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WELCOME MESSAGE FROM 
THE DEAN OF FACULTY OF COMPUTER SCIENCE 

UNIVERSITAS BRAWIJAYA

To all the committee, and all academic civitates of Faculty of Computer 
Science, Universitas Brawijaya, I am very pleased for the participation 
of the participants, the keynote speakers and all the important parts 
involved on the implementation of the 2018 International Conference 
on Sustainable Information Engineering and Technology (SIET) 
conjunction with 4th ISyG 2018 and 3rd SENTRIN 2018 on November, 
10th-12th 2018 at Faculty of Computer Science, Universitas Brawijaya, 
Malang, East Java, Indonesia.

I believe that the 3rd SIET 2018 will bring the best in terms of 
researchers, technology and science on an international scale to forge partnerships and 
cooperation, and to share research progress between campuses, institutions, and small to large 
scale industries in order to optimize the management and the use of the available resources into 
multi-disciplinary science.

This event has a very wide coverage that provides a forum for all parties involved in the 
development of Information Engineering and Technology as well as on indirectly related 
science and application. The great hope of the event is that it is able to foster optimal 
collaboration of all elements and build science and technology together quickly, rapidly and 
appropriately for the world.

I then express my sincere gratitude for the willingness of all attendees, keynote speakers and all 
organizing committees for the maximum effort that has been made to obtain the selection of 
relevant papers with better innovations, creativity and scientific contributions.

Finally, the implementation of this event is hopefully able to provide inspiration of better and 
more optimal researches for the success and prosperity of all mankind from the developed 
science and technology. Success for this conference, for everybody, and may you feel enjoy, 
happy and comfortable during your stay in Malang, East Java, Indonesia.

Sincerely,

Wayan Firdaus Mahmudy, S.Si., M.T, Ph.D
Dean of the Faculty of Computer Science 
Universitas Brawijaya
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WELCOME MESSAGE FROM 
THE GENERAL CHAIR OF 3 rd SIET 2 0 1 8

We would like to extend our warmest welcome to all participants of the 
2018 International Conference on Sustainable Information 
Engineering and T echnology (SIET). The conference this year is held in 
Faculty of Computer Science, Brawijaya University, in Malang. With the 
successful history of the conference series in recent two years, we are 
committed to preparing the conference program for fostering vibrant 
exchanges and dynamic collaborations among the academic and 
research communities in dealing with sustainable information 
engineering and technology around the world.

We are pleased to have outstanding scholars as conference speakers to share their insights 
across varying areas in delivering sustainable and/or eco-friendly solutions through leveraging 
advanced information engineering and technology for competitive advantage and cost savings 
in modern industrial sectors as well as public and business sectors. As for the two keynote 
speeches, are presented by Prof. Shuji Hashimoto from Waseda University, Japan and Ir. Beno 
Kunto Pradekso, M.Sc as the CEO at SOLUSI247 and LABS247, for the four theme-based invited 
speeches are presented by Dr. Worapan Kusakunniran from Mahidol University, Thailand, Prof. 
Md. Atiqur Rahman Ahad from University of Dhaka, Bangladesh, Dr. Eng. Herman Tolle from 
Brawijaya University, Indonesia, and Engr. Dr. Noman Naseer from Air University, Islamabad. 
We anticipate these enlightening speeches could inspire our scholarly endeavors to advance the 
synergy among information technology, industrial sectors, and business sectors.

The organization of such the conference of SIET 2018 requires the continuous efforts and great 
support from our conference organizing team members and conference paper reviewers, with 
their names enlisted in the proceedings. We would like to sincerely thank all the kind individuals 
who have rendered their support in every possible way to make this conference a reality. We 
would also like to express our gratitude to all the paper authors and registered participants for 
their stimulating academic contributions to the vibrant intellectual exchange in this conference.

With the intelligence sharing and social bonding in the conference program, as well as the 
beautiful scenery in Malang city, we hope every participant will have a unique SIET experience 
in Malang for creating new friendships, professional collaborations, and glad memories.

Thank you! 

