lebih dahulu rusak daripada poros dan nafnya.

a. Gaya Tangensial (Sularso, 2002):

$$F = \frac{T}{ds/2}...(2.13)$$

Keterangan:

F = Gaya tangensial (kg)

T = Momen puntir rencana (kg.mm)

ds = Diameter poros (mm)

b. Tegangan geser yang direncanakan (Sularso, 2002):

$$\sigma k = \frac{F}{\pi r^2} \tag{2.14}$$

Keterangan:

 σk = Tegangan geser yang direncanakan (kg/mm²)

F = Gaya tangensial (kg)

r = Jari- jari penampang pasak (mm)

c. Tegangan geser yang dijinkan (Sularso, 2002):

$$\sigma ka = \frac{\sigma B}{sf1 \, xsf2} \tag{2.15}$$

Keterangan:

 σka = Tegangan geser yang dijinkan (kg/mm²)

 σB = Kekuatan tarik bahan (kg/mm²)

sf1 xsf2 = Faktor keamanan

2.7.5 Perencanaan Bantalan

Bantalan merupakan salah satu bagian dari elemen mesin yang berfungsi untuk menumpu poros agar poros dapat berputar tanpa mengalami gesekan yang berlebihan. Penggunaan bantalan disesuaikan dengan beban yang bekerja pada poros tersebut, sehingga poros dapat bekerja dengan baik dan pemakaian bantalan tahan lama.

Jenis bantalan dan ukuran bantalan dapat diketahui dengan persamaan berikut :

a. Beban Rencana

$$W = W0 \text{ x fc}$$
(2.16)

Keterangan:

W = Beban Rencana (kg)

W0 = Beban Bantalan (kg)

fc= faktor koreksi

b. Panjang Bantalan (Sularso, 2002):

$$l \ge \frac{\pi}{1000 \times 60} \cdot \frac{WN}{(pv)a}$$
(2.17)

Keterangan:

l = Panjang Bantalan (mm)

W = Beban Rencana (kg)

N = Putaran poros (rpm)

(pv)a = Faktor tekanan maksimal yang diijinkan, bahan perunggu sebesar 0,2 kg.m/mm2.s

c. Diameter Bantalan (Sularso, 2002):

$$d \ge \sqrt[3]{Wl}/\sigma a \dots (2.18)$$

Keterangan:

d = Diameter Bantalan (mm)

 $\sigma a = \text{Tegangan Lentur yang diizinkan (kg/mm2)}$

d. Tekanan Permukaan dan Kecepatan keliling (Sularso, 2002):

$$p = \frac{W}{ld} \tag{2.19}$$

$$v = \frac{\pi dN}{60 \ X \ 1000} \tag{2.20}$$

Keterangan:

p = Tekanan Permukaan (kg/mm2)

W = Beban Rencana (kg)

l = panjang bantalan (mm)

d = Diameter poros (mm)

v =Kecepatan Keliling (m/s)

BAB 3. METODOLOGI PENELITIAN

Di dalam proses pembuatan dan perancangan mesin blower pemisah kotoran jagung ini diperlukan beberapa peralatan serta bahan yang akan digunakan.

3.1 Alat dan Bahan

3.1.1 Alat

Adapun beberapa alat yang akan digunakan adalah sebagai berikut:

	resuperir occurrence of	and and argument are	aran seeugar eerm
1.	Mesin las	11. Mata bor	21. Mistar siku
2.	Kompresor	12. Mata gerinda	22. Kikir
3.	Mesin Gerinda	13. Ragum	
4.	Mesin bor	14. Tang	
5.	Palu	15. Mistar baja	
6.	Sarung tangan	16. Meteran	
7.	Pelindung mata	17. Penitik	
8.	Kunci pas 1 set	18. Penggores	
9.	Obeng (+ dan -)	19. Hand spray	
10.	Gunting plat	20. Jangka sorong	

3.1.2 Bahan

Adapun beberapa bahan yang akan digunakan adalah sebagai berikut:

1. Motor listrik

- 8. Mur dan baut
- 2. Besi siku (40x40x3) mm
- 9. Cat

3. Plat

10. Baling-baling

- 4. Poros
- 5. Bearing
- 6. Pulley
- 7. V-belt

3.2 Waktu dan Tempat

3.2.1 Waktu

Analisis, perancancangan, pembuatan dan pengujian alat dilaksanakan selama kurang lebih 5 bulan berdasarkan pada jadwal yang ditentukan.

3.2.1 Tempat

Tempat palaksanaan perancangan dan pembuatan mesin blower pemisah jagung adalah laboraturium kerja logam dan laboratorium teknologi terapan, jurusan Teknik Mesin Fakultas Teknik Universitas Jember.

3.3 Metode Pelaksanaan

3.3.1 Pencarian Data

Dalam merencanakan sebuah perancangan mesin Bloer Pemisah Kotoran Jagung, maka terlebih dahulu dilakukan pengamatan di lapangan dan studi literatur.

3.3.2 Studi Pustaka

Sebagai penunjang dan referensi dalam pembuatan mesin blower jagung antara lain adalah:

- 1. Poros
- 2. Sabuk V
- 3. *Pulley*
- 4. Bantalan
- 5. Proses kerja bangku dan plat

3.3.3 Perancangan dan Perencanaan

Setelah melakukan pencarian data dan pembuatan konsep yang di dapat dari literatur studi kepustakaan serta dari hasil survei, maka dapat direncanakan bahan- bahan yang di butuhkan dalam perancangan dan pembuatan mesin blower pemisah jagung.

