

POTENSI PENERAPAN PRODUKSI BERSIH PADA PROSES PEMBUATAN KEJU MOZZARELLA DI MARGO UTOMO KECAMATAN KALIBARU KABUPATEN BANYUWANGI

SKRIPSI

Oleh

Uswatun Kasanah NIM 141710201002

JURUSAN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS JEMBER 2018

POTENSI PENERAPAN PRODUKSI BERSIH PADA PROSES PEMBUATAN KEJU MOZZARELLA DI MARGO UTOMO KECAMATAN KALIBARU KABUPATEN BANYUWANGI

SKRIPSI

Oleh

Uswatun Kasanah NIM 141710201002

JURUSAN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS JEMBER 2018

POTENSI PENERAPAN PRODUKSI BERSIH PADA PROSES PEMBUATAN KEJU MOZZARELLA DI MARGO UTOMO KECAMATAN KALIBARU KABUPATEN BANYUWANGI

SKRIPSI

diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Teknik Pertanian (S1) dan mencapai gelar Sarjana Teknik Pertanian

Oleh

Uswatun Kasanah NIM 141710201002

JURUSAN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS JEMBER 2018

PERSEMBAHAN

Skripsi ini saya persembahkan sebagai rasa terima kasih saya kepada:

- a. kedua orang tua saya Ibunda Rini Widiarti dan Ayahanda Muhlisin serta adik tercinta Siti Fadilah dan keluarga besar yang telah menjadi motivasi, inspirasi, memberikan dukungan, dan senantiasa mendoakan untuk menggapai cita-cita;
- b. guru-guru saya sejak SD hingga Perguruan Tinggi yang memberikan ilmunya;
- c. almamater tercinta Fakultas Teknologi Pertanian Universitas Jember.

MOTTO

"Allah akan meninggikan orang-orang yang beriman diantaramu dan orang-orang yang diberi ilmu pengetahuan beberapa derajat"

(Terjemahan Surat Al-Mujadalah ayat 11)

"Semua ilmu itu baik karena ilmu mengajarkan hal yang belum kita ketahui, akan tetapi semua itu tergantung pada masing-masing individu yang mempelajari dan menggunakannya"

(Mario Teguh)

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

nama : Uswatun Kasanah

NIM : 141710201002

Menyatakan dengan sesungguhnya bahwa karya tulis ilmiah yang berjudul "Potensi Penerapan Produksi Bersih pada Proses Pembuatan Keju *Mozzarella* di Margo Utomo Kecamatan Kalibaru Kabupaten Banyuwangi" adalah benar-benar hasil karya sendiri, kecuali kutipan yang sudah saya sebutkan sumbernya, belum pernah diajukan ke institusi mana pun, dan bukan hasil jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi.

Demikian pernyataan ini saya buat dengan sebenarnya, tanpa ada tekanan dan paksaan dari pihak manapun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.

Jember, Juli 2018 Yang menyatakan,

Uswatun Kasanah NIM 141710201002

SKRIPSI

POTENSI PENERAPAN PRODUKSI BERSIH PADA PROSES PEMBUATAN KEJU MOZZARELLA DI MARGO UTOMO KECAMATAN KALIBARU KABUPATEN BANYUWANGI

Oleh

Uswatun Kasanah 141710201002

Pembimbing:

Dosen Pembimbing Utama : Dr. Elida Novita, S.TP., M.T.

Dosen Pembimbing Anggota : Dr. Ida Bagus Suryaningrat, S.TP., M.M.

PENGESAHAN

Skripsi berjudul "Potensi Penerapan Produksi Bersih pada Proses Pembuatan Keju *Mozzarella* di Margo Utomo Kecamatan Kalibaru Kabupaten Banyuwangi" telah diuji dan disahkan oleh Fakultas Teknologi Pertanian Universitas Jember pada:

hari, tanggal : Rabu, 11 Juli 2018

tempat : Fakultas Teknologi Pertanian Universitas Jember

Dosen Pembimbing

Dosen Pembimbing Utama Dosen Pembimbing Anggota

Dr. Elida Novita, S.TP., M.T. NIP. 197311301999032001 <u>Dr. Ida Bagus Suryaningrat, S.TP., M.M.</u> NIP. 197008031994031004

Tim Penguji

Ketua, Anggota,

Askin, S.TP., M.MT. NIP. 197008302000031001 Andrew Setiawan Rusdianto, S.TP., M.Si. NIP. 198204222005011002

Mengesahkan Dekan Fakultas Teknologi Pertanian Universitas Jember

<u>Dr. Siswoyo Soekarno, S.TP., M.Eng.</u> NIP. 196809231994031009

RINGKASAN

Potensi Penerapan Produksi Bersih Pada Proses Pembuatan Keju *Mozzarella* di Margo Utomo Kecamatan Kalibaru Kabupaten Banyuwangi. Uswatun Kasanah, 141710201002; 2018; 48 halaman; Jurusan Teknik Pertanian Fakultas Teknologi Pertanian Universitas Jember.

Margo Utomo merupakan kawasan agrowisata yang bergerak dalam bidang peternakan, perhotelan, dan perkebunan. Salah satu produk yang dihasilkan dari kegiatan peternakan adalah keju. Keju adalah salah satu hasil olahan susu yang merupakan protein susu yang digumpalkan. Jenis keju yang diproduksi Margo Utomo adalah keju *mozzarella*. Pembuatan keju *mozzarella* melibatkan penggumpalan dengan pengasaman susu. Gumpalan susu yang dihasilkan diproses lebih lanjut menjadi keju sedangkan cairan whey menjadi limbah. Produksi keju Margo Utomo setiap minggu menghasilkan sekitar 30 kg dan limbah whey yang dihasilkan sekitar 270 kg. Limbah whey sebagian digunakan sebagai campuran minuman anak sapi dan sekitar 75% dibuang langsung ke lingkungan sekitar tanpa adanya penanganan terlebih dahulu. Limbah whey mengandung BOD yang tinggi sehingga rentan terhadap bakteri yang mengakibatkan pembusukan apabila tidak segera didaur ulang. Oleh karena itu, perlu adanya penanganan lebih lanjut untuk mengurangi dampak dari pencemaran limbah dan meningkatkan efisiensi dengan cara melakukan penerapan produksi bersih. Produksi bersih merupakan salah satu alternatif yang digunakan untuk mengelola lingkungan yang bersifat pencegahan, terpadu dan diterapkan secara berkelanjutan sehingga mengurangi resiko terhadap kesehatan manusia dan lingkungan. Penelitian ini bertujuan untuk mengetahui alternatif tindakan produksi bersih yang berpotensi untuk diterapkan pada pembuatan keju Margo Utomo. Tahapan penelitian ini meliputi observasi lapang, pengambilan data sekunder dan data primer, identifikasi alternatif tindakan produksi bersih, analisis kelayakan alternatif, dan pemilihan skala prioritas alternatif tindakan produksi bersih. Data sekunder diperoleh dari kajian studi pustaka. Data primer didapatkan dari identifikasi neraca massa pembuatan keju dan analisis tingkat pencemaran. Analisis kelayakan alternatif dilihat dari tiga aspek yaitu aspek teknis, lingkungan, dan ekonomi. Analisis tersebut diukur dengan penentuan indikator penilaian yang diajukan dalam bentuk kuisioner langsung pada pemilik dan pekerja dan perhitungan kelayakan ekonomi dengan menggunakan NPV, IRR, B/C Rasio, dan PBP. Hasil analisis menunjukkan terdapat tiga alternatif tindakan produksi bersih yang diajukan yaitu pembuatan yogurt, kefir, dan pupuk cair. Berdasarkan ketiga alternatif tersebut, yogurt merupakan skala prioritas utama untuk diterapkan karena memiliki skor penilaian yang paling tinggi yaitu 48 dengan nilai NPV Rp 395.043.848, IRR 49%, PBP 2 tahun dan nilai B/C Rasio 1,4.

SUMMARY

Potential of Clean Production Implementation At Mozzarella Cheese Production in Margo Utomo Kalibaru Subdistrict Banyuwangi Regency. Uswatun Kasanah, 141710201002; 2018; 48 Pages; Department of Agricultural Engineering; Faculty of Agricultural Technology; University of Jember.

Margo Utomo is an agrotourism area included with dairy farm, hotel, and plantations. One of the products from dairy farm is mozzarella cheese. Cheese is one of the milk processed product which milk protein was coagulated. Manufacture of mozzarella cheese involved agglomeration milk because of acidification. The resulting milk was processed become cheese while the whey liquid becomes waste. Margo Utomo produced 30 kg of cheese and 270 kg of whey per week. Whey waste is partly used as a mixture of calf drinks and for 75% of waste directly threw away into the environment without handling. Whey waste contains a high BOD that is easy to decompose by bacteria if not immediately recycled. Therefore, further handling was required to reduce waste pollution and to improve the efficiency of clean production. Clean production is one of the alternatives environmental management that can apply sustainable production to reduce risk for human health and environment. The objective of this research was to know the alternative of clean production actions that have potential to be applied when making cheese in Margo Utomo. Research stages were field observation, secondary collection and primary data, identification of clean production action alternatives, alternative feasibility analysis, and selection of priority scale of alternative clean production actions. Secondary data was obtained from literature study. The primary data were obtained from the identification of mass balance cheese making and pollution level analysis. Analysis of alternative feasibility was seen from three aspects: technical, environmental, and economic aspects. There were measured by determination of appraisal indicator that submitted in form of a direct questionnaire to owners and workers, economic feasibility calculations used NPV, IRR, B / C Ratio, and PBP. The result of the research showed that there were three proposed alternative product namely making of yogurt, kefir, and liquid fertilizer. Based on three alternatives, yogurt is the main priority scale to be applied because it has the highest scoring score of 48 with NPV value Rp 395.043.848, IRR 49%, PBP 2 years and B / C Ratio 1.4.

PRAKATA

Puji syukur ke hadirat Allah SWT, atas segala rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi berjudul "Potensi Penerapan Produksi Bersih pada Proses Pembuatan Keju Mozzarella di Margo Utomo Kecamatan Kalibaru Kabupaten Banyuwangi". Skripsi ini disusun untuk memenuhi salah satu syarat menyelesaikan pendidikan strata satu (S1) pada Jurusan Teknik Pertanian Fakultas Teknologi Pertanian Universitas Jember.

Penyusunan skripsi ini tidak lepas dari bantuan berbagai pihak. Oleh karena itu, penulis menyampaikan terima kasih kepada:

- 1. Dr. Elida Novita, S.TP., M.T., selaku Dosen Pembimbing Utama dan Dr. Ida Bagus Suryaningrat, S.TP., M.M., selaku Dosen Pembimbing Anggota yang telah meluangkan tenaga, waktu, pikiran, dan perhatian dalam membimbing penulisan skripsi ini;
- 2. Dr. Dedy Wirawan Soedibyo, S.TP., M.Si., selaku Komisi Bimbingan Jurusan Teknik Pertanian;
- Ir. Muharyo Pudjojono dan Dr. Sri Wahyuningsih S.P., M.T., selaku Dosen Pembimbing Akademik yang telah membimbing selama penulis menjadi mahasiswa;
- 4. Seluruh dosen pengampu matakuliah, terima kasih atas ilmu dan pengalaman yang diberikan serta bimbingan selama studi di Fakultas Teknologi Pertanian, Universitas Jember;
- 5. Ayah, Ibu, dan Adikku tercinta serta seluruh keluarga yang tidak pernah lelah memberikan do'a, kasih sayang, dan semangat selama ini;
- 6. Allan Cahya Raditya, terima kasih atas segala dukungan dan do'a yang senantiasa Anda lakukan;
- 7. Sahabat seperjuangan (Ega, Ines, Nanik, Amel, dan Vori), terima kasih atas segala bantuan yang telah diberikan;
- 8. Teman-teman TEP A 2014, terima kasih atas kebersamaan, bantuan, nasehat, dan motivasinya;

- Teman-teman Jurusan teknik Pertanian angkatan 2014 Fakultas Teknologi Pertanian Universitas Jember, terima kasih atas bantuan, nasehat, dan motivasinya;
- 10. Semua pihak yang tidak dapat penulis sebutkan satu per satu yang telah membantu baik tenaga maupun pikiran dalam pelaksanaan penelitian dan penyusunan skripsi ini.

Penulis juga menerima kritik dan saran semua pihak demi kesempurnaan skripsi ini. Akhirnya penulis berharap, semoga skripsi ini dapat bermanfaat bagi semua.

Jember, Juli 2018

Penulis

DAFTAR ISI

	Halaman
HALAMAN SAMPUL	i
HALAMAN JUDUL	ii
PERSEMBAHAN	iii
MOTTO	
PERNYATAAN	v
PENGESAHAN	
RINGKASAN	viii
SUMMARY	ix
PRAKATA	X
DAFTAR ISI	xii
DAFTAR TABEL	XV
DAFTAR GAMBAR	
DAFTAR LAMPIRAN	xvii
BAB 1. PENDAHULUAN	1
1.1 Latar belakang	1
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	
1.4 Tujuan	3
1.5 Manfaat	3
BAB 2. TINJAUAN PUSTAKA	4
2.1 Susu	4
2.2 Proses Pembuatan Keju	4
2.3 Proses Produksi	6
2.4 Produksi Bersih	6

	2.5 Neraca Massa	7
	2.6 Neraca Energi	8
	2.7 Analisis kelayakan	8
	2.7.1 Kelayakan Ekonomi	9
	2.7.2 Kelayakan Teknis	11
	2.8 Kefir	11
	2.9 Yoghurt	12
	2.10 Pupuk Organik Cair	
В	AB 3. METODOLOGI PENELITIAN	
	3.1 Tempat dan Waktu	15
	3.2 Alat dan Bahan	15
	3.3 Prosedur Penelitian	16
	3.3.1 Observasi Lapang dan Identifikasi Masalah	16
	3.3.2 Metode Pengambilan Data	17
	3.3.3 Identifikasi Alternatif Tindakan Produksi Bersih	18
	3.3.4 Analisis Kelayakan	18
	3.3.5 Pemilihan Skala Prioritas Alternatif Produksi Bersih	19
В	AB 4. HASIL DAN PEMBAHASAN	23
	4.1 Gambaran Umum Lokasi Penelitian	23
	4.2 Identifikasi Neraca Massa Pembuatan Keju	25
	4.2.1 Neraca Massa Pembuatan Keju	26
	4.2.2 Neraca Energi Pada Proses Pembuatan Keju	30
	4.3 Analisis Tingkat Pencemaran Pembuatan Keju	33
	4.4 Identifikasi Alternatif Tindakan Produksi Bersih	
	4.5 Analisis Kelayakan Alternatif Tindakan Produksi Bersih	38
	4.5.1 Yoghurt	38
	4.5.2 Kefir	40

4.5.3 Pupuk Cair	42
4.6 Pemilihan Skala Prioritas Alternatif	43
BAB 5. PENUTUP	45
5.1 Kesimpulan	45
5.2 Saran	
DAFTAR PUSTAKA	46
LAMPIRAN	49

DAFTAR TABEL

Halaman
Tabel 2.1 Baku mutu air limbah usaha industri pengolahan susu
Tabel 2.2 Komposisi kimia kefir
Tabel 2.3 Komposisi kimia yogurt
Tabel 3.1 <i>Input output</i> pada setiap proses pembuatan keju
Tabel 3.2 Identifikasi alternatif tindakan produksi bersih
Tabel 3.3 Kriteria skala prioritas aspek teknis, lingkungan, dan ekonomi 20
Tabel 3.4 Kriteria penilaian alternatif tindakan produksi bersih
Tabel 4.1 Input dan output pada proses pemanasan
Tabel 4.2 Input dan output pada proses penggumpalan
Tabel 4.3 Input dan output pada proses pencetakan
Tabel 4.4 Input dan output pada proses perendaman
Tabel 4.5 Input dan output pada proses penggaraman
Tabel 4.6 Rincian energi tenaga kerja manusia pada proses pembuatan keju 32
Tabel 4.7 Rincian energi langsung pada proses pembuatan keju
Tabel 4.8 Rincian total energi masing-masing proses pada pembuatan keju 33
Tabel 4.9 Karakteristik limbah cair pembuatan keju dan baku mutu air limbah34
Tabel 4.10 Identifikasi permasalahan proses pembuatan keju dan alternatif
produksi bersih
Tabel 4.11 Analisis kelayakan teknis, lingkungan, dan ekonomi yoghurt
Tabel 4.12 Analisis kelayakan teknis, lingkungan, dan ekonomi kefir
Tabel 4.13 Analisis kelayakan teknis, lingkungan, dan ekonomi pupuk cair 42
Tabel 4.14 Perbandingan beberapa alternatif tindakan produksi bersih

DAFTAR GAMBAR

	Halaman
Gambar 3.1 Diagram alir penelitian	16
Gambar 4.1 Peta lokasi Margo Utomo, Banyuwangi	23
Gambar 4.2 Produk keju yang sudah dikemas	25
Gambar 4.3 Diagram kesetimbangan massa pembuatan keju	26
Gambar 4.4 Diagram kesetimbangan massa pembuatan keju	28
Gambar 4.5 Diagram kesetimbangan massa pembuatan keju	29
Gambar 4.6 Diagram kesetimbangan massa pembuatan keju	29
Gambar 4.7 Diagram kesetimbangan massa pembuatan keju	30
Gambar 4.8 Layout aliran proses pembuatan keju	33
Gambar 4.9 Limbah pembuatan keju	34

DAFTAR LAMPIRAN

H	Halaman
Lampiran A. Indikator Penilaian Alternatif Tindakan Produksi Bersih	49
Lampiran B. Perhitungan Neraca Energi pembuatan Keju	61
Lampiran C. Perhitungan Kelayakan Ekonomi Yogurt	63
Lampiran D. Perhitungan Kelayakan Ekonomi Kefir	68
Lampiran E. Perhitungan Kelayakan Ekonomi Pupuk Cair	73
Lampiran F. Dokumentasi	78

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Susu merupakan salah satu sumber protein hewani yang sangat baik untuk kesehatan. Susu sapi mengandung air sebanyak 87,25%, lemak 3,80%, protein 3,50%, laktosa 4,80% dan abu 0,65% (Ako, 2013:135). Menurut Dinas Peternakan Jawa Timur (2016), produksi susu sapi perah di Jawa Timur semakin meningkat, dari tahun 2013 sebesar 416.418.654 kg, tahun 2014 426.253.895 kg, dan tahun 2015 sebesar 472.212.765 kg. Susu dapat diolah menjadi beberapa produk, salah satu produk yang dihasilkan adalah keju. Keju merupakan protein susu yang digumpalkan (Hadiwiyoto, 1983:31).