Sincerely yours,

Ahmad Afif Supianto
The 3rd SIET 2018 General Chair
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Abstract—A novel technique to identification of autoregressive
moving average (ARMA)systems is proposed to increase the
accuracy and speed of convergence for the system identification.
The convergence speed of recursive least square algorithm (RLS)
is solved under differential equations that needs all necessary in-
formation about the asymptotic behavior. Using RLS estimation,
the convergence of parameters is able to the true values if the
data of information vector growing to infinite. Therefore, the
convergence of the parameters of the RLS algorithm takes time
or needs a large number of sampling. In order to improve the
accuracy and convergence speed of the estimated parameters,
we propose a technique that modifies the QARXNN model by
running two steps to identify the system hierarchically. The
proposed method performs two steps: first, the system is identified
by least square error (LSE) algorithm. Second, performs multi-
input multi-output feedforward neural networks (MIMO-NN)
to refine the estimated parameters by updating the parameters
based on the residual error of LSE. The residual error by using
LSE is set as target output to train NN. Finally, we illustrate
and verify the proposed technique with an experimental studies.
The proposed method can find the estimated parameters faster
with δ= 0.935129 % in tenth sampling. The results is almost
consistence which the accuracy of the identified parameters δ did
not change significantly with the increasing number of sampling
or the number of data points.

Index Terms—System identification, hierarchical algorithm,
quasi-linear ARX neural network, convergence speed, parameter
estimation.

I. INTRODUCTION

An identification system is a method for obtaining a mathe-
matical model through measurements data. A techniques to
identify a system plays an important role in technological
development. It is widely applied in modern life such as
biomedical engineering [1], control systems [2], signal pro-
cessing [3], [4], image processing [5], [6], communication
[7], and power system [8]. In a model based control, the
performance of model affects the performance of a controlled
system. The inaccuracy of parameters of a system will affect
the accuracy and failure of a control system. This is because
the law of the control system utilizes the parameters of an
estimated system. Therefore, the accuracy of the identified
parameters and speed of convergence are important instead of
function approximation. The parameters of system can be used
to estimate the dynamic behavior of system such as stability,
the performance of dynamic response, controllability, observ-

ability, damping and natural frequency of system. Moreover,
the calculation of the control signal is derived from the system
parameters being controlled.

Many researchers have proposed various techniques to
improve the performance index of convergence speed and
parameter accuracy. The convergence of RLS estimation is
a function over time. The analysis of convergence is solved
by differential equation that needs all information about the
asymptotic behavior of system [9]. In the deterministic case,
the convergence of RLS tends to the true parameters when the
data of information vector goes to infinity [10]. To improve
the performance index under least square (LS) algorithm ,
some researchers propose a a method such as dichotomous
coordinate descent recursive least square (DCD-RLS) algo-
rithm [11], a technique of refined instrumental variable for
continuous systems (RIVC) [12], A portable alternating least
squares algorithm applied for factorization of parallel matrix
[13].

A quasi linear-ARX neural network (QARXNN) consists
of linear and nonlinear subsystem modeling [14], [15]. In
nonlinear system identification, QARXNN is used for mapping
the system with linear correlation between the regression
vector and its coefficients. Nonlinear sub-model performed by
multi-input multi-output feedforward neural networks (MIMO-
NN) is used to parameterize the regression vectors. moreover,
the coefficients has useful advantages: 1) easy to derive control
law of nonlinear system under the inverse of the modeled
system [16]–[19], 2) the dynamic analysis of nonlinear system
can be approached under the law of linear system [17], [20],
[21], 3) the coefficients can be used to analyze and check the
stability nonlinear system [17], [18], [20].

In this paper, the modification of learning process and
a technique to update parameters under quasi Linear-ARX
Neural Network Model is proposed, namely hierarchical al-
gorithm. The proposed method perform two steps identifica-
tion hierarchically. First, the system is identified under least
square error algorithm (LSE). Second, refining the estimated
parameters based on the residual error of LSE algorithm. In
the first step, we identify the system using linear algorithm to
obtain the estimated parameters. The error of LSE algorithm
is refined in the second step by running MIMO-NN and
the estimated parameter is updated simultaneously. Thus, we
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Fig. 1. LTI systems with coloured noises

sharpen the search of the estimated parameters of LSE method
by running MIMO-NN training. The convergence which is
a function of time on the LSE method is replaced through
MIMO-NN training. We capture the dynamic behavior of the
system by running MIMO-NN to update parameters of LSE
algorithm. Finally, we demonstrate the proposed technique
with the experiments and numerical simulations.

II. PROBLEM DESCRIPTION

Assume that the unknown nth-order of discrete time linear
system is presented by:

A(z−1)y(k) = B(z−1)u(k) + ω(k) (1)

where

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · ·+ anz
−n

B(z−1) = b1z
−1 + b2z

−2 + · · ·+ bmz−m

The system (1) is shown in Fig. 1. The symbol z−l is the
notation of delay. The input and output of system are denoted
by u(k), y(k).The variable of ω(k) denotes a stochastic white
noise with zero mean and variance σ2

ω . The order of system is
denoted by n for denumerator and m is for numerator, which
are assumed to be known. The u(k) and ω(k) are indepen-
dence and uncorrelated statistically. For initial conditions, the
system is set as y(k) = 0, u(k) = 0, for k < 0.