Berdasarkan hasil studi lapangan dan studi pustaka tersebut dapat di rancang pemesinan. Dalam Proyek Akhir ini proses yang akan dirancang adalah:

- 1. Perencanaan poros
- 2. Perencanaan sabuk dan pulley

- 3. Perencanaan bantalan
- 4. Persiapan alat dan bahan
- 5. Perakitan dan finishing

3.3.4 Proses Pembuatan

Proses pembuatan dilakukan setelah semua proses perancangan dan perencanaan selesai. Proses pembuatan bagian mesin blower pemisah jagung meliputi:

- 1. Pembuatan poros
- 2. Pembuatan baling-baling

3.3.5 Proses Perakitan

Proses perakitan mesin blower jagung meliputi perakitan sistem transmisi dan konstruksi rangka yang diinginkan. Berikut adalah langkah- langkah perakitan sistem transmisi dan konstruksi rangka:

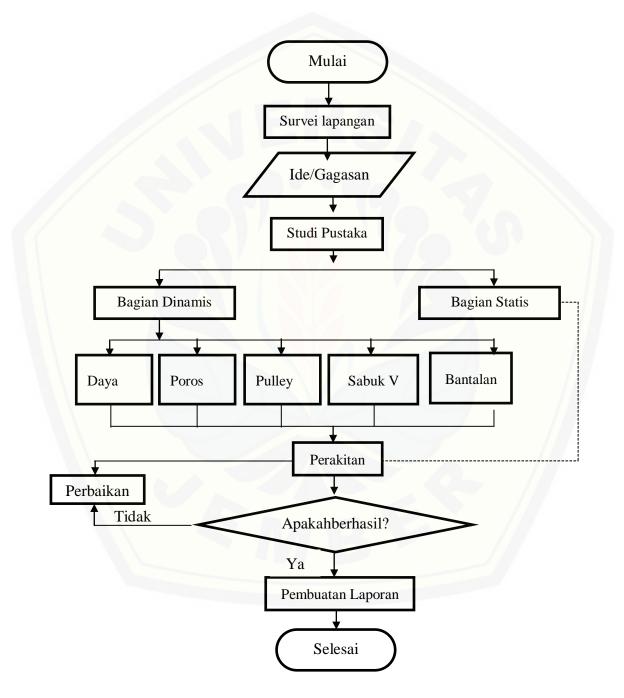
- 1. Menyiapkan peralatan kerja bangku
- 2. Melakukan pemasangan pulley pada poros mata pisau
- 3. Melakukan pemasangan sabuk- v pada pulley
- 4. Melakukan pemasangan baling-baling pada poros
- 5. Menyempurnakan hasil perakitan

3.3.6 Pengujian Alat

Prosedur pengujian alat dilakukan secara visual, yaitu:

- 1. Melihat apakah elemen mesin bekerja dengan baik.
- 2. Melihat apakah baling-baling dapat bekerja dengan baik
- 3. Melihat apakah baut pengikat elemen mesin tidak lepas atau mengendor

3.3.7 PenyempurnaanAlat

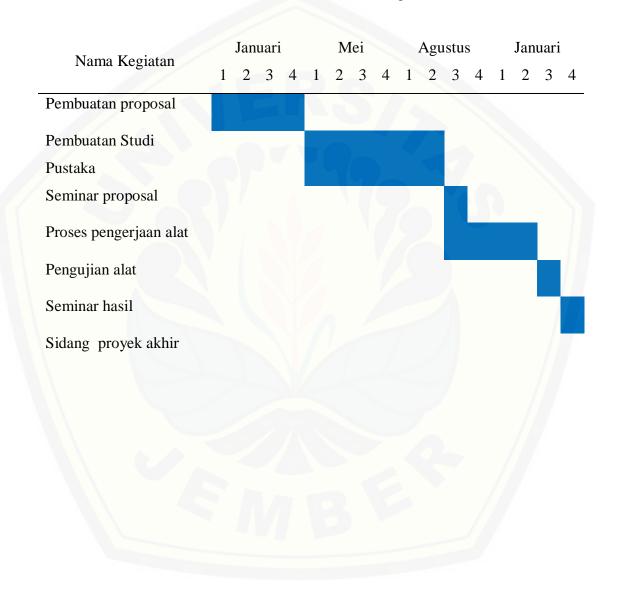

Penyempurnaan alat dilakukan apabila tahap pengujian terdapat masalah atau kekurangan, sehingga dapat berfungsi dengan baik sesuai prosedur, tujuan dan perancangan yang dilakukan.

3.3.8 PembuatanLaporan

Pembuatan laporan proyek akhir ini dilakukan secara bertahap dari awal analisa, desain, perancangan dan pembuatan mesin blower pemisah jagung (Bagian Dinamis)

3.4 Diagram Alir Perancangan dan Pembuatan

Tahap perancangan dan pembuatan mesin blower pemisah jagung (Bagian Dinamis) dijelaskan secara garis besar berupa diagram alir proses pembuatan rangka seperti yang terlihat pada gambar 3.1 di bawah ini.



Gambar 3.1 Diagram Alir

3.5Diagram Rencana Perancangan dan Pembuatan

Berikut adalah diagram rencana perancangan dan pembuatan mesin blower pemisah jagung yang telah kami perkirakan.

Tabel3.1 Jadwal Pelaksanaan Kegiatan

Digital Repository Universitas Jember

BAB 5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil perancangan dan pengujian mesin blower pemisah kotoran jagung, maka dapat disimpulkan :

- 1. Daya yang direncanakan sebesar 0,03 kw maka motor listrik yang digunakan ¼ Hp dengan putaran poros 1200 rpm
- 2. Pulley motor 75 mm, pulley poros 200 mm. Perbandingan reduksi yang di perlukan 1:3 dengan menghasilkan 400 rpm.
- 3. Sabuk V dengan tipe A sebanyak 1 buah, L = 864 mm.
- Bahan poros yang digunakan S30C. Diameter poros 20 mm dan panjang poros 200 mm.
- Bantalan yang digunakan untuk menumpu poros adalah bantalan gelinding bola sudut dengan tipe 6004ZZ

5.2 Saran

Dalam pelaksanaan perancangan dan pengujian mesin blower pemisah kotoran jagung masih terdapat hal-hal yang perlu disempurnakan, antara lain :

- 1. Pada saat memasukkan jagung ke *hooper in* masih memuqt 10kg jagung. Ada baiknya kedepannya bisa ditambah ketinggian pada *hooper in*.
- 2. Membersihkan mesin blower jagung setelah digunakan agar tidak terjadi korosi.
- 3. Untuk mengetahui keberhasilan rancang bangun suatu mesin, sebaiknya dilakukan lebih banyak lagi proses pengujiannya agar didapatkan hasil uji coba yang *valid*.