Salah satu jenis keju yang digemari dan diproduksi oleh industri adalah keju *mozzarella*. Pada pembuatan keju *mozzarella* melibatkan penggumpalan dengan pengasaman susu. Gumpalan susu yang dihasilkan diproses lebih lanjut menjadi keju sedangkan cairan *whey* menjadi limbah. Pembuatan keju *mozzarella* membutuhkan bahan baku susu segar dalam jumlah yang cukup banyak. Untuk menghasilkan satu kilogram keju *mozzarella* membutuhkan sepuluh liter susu segar atau perbandingan 1:10. Dengan demikian 90% bahan cair susu menjadi limbah dalam bentuk *whey*. Hal ini menunjukkan bahwa limbah dalam pembuatan keju *mozzarella* sangat besar. Apabila limbah pembuatan keju tersebut dibuang langsung ke lingkungan tanpa adanya penanganan terlebih dahulu, maka dapat merusak lingkungan sekitar.

Menurut Jenie dan Rahayu (1993:25), limbah whey mempunyai nilai BOD (Biological Oxygen Demand) berkisar antara 32.000 mg/l sampai 60.000 mg/l tergantung proses pembuatan keju yang digunakan. Limbah pembuatan keju mempunyai karakteristik khusus, yaitu rentannya terhadap bakteri karena mengandung bahan organik berupa laktosa (Nurliyani, 2010). Limbah tersebut mudah mengalami proses pembusukan dan apabila tidak segera didaur ulang maka dapat merusak lingkungan sekitar (Sugiharto, 1987). Proses pembusukan disebabkan oleh komponen protein pada limbah whey yang mengandung nitrogen

(N). Protein terurai menjadi komponen lebih kecil, salah satunya amonia (NH₃) yang menyebabkan bau busuk. Untuk mengurangi pencemaran yang terjadi akibat pembuangan limbah pembuatan keju, maka perlu adanya proses penanganan limbah pembuatan keju terlebih dahulu. Salah satu upaya yang dapat dilakukan yaitu dengan penerapan produksi bersih. Produksi bersih merupakan salah satu alternatif yang digunakan untuk mengelola lingkungan yang bersifat pencegahan, terpadu dan diterapkan secara berkelanjutan sehingga mengurangi resiko terhadap kesehatan manusia dan lingkungan (Indrasti dan Fauzi, 2009:4).

Salah satu industri yang memproduksi keju *mozzarella* adalah Margo Utomo yang berada di Kecamatan Kalibaru Kabupaten Banyuwangi. Produksi keju setiap minggu menghasilkan sekitar 30 kg. Dengan demikian, *whey* yang dihasilkan sekitar 270 kg per minggu. Limbah *whey* sebagian digunakan sebagai campuran minuman anak sapi (*pedet*) dan sebagian besar dibuang langsung ke lingkungan sekitar tanpa adanya penanganan terlebih dahulu. Oleh karena itu, perlu adanya penanganan lebih lanjut untuk mengurangi pencemaran limbah dan meningkatkan efisiensi dengan cara melakukan penerapan produksi bersih.

1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, didapatkan rumusan masalah sebagai berikut.

- Bagaimana tingkat pencemaran pembuatan keju Margo Utomo Kecamatan Kalibaru, Kabupaten Banyuwangi?
- 2. Bagaimana tindakan produksi bersih yang dapat diaplikasikan pada proses pembuatan keju Margo Utomo Kecamatan Kalibaru, Kabupaten Banyuwangi?
- 3. Bagaimana kelayakan teknis, lingkungan, dan ekonomi alternatif tindakan produksi bersih pembuatan keju Margo Utomo Kecamatan Kalibaru, Kabupaten Banyuwangi?

1.3 Batasan Masalah

Batasan masalah pada penelitian ini adalah sebagai berikut.

- Penelitian hanya dilakukan pada pembuatan keju Margo Utomo Kecamatan Kalibaru, Kabupaten Banyuwangi.
- 2. Penelitian ini hanya menganalisis limbah cair hasil pembuatan keju.
- 3. Penelitian ini hanya menghitung kelayakan teknis, kelayakan lingkungan, dan kelayakan ekonomi.

1.4 Tujuan

Tujuan dari penelitian ini adalah sebagai berikut.

- Menentukan tingkat pencemaran proses pembuatan keju Margo Utomo Kecamatan Kalibaru, Kabupaten Banyuwangi.
- Menentukan alternatif tindakan produksi bersih yang dapat diaplikasikan pada limbah cair pembuatan keju Margo Utomo Kecamatan Kalibaru, Kabupaten Banyuwangi.
- Menghitung kelayakan teknis, kelayakan lingkungan dan kelayakan ekonomi alternatif tindakan produksi bersih pembuatan keju Margo Utomo Kecamatan Kalibaru, Kabupaten Banyuwangi.

1.5 Manfaat

Dengan adanya penelitian potensi penerapan produksi bersih pada proses pembuatan keju diharapkan dapat membantu pihak Margo Utomo untuk mengetahui sumber pencemar sehingga dapat menentukan alternatif tindakan produksi bersih yang berpotensi untuk diterapkan.

BAB 2. TINJAUAN PUSTAKA

2.1 Susu

Susu adalah suatu sekresi kelenjar dari ternak yang sedang laktasi, yang diperoleh dari pemerahan secara sempurna tanpa penambahan atau pengurangan suatu komponen (Suardana dan Swacita, 2009). Susu merupakan media yang baik bagi pertumbuhan mikroba sehingga apabila penanganannya tidak baik akan menimbulkan penyakit yang berbahaya. Komponen-komponen susu yang terpenting adalah protein dan lemak. Kandungan protein susu sekitar 3-5% sedangkan kandungan lemak sekitar 3-8% susu merupakan bahan dasar berbagai olahan susu (Hadiwiyoto, 1983:8). Salah satu hasil pengolahan susu adalah keju.

2.2 Proses Pembuatan Keju

Menurut Hadiwiyoto (1983:36), keju merupakan salah satu hasil olahan susu. Pada dasarnya keju adalah protein susu yang digumpalkan. Pemisahan protein susu dilakukan dengan cara penambahan asam, misalnya asam laktat, asam klorida atau menambahkan enzim protease. Berikut adalah tahapan pembuatan Keju *Mozzarella*.

1. Pemanasan susu

Tujuannya untuk membunuh bakteri patogen dan mengurangi sejumlah bakteri lain yang dapat mempengaruhi dalam pembuatan keju. Suhu yang digunakan 35°C.

2. Penambahan enzim rennet dan starter

Penambahan asam bertujuan untuk menurunkan pH susu sehingga enzim rennet bisa bekerja dengan optimal.

3. Penggumpalan

Proses ini dilakukan pada suhu kurang lebih 37^o C. Penggumpalan dilakukan dengan menambahkan enzim. Enzim yang paling baik adalah enzim protase.

4. Pemotongan

Protein yang menggumpal disebut *curd* kemudian dipotong agar ukuran lebih kecil. Pemotongan bertujuan umtuk memudahkan dalam pemisahan *curd* dan cairan sisa yang disebut *whey* dan dikerjakan dalam keadaan masih panas.

5. Penyaringan

Setelah proses pemanasan selesai, kemudian didinginkan kurang lebih satu jam sambil diaduk. Selanjutnya dilakukan penyaringan dengan kain yang bersih untuk memisahkan gumpalan susu (*curd*) dan *whey*.

6. Penggaraman

Memberi garam kurang lebih 2-6% agar keju mempunyai rasa asin. Caranya dengan diaduk dan diaduk sampai merata.

7. Pemuluran

Pemuluran dilakukan menggunakan mesin *stretching*. Teknik ini merupakan proses sebelum pematangan yang dapat dilakukan untuk memperbaiki tekstur dan rasa akhir keju.

8. Pengemasan produk

Pengemasan merupakan sistem yang terkoordinasi untuk menyiapkan barang menjadi siap untuk ditransportasikan, didistribusikan, disimpan, dijual, dan dipakai.

Pada proses pembuatan keju terdapat limbah yang berupa *whey*. Setiap pon keju yang diproduksi menghasilkan 5-10 lb *whey* cair. Limbah *whey* mengandung pH antara 5 dan 7, kandungan BOD pada *whey* berkisar antara 32.000 mg/l sampai 60.000 mg/l (Jenie dan Rahayu, 1993:26). Air limbah memilki baku mutu yang telah ditetapkan oleh pemerintah agar tidak mencemari lingkungan. Baku mutu air limbah pembuatan keju termasuk dalam baku mutu air limbah pengolahan susu. Baku mutu air limbah bagi usaha industri pengolahan susu menurut Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 dapat dilihat pada Tabel 2.1 berikut.

Tabel 2.1 Baku mutu air limbah usaha industri pengolahan susu

Parameter	Kadar paling tinggi (mg/L)	Beban pencemaran paling tinggi (kg/ton)
BOD	40	0,06
COD	100	0,15
TSS	50	0,075
Minyak dan Lemak	10	0,015
pН	6 – 9	
Kuantitas air limbah paling tinggi	1,5 m ³ per ton susu yang diolah	

Sumber: Peraturan Menteri Lingkungan Hidup (2014)

2.3 Proses Produksi

Proses produksi merupakan kegiatan atau rangkaian yang saling berkaitan untuk memberikan nilai kegunaan terhadap suatu barang. Suatu proses produksi yang bertujuan memberi nilai suatu barang dapat dilihat pada proses produksi yang mengolah bahan baku menjadi barang setengah jadi atau barang jadi. Produksi mentransformasi dari faktor-faktor produksi menjadi hasil produksi atau produk. Faktor produksi meliputi bahan baku, tenaga kerja, modal, dan teknologi. Agar memperoleh jumlah produk dengan harga dan kualitas yang diharapkan konsumen maka proses produksi perlu diatur dengan baik.

2.4 Produksi Bersih

Produksi bersih merupakan suatu alternatif dalam strategi pengelolaan lingkungan yang bersifat mencegah dan terpadu. Produksi bersih berkaitan dengan kegiatan pertumbuhan ekonomi, mencegah terjadinya pencemaran lingkungan, memelihara, dan memperkuat pertumbuhan ekonomi dalam jangka panjang (Indrasti dan Fauzi, 2009:3). Menurut Arief (2016:13), konsep produksi bersih merupakan pemikiran baru untuk meningkatkan kualitas lingkungan dengan bersifat proaktif. Produksi bersih merupakan salah satu sistem pengelolaan lingkungan yang dilaksanakan secara sukarela. Tujuan produksi bersih yaitu untuk mencapai efisiensi produksi atau jasa melalui upaya penghematan penggunaan materi dan energi, serta memperbaiki kualitas lingkungan melalui upaya

minimalisasi limbah. Salah satu tindakan produksi bersih adalah dengan penerapan minimisasi limbah. Pada tahap mengidentifikasi limbah terdapat enam tahap yang dilakukan yaitu (1) mengidentifikasi proses produksi, (2) menetapkan input proses, (3) menetapkan output proses, (4) membuat neraca massa, (5) mengidentifikasi peluang, (5) membuat studi kelayakan.

Menurut Kristanto (2013), prinsip-prinsip produksi bersih diaplikasikan dalam bentuk kegiatan 4R, yaitu *Reuse*, *Reduction*, *Recovery*, dan *Recycling*.

- Reuse atau penggunaan kembali adalah suatu teknologi yang memungkinkan limbah dapat digunakan kembali tanpa mengalami perlakuan fisika/kimia/biologi.
- 2. *Reduction* atau pengurangan limbah pada sumbernya adalah teknologi yang dapat mengurangi atau mencegah timbulnya pencemaran di awal produksi.
- 3. *Recovery* adalah teknologi untuk memisahkan suatu bahan atau energi dari suatu limbah untuk kemudian dikembalikan ke dalam proses produksi dengan atau tanpa perlakuan fisika/kimia/biologi.
- 4. *Recycling* atau daur ulang adalah teknologi yang berfungsi untuk memanfaatkan limbah dengan memrosesnya kembali ke bentuk semula yang dapat dicapai melalui perlakuan fisika/kimia/biologi.

2.5 Neraca Massa

Neraca massa adalah suatu perhitungan yang tepat dari semua bahan-bahan yang masuk, yang terakumulasi dan yang keluar dalam waktu tertentu. Pernyataan tersebut sesuai dengan hukum kekekalan massa yakni massa tak dapat dibentuk atau dimusnahkan (Wuryanti, 2016). Menurut Indrasti dan Fauzi (2009:23), pembuatan neraca massa memiliki tujuan untuk meyakinkan bahwa semua bahan telah terhitung. Cara menghitung neraca massa adalah sebagai berikut.

Total bahan masuk = total bahan keluar + produk.....(2.1)

Menurut Toledo (2007:64), proses yang akumulasinya 0 (input = output) disebut "stedy satate process", sedangkan proses yang akumulasinya tidak 0 disebut "unstedy satate process". Perhitungan ini digunakan untuk mengetahui

bahan yang masuk dan bahan yang keluar serta menentukan jumlah tiap komponen atau keseluruhan dalam suatu proses pengolahan pangan. Perhitungan ini berguna untuk menentukan formulasi produk hingga komposisi spesifik yang dibutuhkan dari bahan baku dan untuk mengevaluasi komposisi akhir setelah bahan melewati suatu proses. Sehingga diperoleh informasi tentang jumlah bahan yang efektif dan efisien untuk memperoleh produk akhir yang diinginkan.

2.6 Neraca Energi

Menurut Wuryanti (2016), neraca energi adalah persamaan matematis yang menyatakan hubungan anatara energi masuk dan nergi keluar suatu sistem yang berdasarkan pada satuan waktu operasi. Jenis-jenis masukan energi adalah sebagai berikut.

- a. Energi biologis (manusia)
 Kemampuan yang digunakan manusia untuk melakukan suatu usaha atau suatu pekerjaan.
- b. Energi langsung
 Energi langsung berupa dari bahan bakar, misal bahan bakar untuk tenaga
 penggerak motor bakar dan bahan bakar minyak untuk burner.
- c. Energi tak langsungEnergi tak langsung biasanya berasal dari pembuatan alat.

2.7 Analisis Kelayakan

Analisis kelayakan merupakan proses penentuan kelayakan untuk menentukan apakah ide seseorang merupakan dasar yang bisa bertahan untuk membuat suatu usaha yang sukses (Zimmerer *et al.*, 2008). Menurut Indrasti dan Fauzi (2009:23), dalam membuat analisis kelayakan ada beberapa hal yang harus dipertimbangkan antara lain: (1) pertimbangan teknologi antaranya ketersediaan teknologi yang dimiliki, keterbatasan fasilitas termasuk kesesuaian operasi yang ada, syarat untuk membuat suatu produk keamanan operator dan pelatihan, potensi terhadap kesehatan dan dampak lingkungan, (2) pertimbangan ekonomi yaitu modal dan biaya operasi, serta *pay-back period*.

2.7.1 Kelayakan Ekonomi

Menurut Indrasti dan Fauzi (2009:54-57), analisis kelayakan ekonomi merupakan suatu analisis yang digunakan untuk menentukan apakah penerapan alternatif tindakan produksi bersih dapat terus dilanjutkan atau tidak. Metode analisisnya menggunakan persamaan-persamaan berikut ini.

a) Net Present Value (NPV)

NPV merupakan metode menghitung nilai bersih (*netto*) pada waktu sekarang (*present*). Asumsi *present* menjelaskan waktu awal perhitungan bertepatan dengan evaluasi yang dilakukan atau pada periode tahun ke nol dalam perhitungan *cash flow* ekonomi (Giatman, 2006:69).

$$NPV = -I + A (PA, i\%, n) + SV (PF, i\%, n)$$
....(2.2)

Keterangan:

I = harga beli (ekonomi)

A = pendapatan per tahun

n = umur ekonomis proyek

i = tingkat suku bunga yang berlaku (10%)

S = nilai sisa

Kriteria keputusan:

- a) Jika NPV bertanda poistif (NPV>0), maka rencana ekonomi diterima
- b) Jika NPV bertanda negatif (NPV<0), maka rencana ekonomi ditolak
- b) Internal Rate of Return (IRR)

IRR merupakan tingkat keuntungan yang akan diperoleh investor dari investasi proyek yang dilaksanakan.

IRR =
$$i_1 + \frac{NPV1}{NPV1 - NPV2} (i_2 - i_1)$$
(2.3)

Keterangan:

i₁ = tingkat suku bunga saat menghasilkan NPV bernilai positif

i₂ = tingkat suku bunga saat menghasilkan NPV bernilai negatif

 $NPV_1 = NPV$ yang bernilai positif

 $NPV_2 = NPV$ yang bernilai negatif

Kriteria IRR yaitu sebagai berikut.

- a) Jika nilai IRR ≥ tingkat suku bunga yang berlaku menunjukkan proyek layak untuk dilaksanakan
- b) Jika nilai IRR ≤ tingkat suku bunga yang berlaku menunjukkan proyek tidak layak untuk dilaksanakan
- c) Net Benefit Cost Ratio (Net B/C)

BC rasio adalah analisis yang digunakan untuk mengevaluasi atau menentukan perbandingan antara nilai keuntungan dari modal yang digunakan pada suatu proyek. Parameter yang digunakan adalah apabila nilai B/C Rasio ≥ maka proyek layak untuk dilaksanakan (Suryaningrat, 2013).