In matrix equation system (1) is presented by

y(k) = ϕT (k)θ + ω(k) (2)

where

θ = [a1, a2, ..., an, b1, b2, ..., bm]T ∈ Rn+m

ϕ(k) = [−y(k − 1)...− y(k − n) u(k − 1)...u(k −m)]T

θ denotes the parameter of syustem and ϕ(k) is a regression
vector composed of delayed input-output data, respectively.
Assumption 1. The identified system is assumed stable satis-
fied by A(z−1) = 0 with | z |< 1.
Assumption 2. The training data of input u(k) and output
y(k) are bounded.

The system identification under LS algorithm is performed
to minimize the index stated as

JN (θ) =
N∑

k=1

(y(k)− ϕT (k)θ)2. (3)

Under ergodic theorem, the asymptotic behaviors of LS esti-
mation [22] are

lim
N→∞

1

N
ϕT (k)ϕ(k) = lim

N→∞
R̂ϕϕ(N)

= Rϕϕ = E[ϕT (k)ϕ(k)] (4)

lim
N→∞

1

N
ϕT (k)y(k) = lim

N→∞
R̂ϕy(N)

= Rϕy = E[ϕT (k)y(k)] (5)

lim
N→∞

1

N
ϕT (k)ω(k) = lim

N→∞
R̂ϕω(N)

= Rϕω = E[ϕT (k)ω(k)]. (6)

θ̂LS(N) is the estimated parameter, which can be described
as

θ̂LS(N) = R̂−1
ϕϕ (N)R̂ϕy(N) (7)

If the number of sampling N reach to infinity then [22]:

lim
N→∞

θ̂LS(N) = θ +R−1
ϕϕRϕω. (8)

By minimizing of performance index (3) the estimated param-
eters θ will be [22] :

θ̂LS(N) = [

N∑
k=1

ϕT (k)ϕ(k)]−1[

N∑
k=1

ϕT (k)y(k)] (9)

R̂ϕϕ(N) denotes a covariance matrix which contains of the
pass data input-output of system. related to (9) it is indispens-
able that θLS(N) → θ will be to the true value if the sampling
number of N → ∞ [23]. For k = 1, 2, · · · , N , equation (2)
can be stated in matrix equation as

y = ϕT θ + ω (10)

where

y = [y(1), y(2), · · · , y(N)]T

ω = [ω(1), ω(2), · · · , ω(N)]T

Φ = [ϕ(1), ϕ(2), · · · , ϕ(N)]T

The elements of Φ contains the regression vector until N
sampling number written by
ϕ(1) = [−y(k−1), · · · ,−y(k−n), u(k−1), · · · , u(k−m)]T

ϕ(N) = [−y(N − 1), · · · ,−y(N −n), u(N − 1), · · · , u(N −
m)]T . Running the identification process will be started after
the number of sampling N equal or larger than 2m+2n when
m and n the order of system’s structure. [24].

In many applications it is important to estimate the parame-
ter vector θ recursively (or on-line or sequentially) as more in-
formation becomes available. Several researchers develop the
identification technique under recursive LS (RLS) algorithm to
improve parameter accuracy and convergence speed [7], [11],
[25]–[29]. The algorithms of RLS estimation is stated as [30].

θ̂LS(k) = θ̂LS(k − 1)− P (k)ϕ(k)

(y(k)− ϕT (k)θ̂LS(k − 1)) (11)

P (k) = P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

1 + ϕT (k)P (k − 1)ϕ(k)
(12)

where P (0) = p0I , p0 is a positive constant number.
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III. QUASI-ARX NEURAL NETWORK MODEL (QARXNN)

Quasi linear-ARX Neural Networks model is divided into
linear macro-part sub-model and nonlinear core part sub-
model. The macro-part sub-model is to derive a nonlinear
system into linear correlation where the coefficients of Taylor
is the parameters for the regression vector. The core-part
sub-model is to provide nonlinear coefficients for the input
regression vector performed by multi input multi output neural
networks. A nonlinear system stated as,

y(k) = g(ϕ(k)) (13)

where g(·) is a nonlinear function, ϕ(k) = [y(k−1) · · · y(k−
ny) u(k − 1) · · ·u(k − nu)]