DAFTAR PUSTAKA

Bactiar, dkk. 2000. Metodologi Penelitian Kesehatan. Depok: FKM- UI.

Badan Pusat Stastika Jawa Timur. 2017. *Laporan Produksi Jagung Tahunan. Januari*. Surabaya: BPS Jawa Timur.

Benyamin. 2011. *Buku Ajar Metode Elemen Hingga*. Jurusan Teknik Mesin Fakultas Teknik.

Budiman, Haryanto. 2013. *Budidaya Jagung Organik Varietas Baru*. Yogyakarta: Pustaka Baru Putra.

Gere & Timoshenko. 1996. Mekanika Bahan Jilid 1. Jakarta: Erlangga

G. Niemen. 1999. Elemen mesin jilid 1. Jakarta: Erlangga

Sularso dan Suga. 1997. Dasar-dasar Perencanaan dan Pemilihan Elemen Mesin.

Jakarta: Pradnya Paramita.

Sularso. 1997. Dasar-dasar Perencanaan dan Pemilihan Elemen Mesin. Jakarta

Utara: CV. Rajawali

LAMPIRAN PERHITUNGAN

4.2.1 Perencanaan Daya

• Kapasitas Bahan

$$m = 10 \text{ kg}$$

$$F = m \cdot g$$

$$= 10.10$$

$$= 100 \text{ N}$$

• Putaran

$$N = \frac{120.F}{f(m)}$$

$$=$$
 $\frac{120.10}{40}$

$$= 1200 \text{ rpm}$$

• Torsi yang di perlukan

$$T = f \cdot r$$

$$= 20 \text{ kg/mm}$$

• Daya yang di perlukan

$$P = \frac{\frac{T}{1000}.2\pi r.\frac{n}{60}}{102}$$

$$= \frac{\frac{20}{1000}.6,28.\frac{1200}{60}}{102}$$
$$= \frac{0,02.6,28.20}{102}$$
$$= 0,0246kw = 25watt$$

Dimana $1hp = 0.746 \text{ kw} = 746 \text{ watt dengan daya paling rendah diindustrial yang sering di gunakan untuk motor listrik 2 fase adalah <math>\frac{1}{4}$ hp maka:

$$\frac{1}{4}$$
 hp = 0,186 kw = 186 watt

Sehingga motor listrik yang di gunakan adalah ¼ hp karena:

$$0.0246 < 0.886 \text{ kw}$$

Daya rencana (pd)

Pd =
$$p^{x}$$
 fc
= 0,025 x 1,2
= 0,03 kw

4.2.2 Perencanaan Poros

a. Daya rencana

Pd =
$$p^{x}$$
 fc
= 0,025 x^{x} 1,2
= 0,03 kw

b. Momen rencana

$$T = 9.74 \times 10^2 \frac{pd}{n}$$

$$T = 9,74 \times 10^2 \frac{0,03}{1200}$$

$$= 24,3 \text{ kg/mm}$$

Menggunakan banhan S 30 C-D

$$\sigma_B = 48 (kg/mm^2), Sf_1 = 6,0 . Sf_2 = 2,0$$

$$Cb = 2$$

$$Kt = 2$$

a. Diameter poros

$$ds = \left[\frac{5,1}{\pi a}kt.cb.T\right]^{1/3}$$

$$= \left[\frac{5,1}{48}.2.2.24,3\right]^{1/3}$$

$$= [0,10625.2.2.24,3]^{1/3}$$

$$= [10,327]^{1/3}$$

= 2,18 mm 18 mm (lihat tabel)

ds = 20 mm

Dianggap diameter bagian yang menjadi tempat bantalan = 20 (mm)

Jari-jari filet
$$\frac{20-18}{2}$$
=1mm \longrightarrow filet radium 0,4

Alur pasak 6 x 6

Konsentrasi tegangan pada poros

$$\frac{1}{ds} = \frac{1}{20} = 0.05$$

$$\frac{22}{20} = 1,1$$

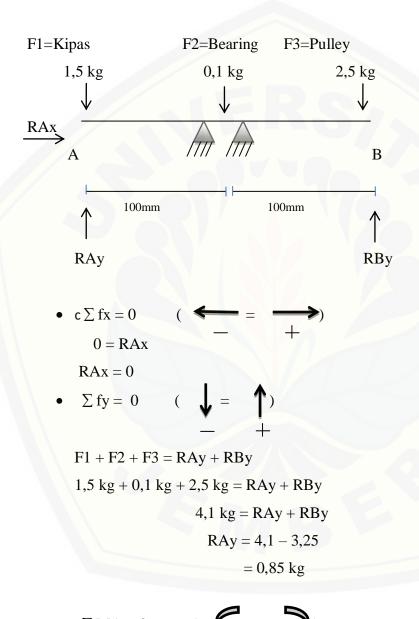
$$\beta = 0.05 + 1.1 = 1.15$$

Filet =
$$\frac{0.4}{20}$$
 = 0.02 α = 2

b. Tegangan geser

$$\tau = \frac{5,1.T}{ds^3}$$

$$=\frac{5,1.24,3}{20^3}$$


$$= 0.015$$
 kg/mm²

c. Perbandingan

$$\frac{\tau b.sf_2}{\beta} \ge cb \cdot kt \cdot \tau$$

$$\frac{48.2.0}{1,15} \ge 2 \cdot 2 \cdot 0,015$$
$$= 83,5 \ge 0,504 \text{ (diterima)}$$