Net B/C =
$$\frac{PW\ Benefits}{PW\ Cost} = \frac{EUAB}{EUAC} \ge 1$$
(2.4)

Kriteria Net B/C yaitu sebagai berikut.

- a) Jika B/C *ratio* > 1, maka proyek dinyatakan layak secara finansial sehingga dapat dilanjutkan.
- b) Jika B/C *ratio* < 1, maka proyek dinyatakan tidak layak secara finansial sehingga tidak dapat dilanjutkan.
- d) Pay Back Period (PBP)

PBP (Pay Back Period) merupakan waktu yang diperlukan untuk mengembalikan investasi awal.

$$Pay \ Back \ Period = \frac{Nilai \ investasi \ awal}{Kas \ bersih \ x \ 1 \ tahun}$$
.....(2.5)

Pay Back Period =
$$\frac{\text{Nilai investasi awal}}{\text{Keuntungan}}$$
 (2.6)

e) Break Even Point (BEP)

BEP merupakan jumlah hasil penjualan dimana proyek tidak mengalami kerugian, tetapi tidak juga memperoleh keuntungan.

$$Q_{BEP} = \frac{BT}{P - BV} \tag{2.7}$$

Keterangan:

Q_{BEP} = Jumlah penjualan break even yang dicari

BV = Biaya variabel per tahun (Rp)

BT = Biaya tetap per tahun (Rp)

P = Harga jual produk (Rp/unit)

2.7.2 Kelayakan Teknis

Menurut Indrasti dan Fauzi (2009:54), analisis kelayakan dapat dilakukan dengan menggunakan analisis kelayakan teknis. Kriteria evaluasi dalam kelayakan teknis ini meliputi bahan baku yang digunakan, peralatan yang digunakan, dan tenaga kerja yang ada. Analisis ini digunakan untuk mengetahui apakah dalam penggunaan bahan baku sudah efisien atau belum, peralatan yang digunakan sudah tepat atau belum, dan ketersediaan sumber daya manusia.

2.8 Kefir

Menurut Powel (2007), kefir merupakan suatu produk minuman susu fermentasi berkarbonasi dengan sedikit rasa asam, beraroma khamir yang menyegarkan dan berbentuk cairan yang kental. Kefir dapat dibuat dari susu berbagai jenis hewan namun penggunaan susu yang berbeda akan berpengaruh pada komposisi kimia kefir yang dihasilkan. Komposisi kimia kefir dapat dilihat pada Tabel 2.2 berikut.

Tabel 2.2 Komposisi kimia kefir

Komposisi Kimia	Jumlah
Air	89,5
Lemak	1,5
Protein	3,5
Abu	0,6
Laktosa	4,5

Sumber: Rahman et al., (1992)

Menurut Balai Penelitian dan Pengembangan Pascapanen Pertanian (2007), kefir dibuat melalui fermentasi susu yang telah dipasteurisasi dan diinokulasi biji kefir selama waktu tertentu. Bahan yang diperlukan dalam pembuatan kefir adalah susu segar dan starter berupa butir-butir kefir. Kefir dapat dibuat menggunakan bahan baku *whey*.

Menurut Nursiwi *et al* (2015), *whey* atau limbah pembuatan keju dapat diolah menjadi kefir dengan fermentasi menggunakan kefir grains. Randemen kefiran mengalami penurunan dengan semakin lamanya waktu fermentasi. Menurut Tamime dan Marshall (1994), prosedur pembuatan kefir dari whey meliputi beberapa tahap yaitu pencampuran, pasteurisasi, pendinginan, inokulasi, fermentasi, dan pemanenan.

- a. Pencampuran, perlakuan ini dilakukan untuk mencampur whey denganbahanbahan pembantu (seperti gula kristal dan susu skim) yang digunakan sebagai sumber nutrisi tambahan bagi mikroba selama proses fermentasi sehingga produk yang dihasilkan mempunyai tekstur yang halus dan tidak terdapat endapan.
- b. Pasteurisasi campuran *whey*, gula kristal putih dan susu skim pada suhu 83-85°C selama 30 menit untuk membunuh mikroba patogen yang terdapat dalam *whey*. Selain itu, pasteurisasi bertujuan untuk memudahkan pelarutan bahan tambahan.
- c. Pendinginan sampai suhu $\pm 27^{0}$ C untuk menciptakan kondisi optimum bagi pertumbuhan mikroba.
- d. Inokulasi 5% (b/v) kulur starter kefir secara aseptik untuk mencegah terjadinya kontaminasi oleh mikroba patogen.
- e. Fermentasi kefir dilakukan dalam kondisi anaerob pada suhu ruang 28°C selama 20-24 jam.
- f. Pemanenan, kefir hasil fermentasi dipanen dengan cara disaring untuk memisahkan kefir plain dan biji kefir. Kemudian kefir *whey* disimpan pada suhu 4⁰C untuk memperpanjang masa simpannya.

2.9 Yoghurt

Menurut Winarno *et al* (2003), yoghurt dibuat melalui proses fermentasi yang menggunakan satu atau beberapa jenis bakteri asam laktat. Prinsip pembuatan yoghurt adalah fermentasi dengan cara penambahan bakteri asam laktat (BAL) seperti *Streptococcus thermophillus* dan *Lactobacillus bulgaricus*. Komposisi kimia yoghurt dapat dilihat pada Tabel 2.3 berikut.

Tabel 2.3 Komposisi kimia yoghurt

Komposisi Kimia	Jumlah
Kadar Air	85
Lemak	1,5
Protein	5,3
Kadar Abu	1
Laktosa	7
pH	4,3

Sumber: Nawangsari et al (2012)

Langkah pembuatan yoghurt dimulai dari tahap fermentasi susu dengan cara pemanasan. Pemanasan ini sangat bervariasi, baik dalam penggunaan susu maupun lama pemanasannya. Namun pada dasarnya memiliki tujuan yang sama, yaitu menurunkan populasi mikroba dalam susu dan memberi kondisi yang baik bagi pertumbuhan biakan yoghurt. Selain itu, pemanasan susu sebelum dibuat yoghurt juga bertujuan untuk mengurangi airnya sehingga akan diperoleh yoghurt yang lebih padat. Pemanasan susu dilakukan sampai suhu 85-90°C selama 10-15 menit atau pada suhu 80-85°C selama 15-20 menit. Kemudian didinginkan sampai pada suhu 48°C yang selanjutnya diinokulasi biakan (starter) sebanyak 2-3% dan diinkubasi pada suhu 45°C sampai keasaman yang diinginkan tercapai (Sirait, 2010). Menurut Larasti *et al* (2016), *whey* dapat dimanfaatkan dalam pembuatan caspian sea yoghurt dengan menggunakan isolat *Lactobacillus cremoris* dan *Acetobacter orientalis*. Hasil terbaik dari penelitian memiliki kandungan protein rata-rata 3,58%; pH 4,1 dan viskositas 0,26.

2.10 Pupuk Organik Cair

Pupuk organik merupakan pupuk yang berasal dari tumbuhan hayati, kotoran hewan atau limbah organik lainnya yang telah melalui proses rekayasa berbentuk padat atau cair, dapat diperkaya dengan bahan mineral dan mikroba yang bermanfaat untuk meningkatkan kandungan hara dan bahan organik tanah serta memperbaiki sifat fisik, kimia, dan biologi tanah (Peraturan Menteri Pertanian, 2011). Pupuk organik tebagi menjadi dua yaitu pupuk organik padat

dan pupuk organik cair. Pupuk organik padat bisa berasal dari kotoran hewan dan pupuk organik cair bisa berasal dari urin hewan.

Pupuk organik cair merupakan larutan dari hasil pembusukan bahan-bahan organik yang berasal dari sisa tanaman, kotoran hewan, dan manusia yang kanfungan unsur haranya lebih dari satu unsur (Hadisuwito, 2007). Dalam pupuk organik cair terdapat berbagai macam kandungan unsur hara yang penting dan sangat dibutuhkan oleh tanaman. Menurut Murbandono (2002), unsur hara yang diperlukan tanaman dapat dibagi menjadi tiga golongan berdasarkan jumlah yang dibutuhkan tanaman. Ketiga golongan tersebut yaitu sebagai berikut.

- a) Unsur hara makro yaitu unsur hara yang dibutuhkan dalam jumlah banyak, seperti nitrogen (N), fosfor (P), dan pontasium atau kalium (K).
- b) Unsur hara sedang (sekunder) yaitu unsur hara yang dibutuhkan dalam jumlah kecil, seperti sulfur/belerang (S), kalium (Ca), dan magnesium (Mg).
- c) Unsur hara mikro yaitu unsur hara yang dibutuhkan dalam jumlah sedikit, seperti besi (Fe), tembaga (Cu), seng (Zn), khlor (Cl), boron (B), mangan (Mn), dan molibdenum (Mo).

Pupuk cair dapat dibuat dengan menggunakan limbah organik hasil sampingan pembuatan keju yaitu *whey* keju yang ditambahkan dengan *whey* kefir dan darah sapi. Menurut penelitian Setiawan (2017), campuran limbah *whey*, *whey* kefir, dan darah sapi memiliki kandungan unsur hara yang lebih bagus dan memenuhi standar yang ditetapkan.

BAB 3. METODOLOGI PENELITIAN

3.1 Tempat dan Waktu

Penelitian ini dilaksanakan di industri pembuatan keju Margo Utomo yang berada di Kecamatan Kalibaru, Kabupaten Banyuwangi dan Laboratorium Teknik Pengendalian dan Konservasi Lingkungan (TPKL) Jurusan Teknik Pertanian Fakultas Teknologi Pertanian Universitas Jember pada bulan Oktober 2017 sampai bulan Maret 2018.

3.2 Alat dan Bahan

Alat yang digunakan pada penelitian ini adalah timbangan, kuisioner, alat tulis, botol sampel, botol winkler 250 ml, erlenmeyer 1000 ml, pipet volumetrik 50 ml, pipet suntik, buret, corong, neraca analitik Ohaus, desikator, pH meter, TDS meter, Reaktor COD HI 839800, dan Spektofotometer HI 83099.

Bahan yang digunakan pada penelitian ini adalah susu cair, limbah pembuatan keju, aquades, H₂SO₄ pekat 98%, larutan Amilum, Reagen COD HR (*High Range*), larutan Mangan Sulfat 36,4%, larutan Alkali Iodida Azida 66%, dan larutan Natrium Tiosulfat 0,025 N.

3.3 Prosedur Penelitian

Langkah-langkah penelitian disajikan pada Gambar 3.1 di bawah ini.

Gambar 3.1 Diagram alir penelitian

3.3.1 Observasi Lapang dan Identifikasi Masalah

Identifikasi masalah dilakukan dengan melakukan observasi lapang. Hal ini bertujuan untuk mengetahui permasalahan yang ada di pembuatan keju Margo Utomo serta hal apa saja yang perlu diperbaiki.

3.3.2 Metode Pengambilan Data

Terdapat dua metode pengambilan data yaitu, sumber data primer dan sumber data sekunder.

a. Data Sekunder

Sumber data sekunder didapatkan berdasarkan kajian studi pustaka. Studi pustaka dilakukan melalui buku dan jurnal-jurnal ilmiah yang terkait dengan topik penelitian. Data sekunder ini sebagai referensi, informasi, dan teori yang mendukung kegiatan penelitian seperti proses pembuatan keju, baku mutu air limbah, kandungan limbah pembuatan keju, analisis kelayakan yang diterapkan, proses pembuatan yoghurt, proese pembuatan kefir, dan proses pembuatan pupuk cair.

b. Data Primer

Sumber data primer diperoleh dari identifikasi neraca produksi dan identifikasi tingkat pencemaran pembuatan keju.

1) Identifikasi neraca produksi dilakukan dengan cara melihat langsung proses produksi yang dilakukan dan menghitungnya. Data yang dibutuhkan dalam neraca produksi adalah jumlah bahan baku yang digunakan, jumlah limbah yang dihasilkan, jumlah produk yang dihasilkan. Identifikasi neraca produksi ini dilakukan untuk mengetahui jumlah input yang digunakan, output yang dihasilkan, dan bahan yang hilang atau limbah pada setiap tahap proses pembuatan keju. Data tersebut dimasukkan ke dalam tabel seperti Tabel 3.1 berikut.

Tabel 3.1 *Input Output* pada setiap proses pembuatan keju

Input		Output	
Jenis	Jumlah	Jenis	Jumlah
	••••	••••	••••

2) Identifikasi tingkat pencemaran pembuatan keju

Identifikasi tingkat pencemaran pembuatan keju dilakukan dengan cara mengukur kandungan BOD, COD, TSS, dan pH pada limbah cair yang dihasilkan. Hasil pengukuran yang diperoleh dibandingkan dengan baku mutu limbah cair pengolahan susu menurut Peraturan Menteri Lingkungan Hidup No 5 Tahun 2014. Metode yang digunakan dalam identifikasi tingkat pencemaran pembuatan keju adalah sebagai berikut.

- a) Pengukuran BOD dilakukan dengan menggunakan metode titrasi
- b) Pengukuran COD dilakukan dengan menggunakan spektrofotometer
- c) Pengukuran TSS dilakukan dengan menggunakan metode gravimetri
- d) Pengukuran pH dilakukan dengan menggunakan pH meter

3.3.3 Identifikasi Alternatif Tindakan Produksi Bersih

Untuk mengetahui alternatif tindakan produksi bersih apa saja yang dapat diterapkan maka dilakukan analisis tingkat permasalahan setiap proses pembuatan keju terlebih dahulu. Analisis tingkat permasalahan dilakukan untuk mengetahui masalah apa saja yang terjadi.

Tabel 3.2 Identifikasi alternatif tindakan produksi bersih

No	Proses Produksi	Permasalahan	Solusi / alternatif
1	Pemanasan susu		
2	Penggumpalan susu	/ \	
3	Pencetakan		
4	Pendinginan		
5	Penggaraman		,, ,

3.3.4 Analisis kelayakan

Analisis kelayakan dilakukan untuk mengetahui kelayakan dari alternatif tindakan produksi bersih yang akan diberikan. Analisis yang digunakan dilihat dari tiga aspek yaitu aspek teknis, aspek lingkungan dan aspek ekonomi.

a. Analisis Kelayakan Teknis dan Lingkungan

Kelayakan teknis digunakan untuk mengevaluasi tentang penggunaan bahan baku, sumber daya manusia dan alat yang digunakan. Sedangkan kelayakan lingkungan digunakan untuk melihat seberapa alternatif produksi bersih memberikan efek perbaikan terhadap lingkungan. Kelayakan teknis dan kelayakan lingkungan diperoleh dengan memberikan kuisioner kepada responden, yaitu pemilik dan pekerja yang ada di Margo Utomo. Pemilihan sampel sebagai responden dalam kuisioner ini didasarkan pada teknik *purposive sampling*. Teknik ini berdasarkan tujuan peneliti yaitu untuk mengetahui alternatif apa saja yang berpotensi untuk diterapkan pada pembuatan keju *mozzarella* di Margo Utomo sehingga responden yang diambil sebagian besar dari peternakan Margo Utomo. Kuisioner dibagikan kepada 30 responden umum. Semakin besar sampel dari besarnya populasi yang ada maka semakin baik, namun ada jumlah batas minimal yang harus diambil oleh peneliti yaitu sebanyak 30 sampel (Cohen *et al.*, 2007). Menurut Mahmud (2011), untuk penelitian yang menggunakan data statistik, ukuran sampel paling minimum adalah 30.

b. Analisis Kelayakan Ekonomi

Analisis kelayakan ekonomi digunakan untuk mengetahui nilai ekonomi alternatif tindakan produksi bersih yang diberikan. Analisis kelayakan ekonomi menggunakan metode *Net Present Value* (NPV), *Internal Rate of Return* (IRR), *Net Benefit Cost Ratio* (Net B/C), dan *Pay Back Period* (PBP).

3.3.5 Pemilihan Skala Prioritas Alternatif Tindakan Produksi Bersih

Pemilihan skala prioritas dilakukan untuk menentukan alternatif tindakan produksi bersih yang mungkin diterapkan pada proses pembuatan keju di Margo Utomo. Pemilihan skala prioritas dilakukan dengan melakukan pembobotan pada masing-masing alternatif yang diberikan. Skor penilaian yang digunakan adalah nilai 1 sampai 3. Kriteria skala prioritas aspek teknis, lingkungan, dan ekonomi dapat dilihat pada Tabel 3.3.

Tabel 3.3 Kriteria skala prioritas aspek teknis, lingkungan, dan ekonomi

Aspek	Indikator Penilaian		Skor Penilaian
	Pekerja (SDM)		
		(1)	1-4 orang
	Jumlah pekerja	(2)	5-19 orang
		(3)	>19 orang
		(1)	SMP
	Pendidikan	(2)	SMA
		(3)	D3/S1, S2
		(1)	15-24 tahun
	Umur	(2)	25 tahun
		(3)	>25 tahun
		(1)	Belum ada
	Ketersediaan tenaga ahli	(2)	Sudah ada, namun harus berlatih lagi
		(3)	_
	Alat yang digunakan		
		(1)	Manual
	Menggunakan mesin atau manual	(2)	Sebagian menggunakan mesin
		(3)	Menggunkan mesin
	Alat yang digunakan lakal atau	(1)	Tidak
	Alat yang digunakan lokal atau	(2)	Sebagian lokal
	tidak	(3)	Iya
		(1)	Memerlukan tenaga ahli
Геknis	Dalam menjalankan alat,	(2)	_
	memerlukan tenaga ahli atau tidak	(3)	
		(1)	_
	Ketersediaan alat	(2)	Sebagian alat tersedia
	Tietersediaan aac	(3)	Alat yang dibutuhkan tersedia
	Bahan yang digunakan		
		(1)	Bahan baku yang dibutuhkan belum tersedia
	Ketersediaan Bahan Baku	(2)	Sebagian bahan baku yang dibutuhkan sudah tersedia
		(3)	Semua bahan baku yang dibutuhkan sudah tersedia
		(1)	Tidak
	Bahan baku lokal atau tidak	(2)	Sebagian iya
		(3)	Iya
		(1)	Bahan baku tidak tersedia secara terus menerus
		(2)	Bahan baku tersedia secara terus
	Kontinuitas bahan baku	` /	menerus, namun memiliki kendala
			misalnya harga mahal
		(3)	Bahan baku tersedia secara terus-
			menerus

Aspek	Indikator Penilaian	Skor Penilaian
	Penanganan Limbah	
	Pemanfaatan limbah	 (1) Limbah tidak dimanfaatkan dan dibuang langsung ke lingkungar (2) Limbah sudah dimanfaatkan, namun hanya sebagian saja (3) Semua limbah yang dihasilkan sudah dimanfaatkan
	Pernah dilakukan daur ulang	(1) Tidak pernah(2) Rencana saja(3) Pernah
	Jumlah limbah yang didaur ulang	(1) Tidak ada(2) Sebagian(3) Semua limbah yang dihasilkan
Lingkungan	Jenis limbah yang didaur ulang	(1) Tidak ada(2) Limbah cair saja atau limbah padat saja(3) Limbah cair dan limbah padat
	Dampak yang dihasilkan	(3) Emiour cuir um miour puduc
	Berapa % dampak berkurang	 (1) < 50% (2) 50% - 99% (3) 100% (1) Tidak memberikan efek
	Efek perbaikan lingkungan	perbaikan lingkungan (2) Memberikan sedikit perbaikan lingkungan (3) Memberikan cukup perbaikan
		lingkungan
	NPV	(1) NPV < 0 (2) NPV = 0 (3) NPV > 0
	B/C Rasio	(1) B/C rasio < 1 (2) B/C rasio = 1 (3) B/C rasio > 1
Ekonomi	IRR	 (1) IRR ≤ tingkat suku bunga yang berlaku (2) IRR = tingkat suku bunga yang berlaku (3) IRR ≥ tingkat suku bunga yang
	РВР	berlaku (1) PBP > 1 tahun (2) PBP = 1 tahun (3) PBP < 1 tahun

Sumber: Indrasti dan Fauzi (2009)

Hasil akhir dari penilaian akan dijadikan sebagai dasar penentuan alternatif tindakan produksi bersih yang dapat diterapkan pada pembuatan keju Margo Utomo. Kriteria penilaian indikator alternatif tindakan produksi bersih dapat dilihat pada Tabel 3.4 berikut.

Tabel 3.4 Kriteria Penilaian Alternatif Tindakan Produksi Bersih

Kriteria Penilaian	Nilai	Keterangan
1. Tidak Berpotensi	21 - 35	Alternatif tindakan produksi bersih yang disarankan tidak berpotensi untuk diterapkan di pembuatan keju Margo Utomo
2. Cukup Berpotensi	36 - 49	Alternatif tindakan produksi bersih yang disarankan cukup berpotensi untuk diterapkan di pembuatan keju Margo Utomo
3. Berpotensi	50 - 63	Alternatif tindakan produksi bersih yang disarankan berpotensi untuk diterapkan di pembuatan keju Margo Utomo

BAB 4. HASIL DAN PEMBAHASAN

4.1 Gambaran Umum Lokasi Penelitian

Margo Utomo merupakan usaha yang dimiliki oleh Ibu Endang Mariana yang bergerak dalam bidang perkebunan, peternakan, dan perhotelan. Margo Utomo terletak di Jalan Lapangan Nomor 10, Kalibaru Wetan, Kecamatan Kalibaru, Kabupaten Banyuwangi. Margo Utomo terletak di kawasan padat penduduk, berdekatan dengan Pasar Kalibaru, dan mudah dalam transportasi. Letak tersebut membuat Margo Utomo berada pada kawasan yang menguntungkan dan mudah untuk diakses. Secara Geografis, Margo Utomo terletak pada koordinat 8°17'0" Lintang Utara, 113°58'0" Bujur Timur dan terletak pada ketinggian 427 mdpl. Peta lokasi Margo Utomo disajikan pada Gambar 4.1 berikut.

Gambar 4.1 Peta lokasi Margo Utomo, Banyuwangi

Peternakan Margo Utomo terdiri dari beberapa kegiatan yaitu perawatan sapi, sanitasi kandang, pemerahan susu sapi, pengemasan susu segar, pembuatan susu rasa, dan pembuatan keju. Pembuatan keju dilakukan secara tidak menentu, yang sering dilakukan yaitu satu minggu sekali. Karyawan pada peternakan sapi memiliki jam kerja 8 jam. Khusus bagi pekerja perawatan sapi perah memiliki jam kerja 12 jam (8 jam kerja dan 4 jam lembur). Pekerja yang ada di peternakan sapi Margo Utomo berjumlah 14 karyawan. Produksi susu Margo Utomo dalam seminggu kurang lebih 4.200 liter. Dari jumlah susu tersebut sebanyak 6,6% dibuat produk keju, 57,4% susu segar, 7,5% susu masak, dan 28,5% di distribusikan ke Netsle. Distribusi susu segar dilakukan satu kali dalam dua hari. Sedangkan produksi keju dilakukan hanya satu kali dalam satu minggu. Pembuatan keju dilakukan apabila stok keju habis dan ada pesanan keju dari konsumen.

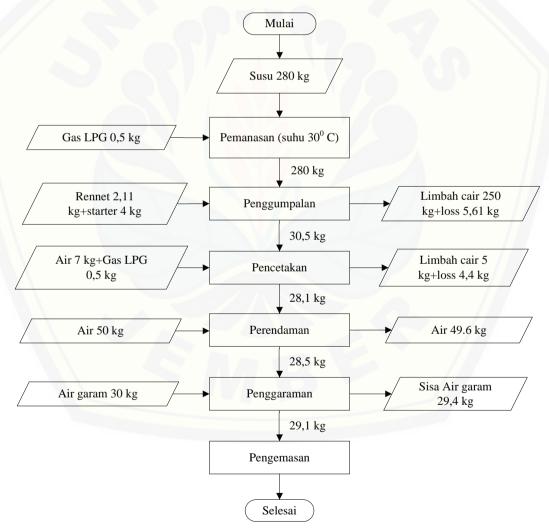
Keju merupakan protein susu yang digumpalkan (Hadiwiyoto, 1983: 31). Jenis keju yang diproduksi oleh Margo Utomo adalah keju *mozarella*. Menurut Sameen *et al*,. (2008), keju *mozzarella* dimanfaatkan sebagai *topping pizza*, karena kelelehan keju *mozzarella* yang mampu membentuk serabut-serabut ketika dipanaskan dan memiliki nilai gizi dan rasa yang baik. Karakteristik keju *mozzarella* ialah elastis, berserabut, dan lunak. Sifat tersebut terbentuk melalui proses penekanan dan pembenaman di dalam air panas hingga mulur.

Pembuatan keju di Margo Utomo dilakukan pada pagi hari pukul 07.00 WIB sampai 15.00 WIB, untuk pengemasan keju dilakukan pada malam hari setelah dilakukan penggaraman. Jumlah susu yang digunakan untuk satu kali produksi sebanyak 280 kg. Proses produksi keju dimulai dari pemanasan susu sampai suhu 30° C yang selanjutnya proses penggumpalan. Pada proses penggumpalan dilakukan penambahan enzim rennet dan starter dengan jumlah yang sudah ditentukan. Starter yang digunakan berupa fermentasi susu yang disiapkan sebelum proses pembuatan keju. Selanjutnya dilakukan proses pencetakan, pendinginan, dan penggaraman. Setelah itu keju siap untuk dikemas. Pada proses penggumpalan, pencetakan, pendinginan, dan penggaraman menghasilkan limbah cair yang apabila dibuang ke lingkungan secara langsung

dapat merusak lingkungan sekitar. Menurut Sugiharto (1987), limbah pembuatan keju mempunyai karakteristik khusus, yaitu rentannya terhadap bakteri. Limbah tersebut mudah mengalami proses pembusukan dan apabila tidak segera didaur ulang maka dapat merusak lingkungan sekitar. Produk keju yang sudah dikemas dapat dilihat pada Gambar 4.2 berikut.

Gambar 4.2 Produk keju yang sudah dikemas

4.2 Identifikasi Neraca Massa Pembuatan Keju


Bahan baku utama yang digunakan dalam pembuatan keju *mozzarella* adalah susu segar. Susu merupakan bahan pangan yang mudah terkontaminasi oleh mikroba. Susu segar yang terkontaminasi akan mengalami perubahan fisik dan kimia sehingga susu yang digunakan dalam pembuatan keju sebaiknya dilakukan standarisasi sehingga memenuhi baku mutu susu sesuai SNI (Standart Nasional Indonesia).

Jumlah susu yang digunakan sebagai bahan baku pembuatan keju di Margo Utomo sebanyak 280 kg dalam satu kali produksi. Proses pembuatan keju *mozzarella* dilakukan setiap satu kali dalam satu minggu atau menyesuaikan dengan permintaan konsumen. Pada proses pembuatan keju *mozzarella* di Margo Utomo, susu segar sebagai bakan baku tidak melewati proses standarisasi terlebih dahulu sehingga langsung masuk pada proses pemanasan atau pasteurisasi.

Identifikasi neraca massa ini dilakukan untuk mengetahui kesetimbangan massa pembuatan keju Margo Utomo. Identifikasi proses pembuatan keju dilakukan secara menyeluruh pada setiap tahapannya, mulai dari proses pemanasan, penggumpalan, pencetakan, pendinginan, dan penggaraman. Selain dilakukan identifikasi neraca massa, dilakukan juga identifikasi neraca energi setiap proses pembuatan keju.

4.2.1 Neraca Massa Pembuatan Keju

Kesetimbangan massa proses pembuatan keju dapat dilihat pada Gambar 4.3 berikut.

Gambar 4.3 Diagram kesetimbangan massa pembuatan keju Sumber: Data primer diolah (2018)

a. Pemanasan

Pemanasan susu pada suhu 30° C dengan tujuan agar enzim rennet bekerja dengan optimum dalam mengkoagulasikan susu sehingga terbentuk gumpalan. Pemanasan dilakukan dengan menggunakan kompor gas. Setiap kali produksi pada proses pemanasan menggunakan gas LPG sebanyak 0,5 kg. Wadah yang digunakan untuk pemanasan berupa panci besar yang terbuat dari *stainless steel*. Pemanasan dibagi menjadi 4 wadah yang berbeda dengan ukuran dua wadah ukuran 60 kg dan dua wadah ukuran 80 kg susu, jadi susu yang digunakan dalam satu proses pembuatan keju sebanyak 280 kg. Output yang dihasilkan pada tahap ini yaitu susu dengan suhu 30° C yang siap untuk ditambahi bahan penggumpal. Input dan output pada proses pemanasan dapat dilihat pada Tabel 4.1 berikut.

Tabel 4.1 Input dan output pada proses pemanasan

In	put	Out	put
Jenis	Jumlah	Jenis	Jumlah
Susu	280 kg	Susu 30^{0} C	280 kg
Gas LPG	0,5 kg		

Sumber: Data primer diolah (2018)

b. Penggumpalan

Penggumpalan merupakan tahap menggumpalnya setelah susu ditambahkan starter dan enzim berupa rennet. Sebelum susu ditambahkan dengan enzim dilakukan pengasaman terlebih dahulu menggunakan starter. Tujuannya untuk menurunkan pH bahan baku sehingga sesuai dengan kondisi optimum pertumbuhan bakteri. Menurut Rohmana dan Qadriah (2017), pH optimum pertumbuhan mikroba dalam pembuatan keju mozzarella adalah 5,4. Starter yang ditambahkan dalam pengasaman sebanyak 4 kg. Sedangkan enzim rennet yang ditambahkan sebanyak 0,11 kg yang dicampur air 2 kg. Pada tahap inilah limbah keju (whey) terbentuk. Setelah gumpalan susu terbentuk kemudian dilakukan penyaringan untuk memisahkan *curd* (padatan) dan *whey* (cairan). Whey yang keluar disaring kemudian ditampung dalam bak. Gumpalan susu yang dihasilkan dalam proses penggumpalan sebanyak 30,5 kg dan limbah whey yang dihasilkan sejumlah 250 kg.

Kandungan laktosa dan protein pada susu yang ditambahkan starter berupa BAL (Bakteri Asam Laktat) menghasilkan asam organik seperti asam laktat. Asam laktat tersebut menyebabkan nilai pH menjadi turun. Diagram kesetimbangan massa pembuatan keju dapat dilihat pada Gambar 4.4 berikut.

Gambar 4.4 Diagram kesetimbangan massa pembuatan keju Input dan output pada proses penggumpalan dapat dilihat pada Tabel 4.2

Tabel 4.2 Input dan output pada proses penggumpalan

Inp	out	Output		
Jenis	Jumlah	Jenis	Jumlah	
Susu 30 ^o C	280 kg	Gumpalan susu	30,5 kg	
Enzim Rennet	2,11 kg	Limbah cair	250 kg	
Starter (BAL)	4 kg	Loss	5,61 kg	

Sumber: Data primer diolah (2018)

c. Pencetakan

berikut.

Pencetakan merupakan tahap pembentukan keju yang diinginkan. Setelah terbentuk *curd*, selanjutnya *curd* (gumpalan susu) direndam dalam air panas disertai penekanan pada seluruh bagian. Penekanan ini dilakukan dengan tujuan membentuk tekstur lunak dan elastis pada keju *mozzarella*. Kemudian dilakukan pemuluran sampai tekstur menjadi kalis yang ditandai dengan permukaan menjadi licin lalu dibentuk. Menurut Purwadi (2007), metode pemuluran *curd* dalam air panas yaitu metode yang khas dilakukan dalam pembuatan keju *mozzarella* yang tidak dilakukan pada jenis keju lainnya. Pembentukan keju ini masih dilakukan manual menggunakan tenaga manusia. Diagram kesetimbangan massa pembuatan keju dapat dilihat pada Gambar 4.5 berikut.

Gambar 4.5 Diagram kesetimbangan massa pembuatan keju

Input dan output pada proses pencetakan dapat dilihat pada Tabel 4.3 berikut.

Tabel 4.3 Input dan output pada proses pencetakan

Inp	ut	Output	
Jenis	Jumlah	Jenis	Jumlah
Gumpalan susu	30,5 kg	Keju yang sudah dibentuk	28,1 kg
Air panas	7 kg	Limbah cair	5 kg
		Loss	5 kg 4,4 kg
Gas LPG	0,5 kg		_

Sumber: Data primer diolah (2018)

d. Perendaman (Pendinginan)

Setelah dilakukan proses pencetakan, keju yang terbentuk direndam dalam air es. Tujuannya agar keju menjadi keras dan tidak meleleh. Perendaman menggunakan air es sebanyak 50 kg. Wadah yang digunakan adalah bak besar. Diagram kesetimbangan massa pembuatan keju dapat dilihat pada Gambar 4.6 berikut.

Gambar 4.6 Diagram kesetimbangan massa pembuatan keju

Input dan output pada proses pendinginan dapat dilihat pada Tabel 4.4 berikut.

Tabel 4.4 Input dan output pada proses perendaman

Input		Output	
Jenis	Jumlah	Jenis	Jumlah
Keju dalam cetakan	28,1 kg	Keju yang sudah terbentuk	28,5 kg
Air dingin/es	50 kg	Limbah cair	49,6 kg

Sumber: Data primer diolah (2018)

e. Penggaraman

Penggaraman dilakukan untuk membentuk cita rasa pada keju *mozzarella* dan memperpanjang masa simpan. Penggaraman dilakukan dengan menggunakan air garam sebanyak 30 kg. Wadah yang digunakan adalah bak besar. Penggaraman dilakukan kurang lebih 5 jam. Diagram kesetimbangan massa pembuatan keju dapat dilihat pada Gambar 4.4 berikut.

Gambar 4.7 Diagram kesetimbangan massa pembuatan keju

Input dan output pada proses penggaraman dapat dilihat pada Tabel 4.5 berikut.

Tabel 4.5 Input dan output pada proses penggaraman

Inpu	t	Output		
Jenis	Jumlah	Jenis	Jumlah	
Keju yang sudah terbentuk	28,5 kg	Keju siap kemas	29,1 kg	
Air garam	30 kg	Air garam	29,4 kg	

Sumber: Data primer diolah (2018)

4.2.2 Neraca Energi Pada Proses Pembuatan Keju

Proses pembuatan keju dilakukan oleh empat orang perempuan dengan dua orang pekerja di pengolahan susu dan dua orang pekerja di Bakery Margo Utomo. Pekerja di Bakery Margo ikut serta apabila ada pembuatan keju saja. Hal tersebut karena pembuatan keju dilakukan oleh ahli yang dari Bakery Margo dan

pada pembuatan keju ini memerlukan tenaga yang lebih banyak daripada proses pemasakan susu. Akan tetapi tidak semua dalam prosesnya dilakukan oleh empat orang pekerja. Dalam setiap prosesnya dilakukan oleh dua orang pekerja saja. Pada pembuatan keju Margo Utomo masih menggunakan cara manual sehinga energi yang banyak digunakan berasal dari manusia atau pekerja yang ada.

a. Energi tenaga kerja

Dalam kegiatan proses produksi pembuatan keju Margo Utomo, tenaga kerja yang dibutuhkan berada dalam semua tahap proses pembuatan keju. Proses tersebut meliputi pemanasan, penggumpalan, pencetakan, pendinginan atau perendaman, dan penggaraman. Menurut Irwanto *et al*,. (1997), energi tenaga kerja dari manusia yang dikonsumsi dapat didekati menggunakan persamaan sebagai berikut.

```
Ebs = HOK \times JK \times Cb \times Rd \qquad (4.1)
```

Keterangan:

Ebs = Energi tenaga kerja manusia (MJ/ton)

HOK' = Σ hari orang kerja per ton hasil (hr/ton)

JK = Σ jam kerja per hari (jam/hr)

Cb = Nilai unit energi biologis (MJ/jam)

Rd = Rendemen hasil kegiatan yang berlangsung (%)

Total energi tenaga kerja pada setiap proses pembuatan keju dijumlahkan sehingga didapatkan nilai total untuk energi tenaga kerja manusia dalam pembuatan keju Margo Utomo. Total energi tenaga kerja manusia yang digunakan dalam pembuatan keju adalah 7,340 MJ/ton. Rincian jumlah energi tenaga kerja manusia setiap proses pembuatan keju dapat dilihat pada Tabel 4.6 berikut.