• Gaya bending yang terjadi

4.2.3 Perhitungan bantalan

a. Jenis bantalan

Bantalan yang digunakan adalah bantalan gelinding bola sudut dalam keadaan terpasang dengan tipe 6004ZZ, dengan spesifikasi:

Panjang poros = 200 mm

Gaya (f)
$$= 4 \text{ kg}$$

Berat poros
$$= 2 \text{ kg}$$

Berat kipas
$$= 1,5 \text{ kg}$$

Berat pulley
$$= 2.5 \text{ kg}$$

- b. Gaya Bending yang Terjadi
- $c \sum fx = 0$

$$0 = RAx$$

$$RAx = 0$$

•
$$\sum fy = 0$$

$$F1 + F2 + F3 = RAy + RBy$$

 $1,5 \text{ kg} + 0,1 \text{ kg} + 2,5 \text{ kg} = RAy + RBy$
 $4,1 \text{ kg} = RAy + RBy$

$$RAy = 4,1 - 3,25$$

$$= 0.85 \text{ kg}$$

• $\sum MA = 0$

RBy x 200 mm = F3 x 200 + F2 x 95
=
$$\frac{2,5x200 + 0,1x95}{200}$$

= 2,54 kg

c. Menghitung berat ekivalen dinamis

$$P = (x . fr) + (Y . fa)$$

Diketahui

- 1. Faktor beban radial x = 0.56
- 2. Beban radial (fr) = 1,25 kg

- 3. Faktor beban aksial (Y) = 0
- 4. Beban aksial (fa) = 0

$$P = (0.56 . 1.25) + (0.0)$$

$$P = 0.7 \text{ kg}$$

d. Faktor umur bantalan

$$\operatorname{Fn} = \left(\frac{33,3}{n}\right)^{1/3}$$

Diman untuk mengetahui faktor umur bantalan harus di ketahui dahulu umur bantalan (fn). Nilai untuk umur bantalan yaitu:

$$\operatorname{Fn} = \left(\frac{33,3}{n}\right)^{1/3}$$

$$Fn = \left(\frac{33,3}{400}\right)^{1/3}$$

$$= 0,44$$

Maka nilai faktor umur bantalan (fh) adalah:

$$Fh = \left(\frac{33,3}{400}\right)^{1/3} \times \frac{790}{0,7}$$

$$= 0,44 \times 1.128,6$$

e. Umur nominal

$$Lh = 500 \text{ x fh}^3$$

$$= 500 \times (496,6)^3$$

$$= 500 \times 122.467$$

$$= 56.233.500 \text{ jam}$$

4.2.4 Perencanaan Sabuk-V

a. Kecepatan sabuk

$$V = \frac{dp.n_1}{60.1000}$$
$$= \frac{65x1200}{60x1000} = 1,3 \text{ m/s}$$

b. Panjang sabuk

$$L = 2 \operatorname{cr} + \frac{1}{2} \pi \left(\operatorname{Dp} + \operatorname{dp} \right) + \frac{1}{4cr} \left(\operatorname{Dp} - \operatorname{dp} \right)^{2}$$

$$= 2 \cdot 216 + \frac{1}{2} \cdot 3,14 \left(195 + 65 \right) + \frac{1}{4,216} \left(195 - 65 \right)^{2}$$

$$= 432 + 1,57 \left(260 \right) \frac{1}{864} \left(16,900 \right)$$

$$= 432 + 408,2 + 19,56$$

$$= 859,76 \, \operatorname{mm} \longrightarrow \operatorname{nomor nominal sabuk} = 864 \, \operatorname{mm}$$

Cr = jarak sumbu rencana (mm)

c. Jarak sumbu poros

b = 2L - 3,14 (Dp + dp)
= (2 x 859,76) - 3,14 (195+65)
= 1719,5 - 3,14 x 260
= 1719,5 - 816,4
= 903,1
C =
$$\frac{b + \sqrt{b2 - 8 (Dp - dp)2}}{8}$$

= $\frac{903,1 + \sqrt{(903,1)2 - 8 (195 - 65)2}}{8}$
= 77,6 mm
= 7,76 cm

d. Sudut kotak antara pulley dan V-bell

$$\theta = 180^{\circ} - \frac{57(195 - 65)}{216}$$

$$= 180^{\circ} - 34,30$$

$$= 145,7^{\circ}$$

$$= \frac{147.\pi}{180} = \frac{145.3,14}{180}$$

$$= 2,52 \text{ rad}$$

Ko diperoleh dari tabel (0,89)

Po =
$$P + 0.18$$

= $0.23 + 0.18$
= 0.5 kw

e. Jumlah sabuk efektif

$$N = \frac{pd}{Po.ka}$$

$$N = \frac{0,684}{Po.0,91}$$

$$= \frac{0,684}{0,5.0,91}$$

$$= 1,5$$

Jumlah sabuk yang di butuhkan 1

f. Gaya tarik efektf

$$F_{1} = \frac{Po.102}{V}$$

$$= \frac{Po.102}{4,082}$$

$$= \frac{0,5.102}{4,08}$$

$$= 12,4 \text{ kg}$$

g. Tarikan pada sisi tarik

$$F_e = F_1 \frac{e \, \mu \, \prime \theta - 1}{e \, \mu \, \prime \theta}$$

$$= 12,4 \frac{15 \times 0.3 \times 2.73 - 1}{15 \times 0.3 \times 2.73}$$
$$= 12,4 \frac{8,188}{9,188}$$
$$= 11,1 \text{ kg}$$

h. Tarikan pada sisi kendor

$$F_2 = F_1 - F_e$$
= 12,4 - 11,1
= 1,3 kg

4.2.5 Perencanaan Pulley

Pulley yang digunakan sabuk tipe (A)

$$p = 0.0246$$

 $n1 = 1200 \text{ rpm}$
 $Pd = p \times fc$
 $= 0.025 \times 1.2$
 $= 0.03 \text{ kw}$

a. Momen rencana

$$T_1 = 9.74 \times 10^5 \times (0.03/1200) = 0.02435 \text{ kg/mm}$$

 $T_2 = 9.74 \times 10^5 \times (0.03/400) = 0.07305 \text{ kg/mm}$

Menggunakan banhan S 30 C-D

b. Diameter poros

$$ds = \left[\frac{5,1}{m}kt.cb.T\right]^{1/3}$$

$$= \left[\frac{5,1}{48}.2.2.24,3\right]^{1/3}$$

$$= \left[0,10625.2.2.24,3\right]^{1/3}$$

$$= \left[10,327\right]^{1/3}$$

$$= 2,18 \text{ mm}$$

c. Perbandingan reduksi

$$i = \frac{n_1}{n_2} = \frac{1200}{400} = 3$$

d. Diameter pulley yang digerakan

$$Dp = dp . i$$

= 65 . 3
= 195 mm

e. Diameter luar pulley penggerak

$$dk = dp + 2.k$$

= 65 (2 x 4,5)
= 74 mm

f. Diameter luar pulley yang digerakan

$$Dk = Dp + 2.k$$

= 195 + (2 x 4,5)
= 204 mm

g. Lebar sisi luar pully

$$\beta = 2 \cdot F$$

$$= 2 \times 10$$

$$= 20 \text{ mm}$$

h. Panjang sabuk

$$L = 2 \text{ cr} + \frac{1}{2} \pi \text{ (Dp + dp)} + \frac{1}{4cr} \text{ (Dp - dp)}^{2}$$

$$= 2 \cdot 216 + \frac{1}{2} \cdot 3,14 (195 + 65) + \frac{1}{4,216} (195 - 65)^{2}$$

$$= 432 + 1,57 (260) \frac{1}{864} (16,900)$$

$$= 432 + 408,2 + 19,56$$

$$= 859,76 \text{ mm} \longrightarrow \text{nomor nominal sabuk} = 864 \text{ mm}$$

$$\text{Cr} = \text{jarak sumbu rencana (mm)}$$

i. Jarak sumbu poros

b = 2L - 3,14 (Dp + dp)
= (2 x 859,76) - 3,14 (195+ 65)
= 1719,5 - 3,14 x 260
= 1719,5 - 816,4
= 903,1
C =
$$\frac{b + \sqrt{b2 - 8 (Dp - dp)2}}{8}$$

= $\frac{903,1 + \sqrt{(903,1)2 - 8 (195 - 65)2}}{8}$
= 77,6 mm
= 7,76 cm

4.2.6 Perhitungan pasak

- a. Pasak *pulley* 1 dengan poros motor
 - Gaya tangensial

$$F = \frac{T}{ds/2}$$

$$F = \frac{555,18}{20/2}$$

$$F = 55,518 \text{ kg}$$

• Tegangan geser yang direncanakan

$$\tau_k = \frac{F}{bl}$$

$$= \frac{55,518}{36}$$

$$= 1,54 \text{ kg/mm}^2$$

• Tegangan geser yang diijinkan

$$\tau_{ka} = \frac{F}{b \cdot l_1}$$

$$= \frac{55,518}{6.2}$$

$$= 4,67 \text{ kg/mm}^2$$

Maka tegangan geser yang diijinkan harus lebih besar dari tegangan geser yang direncanakan, maka :

$$\tau ka \ge \tau k$$
 $4,67 \ge 1,5 \text{ (baik)}$

- b. Pasak pulley 2 dengan poros kipas
 - Gaya tangensial

$$F = \frac{T}{ds/2}$$

$$F = \frac{555,18}{19/2}$$

$$F = 58,44 \text{ kg}$$

• Tegangan geser yang direncanakan

$$\tau_k = \frac{F}{bl}$$

$$= \frac{58,44}{36}$$

$$= 1,62 \text{ kg/mm}^2$$

• Tegangan geser yang diijinkan

$$\tau_{ka} = \frac{F}{b \cdot l_1}$$

$$= \frac{58,44}{6.2}$$

$$= 4,87 \text{ kg/mm}^2$$

Maka tegangan geser yang diijinkan harus lebih besar dari tegangan geser yang direncanakan, maka :

$$\tau ka \ge \tau k$$
 $4,87 \ge 1,62 \text{ (baik)}$

4.2.7 Perencanaan Mur dan Baut

Menentukan besar beban maksimal yang dapat diterima oleh masingmasing baut dan mur dengan factor koreksi (fc) = 1,2-2,00 maka factor koreksi yang diambil adalah fc = 1,2

a.
$$W_0=$$
 berat bearing 1+berat bearing 2+Pulley+poros+kipas+gaya tarik
$$=0.4+0.4+0.1+1+0.2+0.76$$

$$=2.86~kg$$
 b. $W=Fc$. W_0

b.
$$W = Fc \cdot W_0$$

= 1,2 \cdot 2,86
= 3,432 kg

c. Beban yang diterima oleh masing-masing baut adalah:

$$W = \frac{3,42}{2}$$
$$= 1,716 \text{ kg}$$

d. Menentukan bahan baut dan mur

Bahan baut yang direncanakan dari baja karbon dengan kadar 0,2% C yakni ST-37, $\sigma b = 140\text{-}410 \text{ N/mm}^2 \approx 34 \text{ kg/mm}^2 \text{ sehingga diketahui daktor}$ keamanan (Sf) 8-10 \approx tekanan permukaan yang diizinkan (qa) = 3 kg/mm².