Tabel 4.6 Rincian energi tenaga kerja manusia pada proses pembuatan keju

No	Proses	Total Energi MJ/ton
1	Pemanasan	0,052
2	Penggumpalan	1,875
3	Pencetakan	7,650
4	Pendinginan	0,519
5	Penggaraman	0,512
	Total Energi	10,608

Sumber: Data primer diolah (2018)

(Lampiran B)

b. Energi Langsung

Energi langsung pada pembuatan keju berasal dari LPG, karena dalam proses pembuatan keju ini menggunakan kompor gas. Total energi langsung pada proses pembuatan keju adalah 8,862 MJ/ton dengan rincian setiap proses dapat dilihat pada Tabel 4.7 berikut.

Tabel 4.7 Rincian energi langsung pada proses pembuatan keju

No	Proses	Total Energi MJ/ton
1	Pemanasan	0,231
2	Penggumpalan	
3	Pencetakan	8,611
4	Pendinginan	- /
5	Penggaraman	-
	Total Energi	8,842

Sumber: Data primer diolah (2018)

(Lampiran B)

Berdasarkan perhitungkan energi tenaga kerja manusia dan energi langsung berupa gas LPG pada Tabel 4.6 dan Tabel 4.7, dapat diketahui jumlah keseluruhan energi yang digunakan dalam proses pembuatan keju yaitu sebesar 19,309 MJ/ton. Total energi didapatkan dari penjumlahan energi tenaga manusia dan energi langsung yang digunakan. Rincian total energi dari masing-masing proses pembuatan keju Margo Utomo dapat dilihat pada Tabel 4.8 berkut.

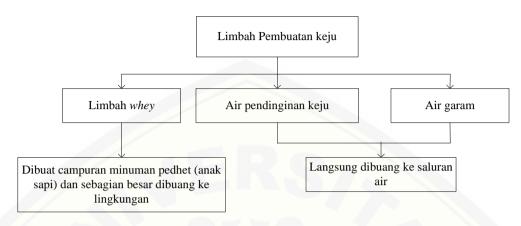
Tabel 4.8 Rincian total energi masing-masing proses pada pembuatan keju

No	Proses	Total Energi MJ/ton
1	Pemanasan	0,283
2	Penggumpalan	1,875
3	Pencetakan	16,120
4	Pendinginan	0,519
5	Penggaraman	0,512
	Total Energi	19,309

Sumber: Data primer diolah (2018)

(Lampiran B)

4.3 Analisis Tingkat Pencemaran Pembuatan Keju


Proses pembuatan keju Margo Utomo meliputi pemanasan susu, penggumpalan susu, pencetakan, pendinginan, dan penggaraman. Layout aliran proses pembuatan keju dapat dilihat pada Gambar 4.8 berikut.

Gambar 4.8 Layout aliran proses pembuatan keju

Proses pembuatan keju menghasilkan limbah berupa limbah cair. Air limbah merupakan sisa dari suatu usaha atau kegiatan yang berwujud cair (Peraturan Menteri Lingkungan Hidup Republik Indonesia, 2014). Limbah dari pembuatan keju berupa cair yaitu limbah *whey* dari proses penggumpalan, *whey*

dari proses pencetakan, dan air garam dari proses penggaraman keju. Jenis air limbah pembuatan keju dapat dilihat pada Gambar 4.9 berikut.

Gambar 4.9 Limbah pembuatan keju

Limbah whey yang dihasilkan diberikan ke pedet atau anak sapi dan sebagian besar dibuang langsung ke lingkungan. Air perendaman keju dan air garam masih langsung dibuang ke lingkungan melalui saluran pembuangan air. Limbah cair pembuatan keju dibuang ke saluran pembuangan air. Air limbah tersebut mengalir melalui selokan dan nantinya ditampung ke penampungan limbah cair. Limbah cair pembuatan keju (whey) dianalisis untuk menentukan tingkat pencemarannya. Adapun hasil analisis limbah cair pembuatan keju dan baku mutu air limbah dapat dilihat pada Tabel 4.9 berikut.

Tabel 4.9 Karakteristik limbah cair pembuatan keju dan baku mutu air limbah

No	Parameter	Hasil Uji	Baku Mutu Air Limbah	Satuan
1	BOD	24.153	40	mg/l
2	COD	75.477	100	mg/l
3	TSS	3.389	50	mg/l
4	pН	4,2	6 – 9	
5	Minyak dan Lemak	2.268	10	mg/l

Sumber: Data primer diolah (2018)

Berdasarkan Tabel 4.9 diketahui bahwa beberapa parameter pengukuran pada limbah cair pembuatan keju belum memenuhi baku mutu air limbah yang sudah ditentukan oleh Peraturan Menteri Lingkungan Hidup Republik Indonesia

No. 5 Tentang Baku Mutu Air Limbah tahun 2014. Jika limbah cair pembuatan keju tersebut langsung dibuang langsung ke lingkungan tanpa adanya proses terlebih dahulu maka dapat merusak lingkungan sekitar. Whey mengandung bahan organik yang tinggi dan apabila tidak ditangani dapat menimbulkan masalah pencemaran lingkungan. Bahan organik yang terkandung dalam limbah whey meliputi laktosa, nitrogen, kalsium, dan mangan (Mayangsari, 2015). Hasil pemecahan whey dapat menyebabkan kurangnya oksigen dalam air dan tanah karena whey mempunyai Biological Oxygen Demand (BOD) yang tinggi berasal dari laktosa (Nurliyani, 2010). Nilai BOD yang tinggi disebabkan karena molukel membutuhkan oksigen untuk oksidasi makromolekul (laktosa, protein, lemak) menjadi mikromolekul.

4.4 Identifikasi Alternatif Tindakan Produksi Bersih

Untuk mengetahui alternatif tindakan produksi bersih apa saja yang dapat diterapkan maka dilakukan analisis tingkat permasalahan setiap proses pembuatan keju terlebih dahulu. Analisis permasalahan dilakukan secara menyeluruh dari proses pemanasan, penggumpalan, pencetakan, pendinginan, dan penggaraman.

Berdasarkan analisis yang dilakukan, terdapat beberapa masalah yang terjadi pada saat proses pembuatan keju. Masalah yang terjadi pada saat proses produksi dan alternatif tindakan produksi bersih ditampilkan pada Tabel 4.10 berikut.

Tabel 4.10 Identifikasi permasalahan proses pembuatan keju dan alternatif produksi bersih

No	Proses Permasalahan		Solusi/Alternatif	Manfaat Ekonomi	Manfaat Lingkungan	Keterangan
1	Pemanasan	-			-	-
2	Penggumpalan	Limbah cair yang dihasilkan banyak (± 90% dari bahan baku yang digunakan)	 Limbah dapat diolah menjadi yoghurt Limbah dapat diolah menjadi kefir Limbah dapat dijadikan pupuk cair 	Dapat menambah pendapatan	Dapat mengurangi pencemaran lingkungan akibat limbah cair	Belum dilakukan
3	Pencetakan	Menghasilkan limbah cair (5 kg air whey)	 Limbah dapat diolah menjadi yoghurt Limbah dapat diolah menjadi kefir Limbah dapat dijadikan pupuk cair 	Dapat menambah pendapatan	Dapat mengurangi pencemaran lingkungan akibat limbah cair	Belum dilakukan
		Terdapat limbah whey yang tercecer karena wadah terlalu kecil	Wadah penampungan pada proses pencetakan diperbesar agar whey tidak tercecer di lantai		Dapat mengurangi pencemaran lingkungan akibat limbah whey	Belum dilakukan
4	Pendinginan	Menghasilkan limbah cair berupa air dingin sebanyak 49,6 kg	Digunakan untuk mencuci alat yang dipakai dalam proses pembuatan keju	Dapat menghemat air sehingga menghemat tagihan air		Belum dilakukan
5	Penggaraman	Menghasilkan limbah cair berupa air garam sebanyak 29,4 kg	Langsung dibuang melalui selokan air atau pembuangan air	-	-	Sudah dilakukan

Sumber: Data primer diolah (2018)

Tabel 4.10 di atas menunjukkan permasalahan apa saja yang ada pada pembuatan keju Margo Utomo. Berdasarkan tabel tersebut dapat diketahui bahwa pada proses penggumpalan, pencetakan, pendinginan, dan penggaraman menghasilkan limbah berupa limbah cair sehingga perlu adanya penanganan lebih lanjut. Dari permasalahan yang ada, hanya pada proses pencetakan dan penggumpalan yang menghasilkan limbah banyak sehingga alternatif dari penanganan limbahnya akan diidentifikasi. Pada permasalahan proses pendinginan dan penggaraman dilakukan sanitasi yang mudah untuk diterapkan. Limbah proses pendinginan bisa digunakan untuk mencuci alat yang digunakan pada proses pembuatan keju. Hal tersebut dapat menghemat penggunaan air yang ada. Limbah cair berupa air garam dapat dibuang langsung ke saluran air atau lingkungan sekitar. Air limbah penggaraman keju mengandung TSS 5,16 mg/L, salinitas 4,38 ‰, dan pH 6,3 sehingga apabila dibuang ke lingkungan langsung tidak berbahaya. Menurut Menteri Lingkungan Hidup (2014), baku mutu TSS dan pH industri pengolahan susu masing-masing sebesar 50 mg/L dan 6-9 sehingga air limbah sisa penggaraman tidak berbahaya jika dibuang langsung ke lingkungan karena nilai TSS dan pH tidak melebihi baku mutu air limbah yang telah ditetapkan. Salinitas menggambarkan padatan total di dalam air. Air sisa penggaraman ini masuk dalam kategori air payau karena memiliki nilai salinitas 4,38 %. Menurut Effendi (2003), nilai salinitas perairan tawar biasanya kurang dari 0,5% dan untuk perairan payau antara 0,5% - 30%.

Limbah whey yang dihasilkan dari proses penggumpalan dan pencetakan dapat diolah menjadi yoghurt, kefir, dan pupuk cair. Whey mempunyai kandungan protein dan laktosa yang apabila ditambahkan bakteri asam laktat (BAL) seperti Streptococcus thermophillus dan Lactobacillus bulgaricus, protein dalam whey akan menggumpal. Laktosa menjadi makanan bakteri yang menghasilkan asam organik. Asam organik tersebut mengkoagulasikan protein yang terdapat dalam whey sehingga whey berpotensi untuk dijadikan yoghurt maupun kefir. Dalam limbah whey terdapat nitrogen yang berasal dari protein; magnesium, kalsium, dan fosfor yang berasal dari mineral sehingga limbah ini berpotensi untuk dijadikan pupuk organik cair.

4.5 Analisis Kelayakan Alternatif Tindakan Produksi Bersih

Pada proses pembuatan keju menghasilkan limbah cair berupa whey. *Whey* terdiri dari beberapa komponen seperti laktosa, air, protein, mineral, dan lemak dengan jumlah secara berturut yaitu 5%, 93%, 0,85%, 0,53%, dan 0,36% (Pescuma *et al.*, 2008). Terdapat tiga alternatif yang mungkin dapat diterapkan untuk proses produksi bersih pada proses pembuatan keju di Margo Utomo, yaitu pembuatan yoghurt, pembuatan kefir berbahan baku *whey*, dan pembuatan pupuk cair.

4.5.1 Yoghurt

Prinsip pembuatan yoghurt adalah fermentasi dengan cara penambahan bakteri asam laktat (BAL) seperti *Streptococcus thermophillus* dan *Lactobacillus bulgaricus*. Pembuatan yoghurt menggunakan bahan baku berupa limbah cair keju (*whey*), gula pasir, susu skim, dan starter yoghurt.

Berdasarkan kuisioner yang telah diberikan responden didapatkan hasil analisis kelayakan pada Tabel 4.11 berikut.

Tabel 4.11 Analisis kelayakan teknis, lingkungan, dan ekonomi yoghurt

Aspek	Indikator Penilaian	Jumlah skor
	Pekerja (SDM)	9
Teknis	Alat yang digunakan	9
	Bahan yang digunakan	8
Linghungen	Penanganan Limbah	6
Lingkungan	Dampak yang dihasilkan	6
	NPV	3
Elegani	IRR	3
Ekonomi	B/C Rasio	3
	PBP	1
	Total	48

Sumber: Data primer diolah (2018)

(Lampiran A)

Berdasarkan Tabel 4.11, diketahui bahwa alternatif yoghurt memiliki skor 48 dilihat dari aspek teknis, lingkungan, dan ekonomi. Indikator penilaian berdasarkan aspek teknis meliputi pekerja (SDM), alat yang digunakan, dan bahan yang digunakan. Peternakan Margo Utomo berjumlah 19 orang. Rata-rata pendidikan terakhir dan umur pekerja Margo Utomo masing-masing adalah SMA dan 25 tahun. Untuk proses produksi yoghurt di Margo Utomo tidak membutuhkan tenaga ahli karena sudah tersedia pekerja yang bisa melakukan proses produksi yoghurt. Margo Utomo juga pernah membuat produk yoghurt berbahan baku susu. Sebagian dari kegiatan Margo Utomo menggunakan mesin dan sebagian dikerjakan secara manual. Mesin yang digunakan harus dioperasikan oleh ahlinya karena tidak semua pekerja bisa mengoperasikan mesin yang ada. Alat yang digunakan di Margo Utomo berasal dari lokal. Untuk pembuatan yoghurt alat sudah tersedia di Margo Utomo, karena alat yang digunakan hampir sama pada proses pengolahan susu. Bahan baku yang digunakan untuk pembuatan yoghurt meliputi whey, gula pasir, susu skim, dan starter yoghurt. Dari bahanbahan tersebut sebagian sudah tersedia di Margo Utomo. Bahan baku dapat diperoleh secara lokal sehingga bahan baku tersedia secara terus-menerus.

Indikator penilaian berdasarkan aspek lingkungan terdiri dari penanganan limbah dan dampak yang dihasilkan. Limbah yang dihasilkan masih sebagian saja yang dimanfaatkan sebagai minum anak sapi (*pedet*) dan sebagian besar masih dibuang ke lingkungan. Margo Utomo belum melakukan daur ulang terhadap limbah yang dihasilkan, masih dalam tahap rencana saja. Apabila dilakukan alternatif pembuatan yoghurt maka limbah tersebut dapat menambah nilai ekonomi dan dampak terhadap lingkungan berkurang 100% sehingga memberikan cukup perbaikan lingkungan.

Hasil perhitungan ekonomi pembuatan yoghurt cukup memuaskan yaitu nilai NPV Rp 262.212.355, IRR 24%, B/C Rasio 1,2 dan PBP 4 tahun. Perhitungan tersebut diasumsikan bahwa produksi yoghurt yang dibuat terjual habis dengan tingkat bunga yang ditentukan yaitu 10%. Dari hasil perhitungan tersebut diketahui bahwa usaha layak untuk dilaksanakan atau dilanjutkan. Hal tersebut dapat dilihat dari hasil perhitungan IRR dan Net B/C. Hasil IRR yang

diperoleh lebih besar dari suku bunga yang telah ditetapkan yang artinya usaha dapat dilaksanakan. Sedangkan hasil perhitungan Net B/C lebih besar dari 1 yang artinya usaha dinyatakan layak secara finansial.

4.5.2 Kefir

Menurut Powel (2007), kefir merupakan suatu produk minuman susu fermentasi berkarbonasi dengan sedikit rasa asam, beraroma khamir yang menyegarkan. Bahan baku yang digunakan dalam pembuatan kefir adalah *whey*. Untuk bahan lainnya menggunakan gula 5%, susu skim 10%, 3% bibit kefir. Dalam fermentasi kefir, susu skim digunakan sebagai sumber nutrisi pertumbuahan BAL.

Berdasarkan kuisioner yang telah diberikan kepada responden dan penilaian berdasarkan indikator yang telah ditentukan di dapatkan hasil pada Tabel 4.12 berikut.

Tabel 4.12 Analisis kelayakan teknis, lingkungan, dan ekonomi kefir

Aspek	Indikator Penilaian	Jumlah skor
	Pekerja (SDM)	7
Teknis	Alat yang digunakan	9
	Bahan yang digunakan	7
Linghungen	Penanganan Limbah	6
Lingkungan	Dampak yang dihasilkan	6
	NPV	3
El.,	IRR	3
Ekonomi	B/C Rasio	3
	PBP	1
	Total	45

Sumber: Data primer diolah (2018)

(Lampiran A)

Berdasarkan Tabel 4.12, diketahui bahwa alternatif kefir memiliki skor 45 dilihat dari aspek teknis, lingkungan, dan ekonomi. Indikator penilaian berdasarkan aspek teknis meliputi pekerja (SDM), alat yang digunakan, dan bahan

yang digunakan. Peternakan Margo Utomo berjumlah 19 orang. Rata-rata pendidikan terakhir pekerja Margo Utomo adalah SMA dan rata-rata umur pekerja adalah 25 tahun. Untuk proses produksi kefir di Margo Utomo masih membutuhkan tenaga ahli karena Margo Utomo belum pernah memproduksi kefir dan belum tersedia pekerja yang memahami proses produksi. Sebagian dari kegiatan Margo Utomo menggunakan mesin dan sebagian dikerjakan secara manual. Mesin yang digunakan harus dioperasikan oleh ahlinya. Alat yang digunakan di Margo Utomo berasal dari lokal. Untuk pembuatan kefir alat sudah tersedia di Margo Utomo, karena alat yang digunakan hampir sama pada proses pengolahan susu. Bahan baku yang digunakan untuk pembuatan kefir meliputi whey, gula pasir, susu skim, dan bibit kefir. Dari bahan-bahan tersebut sebagian sudah tersedia di Margo Utomo. Bahan baku dapat diperoleh secara lokal sehingga bahan baku tersedia secara terus-menerus. Namun untuk bibit kefir ini harganya terbilang mahal.

Indikator penilaian berdasarkan aspek lingkungan terdiri dari penanganan limbah dan dampak yang dihasilkan. Limbah yang dihasilkan masih sebagian saja yang dimanfaatkan yaitu digunakan sebagai minum anak sapi (*pedet*) dan sebagian besar masih dibuang ke lingkungan. Margo Utomo belum melakukan daur ulang terhadap limbah yang dihasilkan, masih dalam tahap rencana saja. Apabila dilakukan alternatif pembuatan kefir maka dapat menambah nilai ekonomi dan dampak terhadap lingkungan berkurang 100% sehingga memberikan cukup perbaikan lingkungan.

Hasil perhitungan ekonomi pembuatan kefir cukup memuaskan yaitu nilai NPV Rp 456.718.147, IRR 24%, B/C Rasio 1,2 dan PBP 3,7 tahun. Perhitungan tersebut diasumsikan bahwa produksi kefir yang dibuat terjual habis dengan tingkat bunga yang ditentukan yaitu 10%. Dari hasil perhitungan tersebut diketahui bahwa usaha layak untuk dilaksanakan atau dilanjutkan. Hal tersebut dapat dilihat dari hasil perhitungan IRR dan Net B/C. Hasil IRR yang diperoleh lebih besar dari suku bunga yang telah ditetapkan yang artinya usaha dapat dilaksanakan. Sedangkan hasil perhitungan Net B/C lebih besar dari 1 yang artinya usaha dinyatakan layak secara finansial.

4.5.3 Pupuk Cair

Pupuk organik cair adalah larutan dari hasil pembusukan bahan-bahan organik yang berasal dari sisa tanaman, kotoran hewan, dan manusia yang kandungan unsur haranya lebih dari satu unsur. Jenis pupuk organik cair antara lain pupuk kandang cair, sisa padatan dan cairan pembuatan biogas, serta pupuk cair dari sampah atau limbah organik (Hadisuwito, 2007). Analisis kelayakan teknis, lingkungan, dan ekonomi pupuk cair dapat dilihat pada Tabel 4.13 berikut.

Tabel 4.13 Analisis kelayakan teknis, lingkungan, dan ekonomi pupuk cair

Aspek	Indikator Penilaian	Jumlah skor
	Pekerja (SDM)	7
Teknis	Alat yang digunakan	9
	Bahan yang digunakan	6
Linghan	Penanganan Limbah	6
Lingkungan	Dampak yang dihasilkan	6
	NPV	3
Elas as as i	IRR	3
Ekonomi	B/C Rasio	3
	PBP	1
	Total	44

Sumber: Data primer diolah (2018)

(Lampiran A)

Berdasarkan Tabel 4.13, diketahui bahwa alternatif pupuk cair memiliki skor 45 dilihat dari aspek teknis, lingkungan, dan ekonomi. Indikator penilaian berdasarkan aspek teknis meliputi pekerja (SDM), alat yang digunakan, dan bahan yang digunakan. Peternakan Margo Utomo berjumlah 19 orang. Rata-rata pendidikan terakhir pekerja Margo Utomo adalah SMA dan rata-rata umur pekerja adalah 25 tahun. Untuk proses produksi pupuk cair di Margo Utomo masih membutuhkan tenaga ahli karena Margo Utomo belum pernah memproduksi pupuk cair dan belum tersedia pekerja yang memahami proses produksinya. Sebagian dari kegiatan Margo Utomo menggunakan mesin dan sebagian dikerjakan secara manual. Mesin yang digunakan harus dioperasikan oleh ahlinya.

Alat yang digunakan di Margo Utomo berasal dari lokal. Untuk pembuatan pupuk cair alat sudah tersedia di Margo Utomo, karena alat yang digunakan cukup sederhana dan bisa menggunakan barang bekas. Bahan baku yang digunakan untuk pembuatan pupuk cair meliputi *whey*, *whey* kefir, dan darah sapi. Dari bahan-bahan tersebut sebagian sudah tersedia di Margo Utomo. Namun untuk bahan berupa darah sapi belum tersedia di Margo Utomo, tetapi bisa diperoleh di RPH yang letaknya tidak jauh dengan Margo Utomo. Bahan baku dapat diperoleh secara lokal, tidak mengharuskan import. Namun bahan baku tersebut tidak tersedia secara terus-menerus, harus dilakukan pengadaan terlebih dahulu.

Indikator penilaian berdasarkan aspek lingkungan terdiri dari penanganan limbah dan dampak yang dihasilkan. Limbah yang dihasilkan masih sebagian saja yang dimanfaatkan yaitu digunakan sebagai minum anak sapi (*pedet*) dan sebagian besar masih dibuang ke lingkungan. Margo Utomo belum melakukan daur ulang terhadap limbah yang dihasilkan, masih dalam tahap rencana saja. Apabila dilakukan alternatif pembuatan pupuk cair maka dapat menambah nilai ekonomi dan dampak terhadap lingkungan berkurang 100% sehingga memberikan cukup perbaikan lingkungan.

Hasil perhitungan ekonomi pembuatan pupuk cair cukup memuaskan yaitu nilai NPV Rp 1.143.939.294, IRR 49%, B/C Rasio 1,3 dan PBP 2,1 tahun. Perhitungan tersebut diasumsikan bahwa produksi pupuk cair yang dibuat terjual habis. Dari hasil perhitungan tersebut diketahui bahwa usaha layak untuk dilaksanakan. Hal tersebut dapat dilihat dari hasil perhitungan IRR yang diperoleh lebih besar dari suku bunga yang telah ditetapkan yang artinya usaha dapat dilaksanakan dan hasil perhitungan Net B/C lebih besar dari 1 yang artinya usaha dinyatakan layak secara finansial.

4.6 Pemilihan Skala Prioritas Altenatif Tindakan Produksi Bersih

Berdasarkan hasil analisis beberapa alternatif yang telah diajukan yaitu yoghurt, kefir, dan pupuk cair dibandingan mana yang memiliki hasil yang lebih baik sehingga dapat diterapkan pada pembuatan keju Margo Utomo. Pemilihan alternatif dilakukan dengan membandingkan hasil skor dari beberapa indikator

yang telah dilakukan. Perbandingan beberapa alternatif tindakan produksi bersih dapat dilihat pada Tabel 4.14 berikut.

Tabel 4.14 Perbandingan beberapa alternatif tindakan produksi bersih

Alternatif Tindakan Produksi Bersih	Skor Penilaian	Keterangan	Skala Prioritas	
Yoghurt	48	Cukup berpotensi	1	
Kefir	45	Cukup berpotensi	2	
Pupuk Cair	44	Cukup berpotensi	3	

Sumber: Data primer diolah (2018)

(Lampiran A)

Dari ketiga alternatif berada dalam rentang yang sama yaitu rentang kedua yang artinya alternatif tindakan produksi bersih yang disarankan cukup berpotensi untuk diterapkan pada pembuatan keju Margo Utomo. Namun dari ketiga alternatif, pembuatan yoghurt memiliki skor paling tinggi yaitu 48 dan menjadi prioritas pertama untuk diterapkan pada pembuatan keju Margo Utomo.

BAB 5. PENUTUP

5.1 Kesimpulan

Berdasarkan pembahasan di atas, maka dapat ditarik kesimpulan sebagai berikut.

- 1. Tingkat pencemaran limbah cair pembuatan keju Margo Utomo sangat tinggi. Hal tersebut dapat dilihat dari beberapa parameter, yaitu BOD sbesar 24.153 mg/l, COD sebesar 75.477 mg/l, TSS sebesar 3.389 mg/l dan pH sebesar 4,2. Nilai tersebut melewati standar baku mutu air limbah menurut Menteri Lingkungan Hidup Nomor 5 Tahun 2014 sehingga perlu adanya penanganan terlebih dahulu.
- 2. Terdapat beberapa alternatif tindakan produksi bersih yang dapat diterapkan pada pembuatan keju Margo Utomo yaitu pembuatan yoghurt, pembuatan kefir, dan pembuatan pupuk cair.
- 3. Alternatif pembuatan yoghurt, kefir, dan pupuk cair dinyatakan layak untuk diterapkan karena nilai perhitungan dari NPV, IRR, B/C Rasio, dan PBP yang memuaskan. Hal tersebut dapat dilihat dari hasil perhitungan NPV alternatif yoghurt, kefir, dan pupuk cair masing-masing sebesar Rp 395.043.848, Rp 456.718.147, dan Rp 670.591.241, nilai IRR 49%, 24%, dan 50%, nilai B/C Rasio 1,4; 1,2; 1,4. Sedangkan dilihat dari segi teknis dan lingkungan alternatif yoghurt, kefir, dan pupuk cair cukup berpotensi untuk diterapkan pada pembuatan keju Margo Utomo. Namun dari ketiga alternatif tersebut yoghurt menjadi prioritas pertama karena memiliki skor penilaian yang paling tinggi.

5.2 Saran

Responden pada penelitian ini ditujukan kepada pemilik dan pekerja Margo Utomo dengan bobot yang sama. Untuk penelitian lebih lanjut responden yang digunakan sebaiknya dari beberapa pakar dengan menggunakan pembobotan yang berbeda.

DAFTAR PUSTAKA

- Ako, A. 2013. Ilmu Ternak Perah Daerah Tropis. Bogor: IPB Press.
- Arief, L. M. 2016. Pengolahan Limbah Industri Dasar-Dasar Pengetahuan dan Aplikasi di Tempat Kerja. Yogyakarta: Penerbit ANDI.
- Balai Penelitian dan Pengembangan Pascapanen Pertanian. 2007. Kefir, Susu fermentasi dengan Rasa yang Menyegarkan. *Warta Penelitian dan Pengembangan Pertanian*. 29(2): 12-13.
- Cohen, L., L. Manion, dan K. Marrison. 2007. *Research Methods in Education*. (Sixth edition). New York: Routledge.
- Dinas Peternakan Jawa Timur. 2016. *Data Produksi Ternak Kota di Jawa Timur*. Surabaya: Dinas Peternakan Provinsi Jawa Timur.
- Effendi, H. 2003. Telaah Kualitas Air bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Yogyakarta: Kasinius.
- Giatman, M. 2006. *Ekonomi Teknik*. Editor Arson Aliudin. Jakarta: PT Raja Grafindo.
- Hadisuwito, S. 2007. Membuat Pupuk Kompos Cair. Jakarta: Agromedia Pustaka.
- Hadiwiyoto, S. 1983. *Hasil-Hasil Olahan Susu, Ikan, Daging, dan Telur*. Yogyakarta: Liberty.
- Irwanto, Abdullah, Endah, Hartulis, dan Yamin. 1997. Analisis Aliran Energi Pada Sistem Produksi Beras di Kabupataen Lampung Tengah, Provinsi Lampung dalam Keteknikan Pertanian Tingkat Lanjut. Bogor: Institut Pertanian Bogor.
- Indrasti, N. S. dan Fauzi, A. M. 2009. Produksi Bersih. Bogor: IPB Press.
- Jenie, B. S. L. dan Rahayu, W. P. 1993. *Penanganan Limbah Industri Pangan*. yogyakarta: Kasinius.
- Kristanto, P. 2013. Ekologi Industri. Yogyakarta: Penerbit ANDI.
- Larasati, T., Kusnadi, J., Widyastuti, E. 2016. Pemanfaatan Whey dalam Pembuatan Caspian Sea Yoghurt dengan Menggunakan Isolat Lactobacillus cremoris dan Acetobacter orientalis. Jurnal Pangan dan Agroindustri. Vol 4(1): 201-210.

- Mahmud. 2011. Metode Penelitian Pendidikan. Bandung: Pustaka Setia.
- Mayangsari, Hastuti, U. S., dan Witjoro, A. 2015. Pengaruh Penambahan Whey Keju pada Media Biakan Murni Terhadap Pertumbuhan Koloni Jamur Tiram Putih (*Pleurotus astreatus* (Jacq.) P. Kumm.). Jurnal Agriculture. Vol. 2(1):45-56
- Murbandono, L. 2002. Membuat Kompos. Jakarta: Penerbar Swadaya.
- Nawangsari, D. N., Legowo, A. M., dan Mulyasi, S. 2012. Kadar Laktosa, Keasaman, dan Total Bahan Padat Whey Fermentasi dengan Penambahan Jus Kacang Hijau. *Jurnal Aplikasi Teknologi Pangan*. Vol 1(1): 12-14.
- Nurliyani, L. 2010. Laktosa Sebagai Ingridien Pangan. Food Review. 5 (6): 39-43.
- Nursiwi, A., Utami, R., Andriani, M., dan Sari, A. P. 2015. Fermentasi Whey Limbah Keju Untuk Produksi Kefiran Oleh Kefir Grains. Jurnal Teknologi Hasil Pertanian. Vol 8(1).
- Peraturan Menteri Pertanian Nomor 70 Tahun 2011. *Pupuk Organik, Pupuk Hayati dan Pembenah Tanah*. Permentan No.70/Permentan/SR.140/10/2011.
- Peraturan Menteri Pertanian Nomor 28 Tahun 2009. *Pupuk Organik, Pupuk Hayati dan Pembenah Tanah*. Permentan No.28/Permentan/SR.130/5/2009.
- Peraturan Menteri Lingkungan Hidup. 2014. Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014 tentang Baku Mutu Air Limbah. http://www.pelatihanlingkungan.com/wp-content/uploads/2015/01/Permen-LH-5-2014-tentang-Baku-Mutu-Air-Limbah.pdf [diakses tanggal 25 Maret 2017].
- Pescuma, M. E., Heberta, M., Mozzia, F., dan Valdeza, G. F. 2008. Whey Fermentation by Thermophilic Lactic Acid Bacteria: Evalution of Carbohydrates and Protein Content. *Food Microbiol* 25:442-451.
- Powel, J. E. 2007. Bacteriocin and Bacteriocin Producers Present in Kefir Grains. *Tesis*. Departement of Food Science, Fakulty of Agriscience. Stellenbosch University.
- Purwadi.2007. Uji Coba Penggunaan Jus Jeruk Nipis Dalam Pembuatan Keju *Mozzarella. Jurnal Ilmu dan Teknologi Hasil Ternak.* 2:28-34.
- Rahman, A., Fardiaz, S. W., Rahayu, P. S., dan Nurwitri. 1992. Bahan Pengajaran: *Teknologi Fermentasi Susu*. Pusat Antar Universitas Pangan dan Gizi. Bogor: Institut Pertanian Bogor.

- Rohmana, F. S. dan Qadriah, L. 2017. Pembuatan Keju *Mozzarella* dengan Metode Direct Acidification Menggunakan Air Perasan Jeruk Purut (*Citrus hystrix* D.C.). *Laporan Tugas Akhir*. Surakarta: Program Studi Diploma III Teknik Kimia Universitas Sebelas Maret.
- Sameen, A., M. A. Fariq, H. Nuzhat dan N. Haq. 2008. Quality evaluation of mozzarela cheese from different milk sources. *Pakistan Journal of Nutrision*. 7(6): 753-756.
- Setiawan, J. D. 2017. Uji Kualitas Pupuk Organik Cair Limbah *Whey* Keju ditambah Urin Sapi dan Darah Sapi dengan Starter *Whey* Kefir. *Skripsi*. Kediri: Fakultas Peternakan Universitas Nusantara PGRI Kediri.
- Sirait, C. H. 2010. Proses pengolahan Susu Menjadi Yoghurt. *Jurnal Wartazoa*. Vol 1(4): 5-8.
- Suardana, I. W. dan Swacita, I. B. N. 2009. Food Hygiene. Denpasar: Fakultas Kedokteran Hewan Universitas Udayana.
- Sugiharto. 1987. Dasar-Dasar Pengelolaan Air Limbah. Jakarta: Penerbit Universitas Indonesia (UI Press).
- Suryaningrat, I. B. 2013. *Ekonomi Teknik*. Jember: Jember University Press.
- Tamime, A., Y. Marshall. 1994. *Microbiology and Technology of Fermented Milk*. In Law, B. A. (ed). *Microbiology and Biochemistry of Cheese and Fermented Milk*. Blackie Academic and Profesional: London.
- Toledo, R. T. 2007. Fundamentals Of Food Process Engineering. New York: Springer Science+Business Media, LCC.
- Winarno, F. G., Ahnan, W. W., dan Widjajanto, W. 2003. Flora Usus dan Yoghurt. Bogor: M-BRIO PRESS.
- Wuryanti, S. 2016. *Neraca Massa dan Energi*. Bandung: Politeknik Negeri Bandung.
- Zimmerer, T, W., Scarborough, N. M., Wilson, D. 2008. *Essentials of Enterpreneurship and Small Business Management*. Fifth Edition. New Jersy: Pearson education. Terjemahan oleh D. A. Kwary. 2008. Kewirausahaan dan Manajemen Usaha Kecil. Edisi Kelima. Jakarta: Salemba Empat.