e. Kekuatan Tarik yang diizinkan

$$\sigma a = \frac{\sigma b}{sf}$$

$$= \frac{34}{10}$$

$$= 3.4 \text{ kg/mm}^2$$

f. Kekuatan geser yang diizinkan

$$\tau a = 0.5$$
. σa
= 0.6 . 3.4
= 1.7 kg/mm²

Dengan mengetahui besar beban maksimum dan besar tegangan geser yang diizinkan pada masing-masing baut, maka diameter d dapat dihitung.

$$d \ge \sqrt{\frac{4.W}{\pi \cdot 6}}$$

$$\ge \sqrt{\frac{4.1,716}{3,14 \cdot 6}}$$

$$\ge \sqrt{\frac{6,864}{18,84}}$$

$$\ge \sqrt{0,354}$$

$$\ge 0,603 \text{ mm}$$

Maka diambil d = 10

Sehingga ulir baut dan mur yang dipilih ulir metris kasar dengan ukuran standar M10 dan didapat standar dimensi sebagai berikut:

Dimensi luar ulir dalam (D)	=10 mm
Jarak bagi (p)	= 1,5 mm
Diameter inti (d ₁)	= 8,3760 mm
Tinggi kaitan (H ₁)	= 0,812 mm
Diameter efektif ulir dalam (d ₂)	= 9.0260 mm

Dari data diatas dapat ditetapkan untuk perhitungan ulir dalam dimana untuk ulir metris harga k ≈ 0.84 dan j ≈ 0.75 .

g. Jumlah ulir (Z) yang diperlukan adalah

$$Z \ge \frac{W}{\pi \cdot d2 \cdot h1 \cdot qa}$$

$$\ge \frac{1,716}{3,14 \cdot 9,026 \cdot 0.812 \cdot 3}$$

$$\ge \frac{1,716}{69,04}$$

$$\ge 0,24 \to 3$$

h. Tinggi mur (H) yang diperlukan

$$H \ge Z \cdot p$$

 $\ge 3 \cdot 1,5$
 $\ge 4,5 \text{ mm Menurut standar:}$
 $H \ge (0,8-1,0) \cdot D$
 $\ge (0,8) \cdot 10$
 $\ge 8 \text{ mm}$

i. Tinggi mur yang akan diambil adalah 8 mm sehingga jumlah ulir mur
 (Z') adalah:

$$Z' = \frac{H}{P}$$
$$= \frac{8}{1.5}$$
$$= 5.33$$

j. Tegangan geser akar ulir baut τb adalah

$$\tau b = \frac{W}{\pi \cdot d' \cdot kp \cdot Z'}$$

$$= \frac{1,716}{3,14 \cdot 8,376 \cdot 0,84 \cdot 1,5 \cdot 5,33}$$

$$= \frac{1,716}{176,6}$$

$$= 0,00971 \text{ kg/mm}^2$$

k. Tegangan geser akar ulir mur τn adalah

$$\tau n = \frac{W}{\pi \cdot D \cdot jp \cdot Z'}$$

$$= \frac{1,716}{\pi \cdot 10 \cdot 0.75 \cdot 1,5 \cdot 5,33}$$

$$= \frac{1,716}{188,28}$$
$$= 0,0091$$

Maka:
$$\tau a \geq \tau b \approx 1,7~kg/mm^2 \geq 0,00971~kg/mm^2$$

$$\tau a \geq \tau n \approx 1,7~kg/mm^2 \geq 0.0091kg/mm^2$$

LAMPIRAN TABEL

Tabel B.1 Faktor – Faktor Koreksi Daya yang Akan Ditransmisikan

Daya yang akan ditransmisikan	fc
Daya rata – rata yang diperlukan	1,2 – 2,0
Daya maksimum yang diperlukan	0.8 - 1.2
Daya normal	1,0 – 1,5

Sumber: Sularso, Dasar Perencanaan dan Pemilihan Elemen Mesin, 2002

Tabel B.2 Diameter Pulley Yang Diizinkan dan Dianjurkan (mm)

Penampang	A	В	С	D	Е
Diameter minimum yang diizinkan	65	115	175	300	450
Diameter minimum yang dianjurkan	95	145	225	350	550

Sumber: Sularso, Dasar Perencanaan dan Pemilihan Elemen Mesin, 2002

3V	5V	8V
	<i>3</i> v	0 V
57	180	315
100	224	360

Tabel B.3 Panjang Sabuk – V Standar

	Nomor Nomor Nominal nominal				mor		mor
Non	ninal	nominal		Non	ninal	Non	ninal
(inch)	(mm)	(inch)	(mm)	(inch)	(mm)	(inch)	(mm)
10	254	45	1143	80	2032	115	2921
11	279	46	1168	81	2057	116	2946
12	305	47	1194	82	2083	117	2972
13	330	48	1219	83	2108	118	2997
14	356	49	1245	84	2134	119	3023
15	381	50	1270	85	2159	120	3048
16	406	51	1295	86	2184	121	3073
17	432	52	1321	87	2210	122	3099
18	457	53	1346	88	2235	123	3124
19	483	54	1372	89	2261	124	3150
20	508	55	1397	90	2286	125	3175
21	534	56	1422	91	2311	126	3200
22	559	57	1448	92	2337	127	3226
23	584	58	1473	93	2362	128	3251
24	610	59	1499	94	2388	129	3277
25	635	60	1524	95	2413	130	3302
26	661	61	1549	96	2438	131	3327
27	686	62	1575	97	2464	132	3353
28	711	63	1600	98	2489	133	3378
29	737	64	1626	99	2515	134	3404
30	762	65	1651	100	2540	135	3429
31	788	66	1676	101	2565	136	3454
32	813	67	1702	102	2591	137	3480
33	839	68	1727	103	2616	138	3505
34	864	69	1753	104	2642	139	3531
35	889	70	1778	105	2667	140	3556
36	915	71	1803	106	2692	141	3581
37	940	72	1829	107	2718	142	3607
38	966	73	1854	108	2743	143	3632
39	991	74	1880	109	2769	144	3658
40	1016	75	1905	110	2794	145	3683
41	1042	76	1930	111	2819	146	3708
42	1067	77	1956	112	2845	147	3734