LAMPIRAN A. INDIKATOR PENILAIAN ALTERNATIF TINDAKAN PRODUKSI BERSIH

Indikator penilaian alternatif berdasarkan aspek teknis, lingkungan, dan ekonomi

Aspek	Indikator Penilaian	Yogurt	Kefir	Pupuk Cair	Keterangan
	Pekerja (SDM)				
					(1) 1-4 orang
	Jumlah pekerja	2	2	2	(2) 5-19 orang
					(3) > 19 orang
					(1) SMP
	Pendidikan	2	2	2	(2) SMA/SMK
					(3) D3/S1, S2
					(1) 15-24 tahun
	Umur	2	2	2	(2) 25 tahun
					(3) >25 tahun
	Ketersediaan tenaga ahli				(1) Belum ada
		3	1	1	(2) Sudah ada, namun harus berlatih lagi
Teknis					(3) Sudah ada
1 0111115	Alat yang digunakan				
					(1) Manual
	Menggunakan mesin atau manual	2	2	2	(2) Sebagian menggunakan mesin
					(3) Menggunkan mesin
	Teknologi atau alat yang digunakan lokal				(1) Tidak
	atau tidak	3	3	3	(2) Sebagian lokal
	atau tidak				(3) Iya
	Dalam menjalankan alat, memerlukan				(1) Memerlukan tenaga ahli
	tenaga ahli atau tidak	1	1	1	(2) Sebagian memerlukan tenaga ahli
	tonaga ann ataa taak				(3) Tidak memerlukan tenaga ahli
					(1) Alat belum tersedia
	Ketersediaan alat	3	3	3	(2) Sebagian alat tersedia
					(3) Alat yang dibutuhkan tersedia

	Bahan yang digunakan					
					(1)	Bahan baku yang dibutuhkan belum tersedia
					(2)	Sebagian bahan baku yang dibutuhkan sudal
	Ketersediaan Bahan Baku	2	2	2		tersedia
					(3)	Semua bahan baku yang dibutuhkan sudah
						tersedia
					(1)	Tidak
	Bahan baku lokal atau tidak	3	3	3	(2)	Sebagian iya
					(3)	Iya
					(1)	Bahan baku tidak tersedia secara terus
						menerus
	Kontinuitas bahan baku	3	2	1	(2)	Bahan baku tersedia secara terus menerus,
	Kontinuitas banan baku	3	2	1		namun memiliki kendala misalnya harga
						mahal
					(3)	Bahan baku tersedia secara terus-menerus
	Penanganan Limbah					
			L VANYA		(1)	Limbah tidak dimanfaatkan dan dibuang
						langsung ke lingkungan
	Pemanfaatan Limbah	2	2	2	(2)	Limbah sudah dimanfaatkan, namun hanya
	r emamaatan Emban	2	2	2		sebagian saja
					(3)	Semua limbah yang dihasilkan sudah
						dimanfaatkan
					(1)	Tidak pernah
ingkungan	Pernah dilakukan daur ulang	2	2	2	(2)	Rencana saja
8					(3)	Pernah
					(1)	Tidak ada
	Jumlah limbah yang didaur ulang	1	1	1	(2)	Sebagian
					(3)	Semua limbah yang dihasilkan
					(1)	Tidak ada
	Jenis limbah yang didaur ulang	1	1	1	(2)	Limbah cair saja atau limbah padat saja
	, ,				(3)	Limbah cair dan limbah padat

	Dampak yang dihasilkan					
	Berapa % dampak berkurang	3	3	3	(1) (2) (3)	<50% 50% - 99% 100%
	Efek perbaikan lingkungan	3	3	3	(1) (2) (3)	Tidak memberikan efek perbaikan lingkungan Memberikan sedikit perbaikan lingkungan Memberikan cukup perbaikan lingkungan
	NPV	3	3	3	(1) (2) (3)	NPV < 0 NPV = 0 NPV > 0
El	B/C Rasio	3	3	3	(1) (2) (3)	B/C rasio < 1 B/C rasio = 0 B/C rasio > 1
Ekonomi	IRR	3	3	3	(1) (2) (3)	IRR ≤ tingkat suku bunga yang berlaku IRR = tingkat suku bunga yang berlaku IRR ≥ tingkat suku bunga yang berlaku
	РВР	1	1	1	(1) (2) (3)	PBP > 1 tahun PBP = 1 tahun PBP < 1 tahun
	Total	48	45	44		

Nilai terendah = 21

Nilai tertinggi = 63

Selang = 14

Keterangan:

Tidak Berpotensi = 20 - 35

Cukup Berpotensi= 36 – 49

Berpotensi = 50 - 63

Kesimpulan:

- 1. Alternatif tindakan produksi bersih "yoghurt" cukup perpotensi untuk diterapkan di pembuatan keju Margo Utomo.
- 2. Alternatif tindakan produksi bersih "kefir" cukup perpotensi untuk diterapkan di pembuatan keju Margo Utomo.
- 3. Alternatif tindakan produksi bersih "pupuk cair" cukup perpotensi untuk diterapkan di pembuatan keju Margo Utomo.

Lampiran A2. Kuisioner untuk Penentuan Skor Penilaian

Ide	entitas Responden
Na	ma :
Un	nur :tahun
Jen	nis Kelamin : Laki-laki / Perempuan*
Laı	ma bekerja :
Ha	ri, tanggal :
Α.	ASPEK TEKNIS
SD	M (Pekerja)
1.	Apakah Anda bekerja di bagian peternakan Margo Utomo Eco Resort?
	a. Iya
	b. Tidak
	c. Lainnya ()
2.	Berapa jumlah pekerja yang ada di peternakan sapi Margo Utomo Eco Resort?
	a. 1-4 orang
	b. 5-19 orang
	c. >19 orang
3.	Pendidikan terakhir Anda?
	a. SMP
	b. SMA
	c. D3/S1, S2
4.	Jenis keju apa yang diproduksi oleh Margo Utomo Eco Resort?
5.	Dalam pembuatan keju menghasilkan limbah berupa whey (cairan), menurut
	Anda bagaimana penanganan limbah tersebut?

6.	Selama ini bagaimana penanganan limbah whey tersebut? Limbah whey nya diapakan?
7.	Apabila limbah cair pembuatan keju tersebut dibuang ke lingkungan, menurut
	Anda apakah baik untuk lingkungan sekitar?
8.	Menurut Anda, apakah limbah whey dapat dimanfaatkan?
	a. Iya
	b. Tidak
9.	Jika Iya, limbah <i>whey</i> dapat dimanfaatkan untuk apa?
10	. Jika jawaban poin 7 "tidak", bagaimana pendapat Anda apabila limbah
	tersebut dijadikan produk atau diolah?
	orsoom agaanaan produit aana oronan.
11	Apa saja pengolahan yang dapat diterapkan untuk pemanfaatan limbah <i>whey</i>
11	yang Anda ketahui?
	Kefir whey
	Yogurt
	Pupuk Organik Cair
	Lainnya,

- 12. Apakah di Margo Utomo Eco Resort ada yang mengetahui dan paham proses pembuatan kefir?
 - a. Ada
 - b. Tidak ada

13. Jika ada, apakan pernan dhakukan pembuatan kenir di Margo Otomo Eco
Resort?
a. Pernah
b. Tidak pernah
14. Apakah di Margo Utomo Eco Resort ada yang mengetahui dan paham proses
pembuatan yoghurt?
a. Ada
b. Tidak ada
15. Jika ada, apakah pernah dilakukan pembuatan yoghurt di Margo Utomo Eco
Resort?
a. Pernah
b. Tidak pernah
16. Apakah di Margo Utomo Eco Resort ada yang mengetahui dan paham
tentang pembuatan pupuk cair?
a. Ada
b. Tidak
17. Jika ada, apakah pernah dilakukan pembuatan pupuk cair di Margo Utomo
Eco Resort?
a. Pernah
b. Tidak pernah
Alat yang digunakan
18. Apa saja kegiatan yang ada di Margo Utomo Eco Resort selain peternakan?
19. Dari kegiatan-kegiatan tersebut, apakah ada kegiatan yang menggunakan
mesin?
a. Tidak
b. Sebagian iya
c. Iya

20.	Jika iya, mesin apa saja yang digunakan?						
21.	Apakah membutuhkan orang yang ahli dalam menjalankan atau						
	mengoperasikan mesin yang ada?						
	a. Iya						
	b. Sebagian iya						
	c. Tidak						
22.	Apakah alat-alat yang digunakan di Margo Utomo Eco Resort berasal dari						
	lokal atau tidak?						
	a. Tidak						
	b. Sebagian iya						
	c. Iya						
Bał	nan baku yang digunakan						
23.	Dalam proses pembuatan keju menggunakan bakteri (enzim rennet) atau						
	tidak?						
	a. Iya						
	b. Tidak						
24.	Jika iya, bakteri yang digunakan dalam proses pembuatan keju diperoleh dari						
	mana?						
25.	Jika jawaban poin 11 "kefir whey", dalam pembuatan kefir membutuhkan						
	bakteri (bibit kefir). Menurut Anda lebih baik bakteri pembuatan kefir						
	diperoleh dari lokal atau tidak?						
	a. Iya						
	h Tidak						

26.	Jika iya, pembuatan kefir tidak membutuhkan bahan yang sulit untuk didapat.
	Apabila ada perbaikan untuk limbah whey menjadi kefir, bagaimana menurut
	Anda? Apakah Anda bersedia atau tidak?
27.	Jika jawaban poin 11 "Yoghurt", dalam pembuatan yoghurt membutuhkan
	starter. Menurut Anda lebih baik starter pembuatan yoghurt diperoleh secara
	lokal atau tidak?
	a. Iya
	b. Tidak
28.	Jika iya, dalam pembuatan yoghurt tidak membutuhkan bahan yang
	mengharuskan import. Apabila ada perbaikan untuk limbah whey menjadi
	yoghurt, bagaimana menurut Anda? Apakah Anda bersedia atau tidak?
29.	Jika jawaban poin 11 "Pupuk Organik Cair", dalam pembuatan pupuk cair
	membutuhkan bahan berupa darah sapi. Menurut Anda apakah bahan tersebut
	tersedia di Margo Utomo Eco Resort ?
	a. Iya
	b. Tidak
30.	Jika tidak, Menurut Anda lebih baik bahan tersebut diperoleh secara lokal
	atau tidak?
	a. Iya
	b. Tidak
31.	Jika jawaban poin 30 "Iya", dalam pembuatan pupuk cair tidak membutuhkan
	bahan yang sulit untuk diperoleh. Apabila ada perbaikan untuk limbah whey
	menjadi pupuk cair, bagaimana menurut Anda? Apakah Anda bersedia atau
	tidak?

B. ASPEK LINGKUNGAN

1.	Bagaimana penanganan limbah pembuatan keju yang ada di Margo Utomo Eco
	Resort, apakah pernah dilakukan daur ulang/penanganan?
	a. Tidak pernah
	b. Rencana saja
	c. Pernah
2.	Jika pernah, kapan dilakukan daur ulang atau penanganan limbah tersebut?
3.	Jenis limbah apa saja yang pernah di daur ulang?
	a. Tidak ada
	b. Limbah cair saja atau limbah padat saja
	c. Limbah cair dan limbah padat
4.	Bagaimana penanganan limbah yang pernah dilakukan?
5.	Berapa jumlah limbah yang pernah didaur ulang atau dilakukan penanganan?
	a. Tidak ada
	b. Sebagian
	c. Semua limbah yang dihasilkan
6.	Jika jawaban poin 1 "Rencana Saja", kapan rencana penanganan limbah
	dilaksanakan?
7.	Apa saja yang sudah direncanakan untuk penanganan limbah yang ada di
	Margo Utomo Eco Resort?

8. Jika jawaban poin 1 "Tidak Pernah", apakah ada keinginan untuk mendaur
ulang limbah?
a. Ada
b. Tidak
9. Dalam pembuatan keju maupun kegiatan yang ada di Margo Utomo Eco Resort
bukan hanya menghasilkan limbah berupa whey namun juga sampah baik
sampah kemasan, sampah plastik dan lain-lain. Apakah sudah ada penanganan
terhadap sampah tersebut?
a. Sudah
b. Belum
10. Jika sudah, bagaimana penanganan sampah yang telah dilakukan?
10. Chia sudan, cagamiana penanganan sampan yang ceran diambasan.
11. Apakah ada SOP (Prosedur) tentang lingkungan terutama dalam penanganan
sampah ?
Sampan :
12. Anchile samue limbeh when yong dibesilkan dimenfeatkan menjadi kafir
12. Apabila semua limbah <i>whey</i> yang dihasilkan dimanfaatkan menjadi kefir
limbah akan berkurang, kira-kira hal tersebut mendukung atau tidak?
a. Iya
b. Tidak
13. Jika tidak, menurut Anda bagaimana langkah yang harus diambil untuk
perbaikan lingkungan?
14. Apabila semua limbah <i>whey</i> yang dihasilkan dimanfaatkan menjadi yoghurt
limbah akan berkurang, kira-kira hal tersebut mendukung atau tidak?
a. Iya
b. Tidak
15. Jika tidak, menurut Anda bagaimana langkah yang harus diambil untuk
perbaikan lingkungan?

16. Apabila semua limbah <i>whey</i> yang dihasilkan dimanfaatkan menjadi pupuk cair limbah akan berkurang, kira-kira hal tersebut mendukung atau tidak?
a. Iya
b. Tidak
17. Jika tidak, menurut Anda bagaimana langkah yang harus diambil untuk perbaikan lingkungan?

LAMPIRAN B. PERHITUNGAN NERACA ENERGI PEMBUATAN KEJU

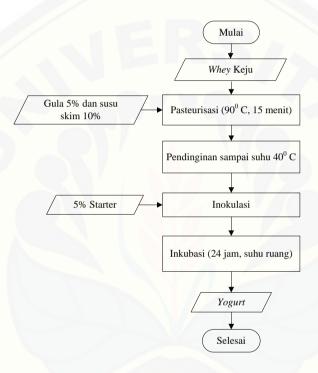
Tabel B1. Perhitungan Kebutuhan Energi Biologis Pada Proses Pembuatan Keju

No.	Drosos	Energi Biologis (Ebs)									
NO.	Proses -	∑ Pekerja	M in (ton)	M Out (ton)	t (jam)	t (hari)	JK	СВ	RD	HOK'	Ebs (MJ/ton)
1	Pemanasan	2	0,2800	0,2800	0,5	0,021	0,5	0,70	1,0000	0,1488	0,052
2	Penggumpalan	2	0,2800	0,0305	3,0	0,125	3,0	0,70	0,1089	8,1967	1,875
3	Pencetakan	2	0,0305	0,0281	2,0	0,083	2,0	0,70	0,9213	5,9312	7,650
4	Pendinginan	2	0,0281	0,0285	0,5	0,021	0,5	0,70	1,0142	1,4620	0,519
5	Penggaraman	2	0,0285	0,0291	0,5	0,021	0,5	0,70	1,0211	1,4318	0,512
Jumlah Energi Biologis						10,608					

Tabel B2. Perhitungan Kebutuhan Energi Langsung Pada Proses Pembuatan Keju

No.	Proses			Energi Langs	ung (Gas LPG)	
NO.	Pioses	Daya (Kw)	t (Jam)	t (Hari)	M In (ton)	Energi (Mj/ton)
1	Pemanasan	3,1	0,5	0,021	0,280	0,231
2	Penggumpalan	-	- / / \	-	- //	-
3	Pencetakan	3,1	2,0	0,083	0,031	8,470
4	Pendinginan	- /	-	-	-///	-
5	Penggaraman	-	4//	PK - V	/-//	-
		Jumlah En	ergi Langsung	9		8,701

Tabel B3. Total Kebutuhan Energi Pada Proses Pembuatan Keju


		Jenis	Energi	7D 4 1
No.	Proses	Energi Biologis (MJ/ton)	Energi Langsung (MJ/ton)	Total (MJ/ton)
1	Pemanasan	0,052	0,231	0,283
2	Penggumpalan	1,875	-	1,875
3	Pencetakan	7,650	8,470	16,120
4	Pendinginan	0,519	-	0,519
5	Penggaraman	0,512		0,512
Т	Total Energi	10,608	8,701	19,309

LAMPIRAN C. PERHITUNGAN KELAYAKAN EKONOMI YOGHURT

Lampiran C1. Proses Pembuatan Yoghurt

Proses pembuatan yoghurt meliputi proses penambahan bahan pembantu berupa gula dan susu skim, pemanasan, pendinginan, inokulasi, dan inkubasi. Diagram alir proses pembuatan yoghurt adalah sebagai berikut.

Gambar C1. Proses pembuatan yoghurt

Lampiran C1. Perhitungan Kelayakan Ekonomi Pembuatan Yoghurt

Asumsi yang digunakan dalam pengolahan limbah *whey* menjadi yoghurt adalah sebagai berikut.

- 1. Tempat produksi sudah tersedia di Margo Utomo.
- 2. Limbah yang digunakan untuk pembuatan yoghurt sebanyak 250 kg.
- 3. Unit pengolahan bekerja 4 kali dalam satu bulan, karena pembuatan keju Margo Utomo satu kali dalam satu minggu.
- 4. 250 kg *whey* menghasilkan sekitar 287,5 kg yoghurt yang dikemas botol dengan ukuran 250 gram.
- 5. Pembuatan yoghurt dengan satu varian rasa.
- 6. Jumlah produk yang terjual 100%.

Tabel C1. Rincian Investasi Pembuatan Yoghurt

Jenis Investasi	Jumlah	Harga/satuan	Jumlah/hari
Kompor Gas	1	Rp 300.000	Rp 300.000
Refrigerator	1	Rp 2.000.000	Rp 2.000.000
Thermometer	1	Rp 175.000	Rp 175.000
Gelas Ukur	2	Rp 40.000	Rp 80.000
Toples	1	Rp 2.000.000	Rp 2.000.000
Panci Stainlees Steel	2	Rp 3.500.000	Rp 7.000.000
Timbangan Digital	1	Rp 3.500.000	Rp 3.500.000
Pengaduk Kayu	4	Rp 40.000	Rp 160.000
To	otal biaya investasi		Rp 15.215.000

Tabel C2. Rincian Biaya Produksi

Komponen Biaya Operasional	Kebutuhan/ hari	Harga/ satuan	Jumlah/ hari
Bahan Baku			
Whey	250 kg		
Bahan Pembantu			
Susu Skim	25 kg	Rp 9000	Rp 225.000
Gula pasir	12,5 kg	Rp 14000	Rp 175.000
Starter (BAL)	6,25 kg	Rp 75000	Rp 4.687.500
Bahan Pengemas			
Botol plastik	1000 buah	Rp 3000	Rp 3.000.000
Label	1000 buah	Rp 500	Rp 500.000
Kebutuhan Energi			
Gas	2	Rp 16000	Rp 32.000
Kebutuhan Tenaga Kerja			
Proses Produksi	2	Rp 50000	Rp 100.000
Administrasi	1	Rp 70000	Rp 70.000
Total biaya	operasional / hari		Rp 8.789.500
Biay		Rp 8.619.500	
Sa	tu Bulan		Rp 34.478.000

1. Biaya produksi per botol

Rp 8.619.500 / 1000 botol = Rp 8.619

Dibulatkan menjadi Rp 9.000 / botol

2. Keuntungan 20%

 $Rp \ 9.000 \ / \ botol \ x \ 20\% = Rp \ 1.800 \ / \ botol$

Dibulatkan menjadi Rp 2.000 / botol

3. Harga Jual

 $Rp\ 9.000 / botol + Rp\ 2.000 / botol = Rp\ 11.000$

4. Penghasilan

Rp 11.000 x 1000 botol = Rp 11.000.000 / produksi

= Rp 44.000.000 / bulan

= Rp 528.000.000 / tahun

Lampiran C2. Analisis Kelayakan Ekonomi Pembuatan Yoghurt

Modal Awal	Rp	15.215.000
Nilai Sisa	Rp	247.500
Biaya Pokok Produksi atau Annual Cosct (AC)	Rp	416.136.000
Pendapatan atau Annual Benefit (AB)	Rp	528.000.000

Tahun	Benefit	Cost	Net Benefit (1-2)	DF 10%	NPV (3x4)	DF 45%	NPV - (3x6)	DF 50%	NPV - (3x8)
Ke	1	2	3	4	5	6	7	8	9
0	Rp0	Rp 425.143.500	-Rp 425.143.500	1	-Rp 425.143.500	1	-Rp 425.143.500	1	-Rp 425.143.500
1	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,9091	Rp 101.694.545	0,8333333	Rp 93.220.000	0,8	Rp 89.491.200
2	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,8264	Rp 92.449.587	0,6944444	Rp 77.683.333	0,64	Rp 71.592.960
3	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,7513	Rp 84.045.079	0,5787037	Rp 64.736.111	0,512	Rp 57.274.368
4	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,683	Rp 76.404.617	0,4822531	Rp 53.946.759	0,4096	Rp 45.819.494
5	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,6209	Rp 69.458.743	0,4018776	Rp 44.955.633	0,32768	Rp 36.655.596
6	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,5645	Rp 63.144.312	0,334898	Rp 37.463.027	0,262144	Rp 29.324.476
7	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,5132	Rp 57.403.920	0,2790816	Rp 31.219.189	0,209715	Rp 23.459.581
8	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,4665	Rp 52.185.382	0,232568	Rp 26.015.991	0,167772	Rp 18.767.665
9	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,4241	Rp 47.441.256	0,1938067	Rp 21.679.993	0,134218	Rp 15.014.132
10	Rp 528.000.000	Rp 416.136.000	Rp 111.864.000	0,3855	Rp 43.128.415	0,1615056	Rp 18.066.661	0,107374	Rp 12.011.306
	Rp 5.280.000.000	Rp4.586.503.500	Rp 693.496.500		Rp 262.212.355		Rp 43.843.197		-Rp 25.732.722

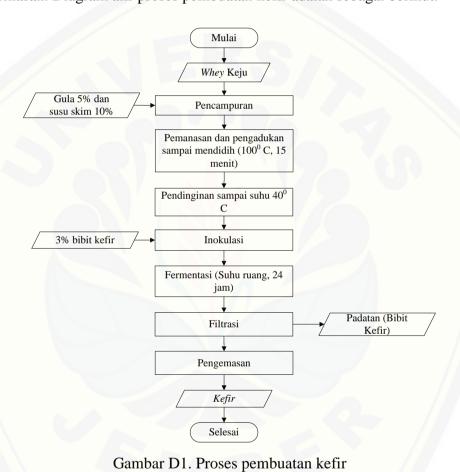
Perhitungan NPV, IRR, B/C Rasio, dan PBP

1. NPV =
$$Rp 262.212.355$$

2. IRR
$$= i_1 + \frac{NPV1}{NPV1 - NPV2} (i_2 - i_1)$$

$$= 0.1 + \frac{Rp \ 262.212.355}{Rp \ 262.212.355 - (-Rp \ 25.732.722)} (0.25-0.1)$$

$$= 24 \%$$


3. B/C Rasio =
$$\frac{\text{Rp } 5.280.000.000}{\text{Rp } 4.586.503.500}$$

= 1,2

4. PBP
$$= \frac{\text{Rp } 448.214.000}{\text{Rp } 102.856.500}$$
$$= 4 \text{ tahun}$$

LAMPIRAN D. PERHITUNGAN KELAYAKAN EKONOMI KEFIR

Lampiran D1. Proses Pembuatan Kefir

Proses pembuatan kefir meliputi proses penyaringan, penambahan bahan pembantu, pemanasan, pendinginan, inokulasi, fermentasi, filtrasi, dan pengemasan. Diagram alir proses pembuatan kefir adalah sebagai berikut.

Lampiran D2. Perhitungan Kelayakan Ekonomi Pembuatan Kefir

Asumsi yang digunakan dalam pengolahan limbah *whey* menjadi kefir adalah sebagai berikut.

- 1. Tempat produksi sudah tersedia di Margo Utomo.
- 2. Limbah yang digunakan untuk pembuatan kefir sebanyak 250 kg.
- Unit pengolahan bekerja 4 kali dalam satu bulan, karena pembuatan keju Margo Utomo satu kali dalam satu minggu.
- 4. Pembuatan kefir dengan bahan baku *whey* sebanyak 109,516 kg menghasilkan produk kefir sebanyak 112,035 kg, sehingga 250 kg *whey* menghasilkan sekitar 255,75 kg kefir. Produk kefir dikemas dengan botol berukuran 250 gram.
- 5. Pembuatan kefir dengan satu varian rasa.
- 6. Jumlah produk yang terjual 100%.

Tabel D1. Rincian Investasi Pembuatan Kefir

Jenis Investasi	Jumlah	Harga/satuan	Jumlah/hari
Kompor Gas	1	Rp 300.000	Rp 300.000
Refrigerator	1	Rp 2.000.000	Rp 2.000.000
Thermometer	1	Rp 175.000	Rp 175.000
Gelas Ukur	3	Rp 40.000	Rp 120.000
Sendok	1	Rp 25.000	Rp 25.000
Panci Stainlees Steel	2	Rp 3.500.000	Rp 7.000.000
Timbangan Digital	1	Rp 3.500.000	Rp 3.500.000
Pengaduk Kayu	4	Rp 40.000	Rp 160.000
Saringan	4	Rp 25.000	Rp 100.000
Kain saring	4	Rp 40.000	Rp 160.000
Wadah fermentasi	5	Rp 33.000	Rp 165.000
Baskom	10	Rp 45.000	Rp 450.000
	Total		Rp 14.155.000

Tabel D2. Rincian Biaya Produksi

Komponen Biaya Operasional	Kebutuhan/ hari	Harg	a/ satuan	Jun	nlah/ hari	
Bahan Baku						
Whey	250 kg					
Bahan Pembantu						
Susu Skim	12,5 kg	Rp	9000	Rp	112.500	
Gula pasir	12,5 kg	Rp	14000	Rp	175.000	
Starter kefir	7,5 kg	Rp 1.400.000		Rp 10.500.000		
Bahan Pengemas						
Botol plastik	1000 buah	Rp	3000	Rp	3.000.000	
Label	1000 buah	Rp	250	Rp	250.000	
Kebutuhan Energi						
Gas	2	Rp	16000	Rp	32.000	
Kebutuhan Tenaga Kerja						
Proses Produksi	2	Rp	50000	Rp	100.000	
Administrasi	1	Rp	70000	Rp	70.000	
Total biaya	a operasional / hari	7//		Rp 1	4.239.500	
Bia	ya Produksi	1//		Rp 1	4.069.500	
S	Satu Bulan					

1. Biaya produksi per botol

Rp. 14.069.500 / 1000 botol = Rp 14.069

Dibulatkan menjadi Rp 14.500 / botol

2. Keuntungan 25 %

 $Rp 14.500 / botol \times 20\% = Rp 2.900 / botol$

3. Harga Jual

 $Rp\ 14.500 / botol + Rp\ 2.900 / botol = Rp\ 17.400$

Dibulatkan menjadi Rp 18.000 / botol

4. Penghasilan

Rp 18.000 x 1000 botol = Rp 18.000.000 / produksi

= Rp 72.000.000 / bulan

= Rp 864.000.000 / tahun

Lampiran D2. Analisis Kelayakan Ekonomi Pembuatan Kefir

Modal Awal	Rp	14.155.000
Nilai Sisa	Rp	1.297.500
Biaya Pokok Produksi atau Annual Cosct (AC)	Rp	677.736.000
Pendapatan atau Annual Benefit (AB)	Rp	864.000.000

Tahun	Benefit	Cost	Net Benefit (1-2)	DF 10%	NPV (3x4)	DF 20%	NPV - (3x6)	DF 25%	NPV - (3x8)
Ke	1	2	3	4	5	6	7	8	9
0	Rp 0	Rp 687.793.500	-Rp 687.793.500	1,000	-Rp 687.793.500	1,000	-Rp 687.793.500	1,000	-Rp 687.793.500
1	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,909	Rp 169.330.909	0,833	Rp 155.220.000	0,800	Rp 149.011.200
2	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,826	Rp 153.937.190	0,694	Rp 129.350.000	0,640	Rp 119.208.960
3	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,751	Rp 139.942.900	0,579	Rp 107.791.667	0,512	Rp 95.367.168
4	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,683	Rp 127.220.818	0,482	Rp 89.826.389	0,410	Rp 76.293.734
5	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,621	Rp 115.655.289	0,402	Rp 74.855.324	0,328	Rp 61.034.988
6	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,564	Rp 105.141.172	0,335	Rp 62.379.437	0,262	Rp 48.827.990
7	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,513	Rp 95.582.884	0,279	Rp 51.982.864	0,210	Rp 39.062.392
8	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,467	Rp 86.893.531	0,233	Rp 43.319.053	0,168	Rp 31.249.914
9	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,424	Rp 78.994.119	0,194	Rp 36.099.211	0,134	Rp 24.999.931
10	Rp 864.000.000	Rp 677.736.000	Rp 186.264.000	0,386	Rp 71.812.835	0,162	Rp 30.082.676	0,107	Rp 19.999.945
	Rp8.640.000.000	Rp7.465.153.500	Rp1.174.846.500	1///	Rp 456.718.147		Rp 93.113.121		-Rp 22.737.279

Perhitungan NPV, IRR, B/C Rasio, dan PBP

1. NPV =
$$Rp 456.718.147$$

2. IRR
$$= i_1 + \frac{NPV1}{NPV1 - NPV2} (i_2 - i_1)$$

$$= 0.1 + \frac{Rp \, 456.718.147}{Rp \, 456.718.147 - (-Rp \, 22.737.279)} (0.25-0.1)$$

$$= 24 \%$$

3. B/C Rasio =
$$\frac{Rp \ 8.640.000.000}{Rp \ 7.465.153.500}$$

= 1,2

4. PBP
$$= \frac{Rp \ 689.491.000}{Rp \ 188.664.000}$$
$$= 3.7$$

LAMPIRAN E. PERHITUNGAN KELAYAKAN EKONOMI PUPUK CAIR

Lampiran E1. Proses Pembuatan Pupuk Cair

Pupuk cair dapat dibuat dengan menggunakan limbah organik hasil sampingan pembuatan keju yaitu *whey* keju yang ditambahkan dengan *whey* kefir dan darah sapi. Diagram alir proses pembuatan pupuk cair adalah sebagai berikut.

Gambar E1. Proses pembuatan pupuk cair

Lampiran E2. Perhitungan Kelayakan Ekonomi Pembuatan Pupuk Cair

Asumsi yang digunakan dalam pengolahan limbah *whey* menjadi pupuk cair adalah sebagai berikut.

- 1. Tempat produksi sudah tersedia di Margo Utomo.
- 2. Limbah yang digunakan untuk pembuatan pupuk cair sebanyak 250 kg.
- 3. Unit pengolahan bekerja 4 kali dalam satu bulan, karena pembuatan keju Margo Utomo satu kali dalam satu minggu.
- 4. 250 kg *whey* menghasilkan sekitar 406 kg pupuk cair yang dikemas dalam botol berukuran 400 gram.
- 5. Jumlah produk yang terjual 100%.

Tabel E1. Rincian Investasi Pembuatan Pupuk Cair

Jenis Investasi	Jumlah	Harga/satuan	Jumlah/hari		
Drum Fermentasi	2	Rp 300.000	Rp 600.000		
Alat Pengaduk	2	Rp 50.000	Rp 100.000		
Gelas Ukur	2	Rp 40.000	Rp 80.000		
Timbangan Digital	1	Rp1.290.000	Rp 1.290.000		
Saringan	2	Rp 25.000	Rp 50.000		
	Total		Rp 2.120.000		

Tabel E2. Rincian Biaya Produksi

Komponen Biaya Operasional	Kebutuhan/ hari	Harga/ satuan		Jumlah/ hari	
Bahan Baku					
Whey	250 kg				
Bahan Pembantu					
Whey Kefir	31,25 kg	Rp	35000	Rp 1.093.750	
Darah sapi	125 kg				
EM4	25 kg	Rp	20000	Rp 500.000	
Bahan Pengemas					
Botol plastik	1000 buah	Rp	10000	Rp 10.000.000	
Label	1000 buah	Rp	500	Rp 500.000	
Kebutuhan Tenaga Kerja					
Proses Produksi	2	Rp	50000	Rp 100.000	
Administrasi	1	Rp	70000	Rp 70.000	
Total biaya	operasional / hari	7		Rp 12.263.750	
Biaya	Produksi	V		Rp 12.093.750	
Sat	u Bulan			Rp 48.375.000	

1. Biaya produksi per botol

Rp. 12.093.750 / 1000 botol = Rp 12.093

Dibulatkan menjadi Rp 12.000 / botol

2. Keuntungan 50%

 $Rp\ 12.000 / botol \ x\ 50\% = Rp\ 6.000 / botol$

3. Harga Jual

 $Rp\ 12.000 / botol + Rp\ 6.000 / botol = Rp\ 18.000$

4. Penghasilan

Rp 18.000 x 1000 botol = Rp 18.000.000 / produksi

= Rp 72.000.000 / bulan

= Rp 864.000.000 / tahun

Lampiran E2. Analisis Kelayakan Ekonomi Pembuatan Pupuk Cair

Modal Awal	Rp	2.120.000
Nilai Sisa	Rp	212.000
Biaya Pokok Produksi atau Annual Cosct (AC)	Rp	581.700.000
Pendapatan atau Annual Benefit (AB)	Rp	864.000.000

Tahun	Benefit	Cost	Net Benefit (1-2)	DF 10%	NPV (3x4)	DF 45%	NPV - (3x6)	DF 50%	NPV - (3x8)
Ke	1	2	3	4	5	6	7	8	9
0	Rp 0	Rp590.672.000	-Rp590.672.000	1,000	-Rp 590.672.000	1,000	-Rp590.672.000	1,000	-Rp 590.672.000
1	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,909	Rp 256.636.364	0,690	Rp 194.689.655	0,667	Rp 188.200.000
2	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,826	Rp 233.305.785	0,476	Rp 134.268.728	0,444	Rp 125.466.667
3	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,751	Rp 212.096.168	0,328	Rp 92.599.123	0,296	Rp 83.644.444
4	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,683	Rp 192.814.698	0,226	Rp 63.861.464	0,198	Rp 55.762.963
5	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,621	Rp 175.286.089	0,156	Rp 44.042.389	0,132	Rp 37.175.309
6	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,564	Rp 159.350.990	0,108	Rp 30.374.061	0,088	Rp 24.783.539
7	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,513	Rp 144.864.537	0,074	Rp 20.947.628	0,059	Rp 16.522.359
8	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,467	Rp 131.695.033	0,051	Rp 14.446.640	0,039	Rp 11.014.906
9	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,424	Rp 119.722.758	0,035	Rp 9.963.200	0,026	Rp 7.343.271
10	Rp 864.000.000	Rp581.700.000	Rp282.300.000	0,386	Rp 108.838.871	0,024	Rp 6.871.173	0,017	Rp 4.895.514
	Rp8.640.000.000	Rp6.407.672.000	Rp2.232.328.000		Rp1.143.939.294		Rp 21.392.061		-Rp 35.863.028

Perhitungan NPV, IRR, B/C Rasio, dan PBP

2. IRR
$$= i_1 + \frac{NPV1}{NPV1 - NPV2} (i_2 - i_1)$$

$$= 0.1 + \frac{Rp \ 1.143.939.294}{Rp \ 1.143.939.294 - (-Rp \ 35.863.028)} (0.5-0.1)$$

$$= 49 \%$$

3. B/C Rasio =
$$\frac{\text{Rp 8.640.000.000}}{\text{Rp6.407.672.000}}$$

= 1,3

4. **PBP**
$$= \frac{\text{Rp } 582.620.000}{\text{Rp } 283.500.000}$$
$$= 2,1 \text{ tahun}$$

LAMPIRAN F. DOKUMENTASI

Lampiran F1. Gambar Proses Pembuatan Keju

Gambar F1. Proses Pemanasan

Gambar F2. Proses Penggumpalan

Gambar F3. Pemisahan cairan dan padatan

Gambar F4. Gumpalan susu (Curd)

Gambar F5. Proses Pencetakan

Gambar F6. Proses Pendinginan

Gambar F7. Limbah Whey

Gambar F8. Limbah Penggaraman