43	1093	78	1981	113	2870	148	3759
44	1118	79	2007	114	2896	149	3785

Tabel B.4 Faktor Koreksi (fc) Jenis Motor dan Penggunaan

		Motor	Motor	Motor Torak	
Tumbukan	Penggerak/ Pemakaian	listrik/ turbin	Dengan transmisi hidrolik	Tanpa transmisi hidrolik	
Transmisi Halus	Konveyor sabuk dan rantai dengan variasi beban kecil, pompa sentrifugal, mesin tekstil umum, mesin industri unum dengan variasi	1,0	1,0	1,2	
Tumbukan Sedang	Kompresor sentrifugal, propeller. Koveyor dengan sedikit variasi beban, tanur otomatis, pengering, penghancur, mesin perkakas umum, mesin kertas umum	1,3	1,2	1,4	
Tumbukan Berat	Pres penghancur, mesin pertambangan minyak bumi, pencampur karet, rol, mesin penggetar, mesin mesin umum dengan putaran dapat dibalik atau beban tumbukan	1,5	1,4	1,7	

Tabel B.5 Faktor Koreksi K_{θ}

Dp – dp	Sudut kontak puliθ(°)	Faktor koreksi
С		
0,00	180	1,00
0,10	174	0,99
0,20	169	0,97
0,30	163	0,96
0,40	157	0,94
0,50	151	0,93
0,60	145	0,91
0,70	139	0,89
0,80	133	0,87
0,90	127	0,85
1,00	120	0,82
1,10	113	0,80
1,20	106	0,77

1,30	9	0,73
1,40	90	0,70
1,50	83	0,65

Tabel B.6 Jenis Baja pada poros

Standart dan Macam	Lambang	Perlakuan panas	Kekuatan Tarik (kg/mm²)	keterangan
	S30C S35C	Penormalan Penormalan	48 52	
Baja Karbon Konstruksi Mesin	S40C	Penormalan	55	
	S45C	Penormalan	58	
(JIS G 4501)	S50C	Penormalan	62	
	S55C	Penormalan	66	
Batang baja yang difinis dingin	S35C- D S45C- D S55C- D	Penormalan Penormalan penormalan	53 60 72	Ditarik dingin, digerinda, dibubut, atau gabungan antara hal— hal tersebut

Tabel B.7 Standar Baja

	Standar	Standar Amerika (AISI), Inggris (BS),
Nama		
	Jepang (JIS)	dan Jerman (DIN)
	S25C	AISI 1025, BS060A25
	S30C	AISI 1030, BS060A30
	S35C	AISI 1035, BS060A35, DIN C35
Baja Karbon		
	S40C	AISI 1040, BS060A40
Konstruksi Mesin		
	S45C	AISI 1045, BS060A45, DIN C45, CK45
	S50C	AISI 1050, BS060A50, DIN st 50.11
	S55C	AISI 1055, BS060A55
	SF 30	
	SF 45	
Baja tempa	SF 50	ASTMA105-73

	SF 55	
	SNC	BS 653M31
Baja nikel khrom		
	SNC22	BS En36
	SNCM 1	AISI 4337
	SNCM 2	RS830M31
	SNCM 7	AISI 8645, BS En100D
Baja nikel khrom		
	SNCM 8	AISI 4340, BS817M40, 816M40
Molibden		
	SNCM 22	AISI 4315
	SNCM 23	AISI 4320, BS En325
	SNCM 25	BS En39B
	SCr 3	AISI 5135, BS530A36
	SCr 4	AISI 5140, BS530A40
Baja khrom	SCr 5	AISI 5145
	SCr 21	AISI 5115
	SCr 22	AISI 5120
	SCM2	AISI 4130, DIN 34CrMo4
Baja khrom		
	SCM2	AISI 4135, BS708A37, DIN 34CrMo4
molibden		
	SCM2	AISI 4140, BS708M40, DIN 34CrMo4

Tabel B.8 Diameter Poros

	\			I PK		(Satuan mm)
4	10	*22,4	40	100	*224	400
		24		(105)	240	
	11	25	42	110	250	420
					260	440
4,5	*11,2	28	45	*112	280	450
	12	30		120	300	460
		*31,5	48		*315	480
5	*12,5	32	50	125	320	500
				130	340	530
		35	55			

*5,6	14 (15)	*35,5	56	140 150	*355 360	560
6	16	38	60	160	380	600
	(17)			170		
*6,3	18		63	180		630
	19			190		
	20			200		
	22		65	220		
7			70			
*7,1			71			
			75			
8			80			
			85			
9			90			
			95			

Tabel B.9 Harga Faktor Keandalan pada Bantalan

-	Faktor Keandalan	L _n	a_1
	(%)		
	90	L_{10}	1
	95	L_5	0,62
	96	L_4	0,53
	97	L_3	0,44
	98	L_2	0,33

Tabel B.10 Spesifikasi Bantalan Gelinding

Nomor Bantalan			1	Ukuran l (mm)	uar	Kapasitas nominal		
Jenis terbuka	Dua sekat	Dua sekat tanpa	d	D	В	r	Dinamis spesifik	Statis spesifik
		kontak					C (kg)	Co (kg)
6000			10	26	8	0,5	360	196
6001	6001ZZ	6001VV	12	28	8	0,5	400	229
6002	02ZZ	02VV	15	32	9	0,5	440	263
6003	6003ZZ	6003VV	17	35	10	0,5	470	296
6004	04ZZ	04VV	20	42	12	1	735	465

	6005	05ZZ	05VV	25	47	12	1	790	530
	6006	6006ZZ	6006VV	30	55	13	1,5	1030	740
	6007	07ZZ	07VV	35	62	14	1,5	1250	915
	6008	08ZZ	08VV	40	68	15	1,5	1310	1010
	6009	6009ZZ	6009VV	45	75	16	1,5	1640	1320
	6010	10ZZ	10VV	50	80	16	1,5	1710	1430
_									
	6200	6200ZZ	6200VV	10	30	9	1	400	236
	6201	01ZZ	01VV	12	32	10	1	535	305
	6202	02ZZ	02VV	15	35	11	1	600	360
	6203	6203ZZ	6203VV	17	40	12	1	750	460
	6204	04ZZ	04VV	20	47	14	1,5	1000	635
	6205	05ZZ	05VV	25	52	15	1,5	1100	730
	6206	6206ZZ	6206VV	30	62	16	1,5	1530	1050
	6207	07ZZ	07VV	35	72	17	2	2010	1430
	6208	08ZZ	08VV	40	80	18	2	2380	1650
	6209	6209ZZ	6209VV	45	85	19	2	2570	1880
	6210	10 ZZ	10VV	50	90	20	2	2750	2100
	6300	6300ZZ	6300VV	10	35	11	1	635	365
	6301	01 ZZ	01VV	12	37	12	1,5	760	450
	6302	02 Z Z	02VV	15	42	13	1,5	895	545
_	6303	6303ZZ	6303VV	17	47	14	1,5	1070	660
_	6304	04ZZ	04VV	20	50	15	2	125	785
	6305	05ZZ	05VV	25	62	17	2	1610	1080
	6306	6306ZZ	6306VV	30	72	19	2	2090	1440
	6307	07ZZ	07VV	35	80	20	2,5	2620	1840
	6308	08ZZ	08VV	40	90	23	2,5	3200	2300
	6309	6309ZZ	6309VV	45	100	25	2,5	4150	3100
	6310	10ZZ	10VV	50	110	27	3 El a	4850	3650

LAMPIRAN C. GAMBAR

Gambar C.1 Pengelasan rangka

Gambar C.2 Pemotongan plat

Gambar C.3 Pengelasan pada plat

Gambar C.4 Proses Setengah Jadi

Gambar C.5 Pengecatan pada badan mesin

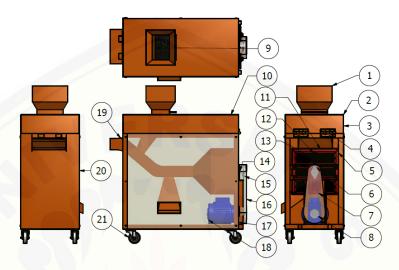
Gambar C.6 Pengecatan pada penutup pulley

Gambar C.7 Pemasangan motor

Gambar C.8 Pemasangan V-belt

Gambar C.9 Jagung sebelum di uji coba

Gambar C.10 Hasil kotoran yang sudah di pisahkan dari jagung


Gambar C.11 Hasil sesudah di uji coba

Digital Repository Universitas Jember

LAMPIRAN D. SOP (Standart Operation Procedure)

Berikut ini adalah desain dari mesin Mesin Blower Pemisah Kotoran Jagung:

Gambar D.1 Perancangan Mesin Blower Pemisah Jagung Portabel

Keterangan:

- 1.Hopper
- 2. Kerangka Atas
- 3. Plat depan dan belakang bagian kerangka atas
- 4. Engsel
- 5. Kerangka bawah
- 6. Bearing
- 7. V-belt
- 8. Pulley Motor Listrik
- 9.Pembuka atau penutup hopper
- 10. Plat kiri dan kanan bagian kerangka atas
- 11. kerangka kipas

- 12. Penutup kipas
- 13. Kipas
- 14. Poros Kipas
- 15. Pulley Poros Kipas
- 16. Penutup Pulley
- 17. Plat kiri bagian kerangka

bawah

- 18. Motor listrik
- 19. Saluran pembuangan
- 20. Plat depan bagian kerangka

bawah

21. Caster wheel

Berikut merupakan langkah atau prosedur mengoperasikan mesin blower jagung untuk pengoperasian 1 orang atau 2 orang operator:

- 1. Mempersiapkan alat bantu seperti kunci pas untuk mengencangkan atau mengendurkan baut pada bearing, motor listrik, dan *cover*..
- 2. Siapkan jagung yang akan dibersihkan. Pastikan jagung sudah kering dah sudah terpipil, dan masih keadaan kotor.
- 3. Pasang kabel motor pada sumber listrik.
- 4. Menghidupkan motor listrik dan cek apakah ada kendala atau tidak.
- 5. Masukkan jagung yang akan dibersihkan pada hopper in.
- 6. Ulangi proses tersebut sampai jagung kotor habis.
- 7. Setelah selesai, matikan motor listrik.
- 8. Membuka bagian *cover* dan bersihkan sisa-sisa jagung ataupun kotorannya yang menempel dengan kuas.

Digital Repository Universitas Jember

LAMPIRAN E. TEKNIK PERAWATAN / PEMELIHARAAN MESIN BLOWER PEMISAH KOTORAN JAGUNG

Perawatan/pemeliharaan merupakan suatu kegiatan yang dilakukan secara berulang-ulang dengan tujuan agar peralatan selalu memiliki kondisi yang sama dengan kondisi awalnya (selalu dalam kondisi baik).

Berikut merupakan teknik perawatan / pemeliharaan mesin blower pemisah kotoran jagung yaitu;

- 1. Setelah menggunakan mesin Blower ini sebaiknya dicuci dan dibersihkan dengan air dan sapu atau kuas pada bagian *cover*, *hooper*
- 2. Cek kondisi bantalan dan lumasi menggunakan minyak goreng
- 3. Cek kondisi kekencangan baut dan mur tiap 1 atau 2 kali dalam sebulan. Jika ditemukan kerusakan maka segeralah diganti;
- 4. Cek kondisi motor tiap 3 bulan sekali. Apabila terjadi putaran yang susah atau berat pada poros maka perlu dilakukan perbaikan dan bila sudah tidak bisa menyala motor perlu diganti.