T denotes input vector, y(k) ∈ R
denotes the output and k = 1, 2, · · · denotes the sampling of
time. Using Taylor expansion series, a nonlinear system can
be derived as a linear correlation between the input vector and
its coefficients. Hence, the system in (13) can expressed as a
linear-like model [14], [15], [31]:

y(k) = ϕT (k)ℵ(ξ(k)). (14)

where ℵ(ξ(k)) = [a(1,k) · · · a(nk,t) b(1,k) · · · b(nu,k)]
T is a

nonlinear function of core part sub-model to parameterize the
regression vector and ξ(k) = [y(k − 1) · · · y(k − ny) u(k −
2) · · ·u(k − nu) ν(k)]

T is the input for core-part sub-model
which virtual input ν(k) is added. The MIMO neural network
or fuzzy model can be adopted as core-part sub-model. With
NN set as a core-part sub-model, QARXNN model can be
presented as

y(k) = ϕT (t)ℵ(ξ(k))
ℵ(ξ(k),Ω) = W2ΓW1(ξ(k)) + θ (15)

= δ(ξ(k)) + θ (16)

where, Ω = {W1,W2, θ} are set of network parameters, Γ is
an operator of sigmoidal element for hidden nodes of core-part
sub-model.

IV. HIERARCHICAL ALGORITHM

Incorporating to hierarchical algorithm, a linear system is
presented by

y(k) = y0 + ϕT (k)θ(ϕ(k)) + ω(k). (17)
θ(ϕ(k)) = [a1, a2, ..., an, b1, b2, ..., bm]T ∈ Rn+m

ϕ(k) = [−y(k − 1)...− y(k − n) u(k − 1)...u(k −m)]T

ω(k) denotes a stochastic white noise with zero mean and
variance σ2

ω . The θ(ϕ(k)) denotes the estimated parameters
where ϕ(k) is set as the input variable. The hierarchical
processes for the updating of the estimated parameters is
shown in Fig. 2. In the first step, we perform LSE algorithm
to estimate the parameters denoted by θLS(N). The residual
error of LSE eLS is set as output for MIMO-NN of QARXNN
model to estimate ∆θ performed in the second step. QARXNN
model is performed to increase the accuracy of the estimated
parameters shown in Fig. 3. Finally, the estimated parameter
is update by summing θLS(N) and ∆θ. At first step, LS

Fig. 2. The steps of hierarchical algorithm

Fig. 3. Bottom sub-model incorporating to QARXNN.

algorithm is used to identify θ by minimizing a cost function of
(18) in surface sub-model. The surface sub-model performed
by using LS algorithm is presented in (19).

JN (θ) =
N∑

k=1

(y(k)− ϕT (k)θ)2. (18)

yLS(k) = ϕT (k)θLS(N). (19)

Analytical minimisation of (18) leads to the least square (LS)
estimate of θ as [23]:

θLS(N) = [
N∑

k=1

ϕT (k)ϕ(k)]−1[
N∑

k=1

ϕT (k)y(k)] (20)

where, N is a number of sampling in time moving window.
The residual error of LSE estimation is stated as,

eLS(k) = y(k)− yLS(k) (21)

By substituting (19) to (21), we have (22) called as a bot-
tom sub-model. It will be implemented under MIMO-NN of
QARXNN model shown in Fig. 3.

eLS(k) = ϕT (k)θ − ϕT (k)θLS(N)

= ϕT (k)(θ − θLS(N))

= ϕT (k)∆θ(ϕ(k)) (22)
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The ∆θT (ϕ(k)) is a residual parameters which is the output of
bottom sub-model. Hence. we update the estimated parameters
θ̂(k) by,

θ̂(k) = θLS(N) + ∆θ(ϕ(k)) (23)

the estimated output of system will be

ŷ(k) = ϕT (k)θ̂(k) (24)

Remark 1: Using hierarchical algorithm, the convergence
of LS algorithms in surface sub-model is improved by per-
forming MIMO-NN in bottom sub-model. The residual errors
of surface sub-model eLS is used to update the estimated
parameters θ̂(k) under bottom sub-model by summing θLS(N)
and ∆θ in (23).

The LS algorithm is able to reach the true parameters when
sampling data measurement tends to infinity. Thus, the longer
memory of the past data of the information vector will be.
Therefore, the convergence performance of LS algorithm is
slow. Our motivation is to achieve faster convergence and
accuracy with limited memory span by time moving window
without sacrificing the simplicity of LS algorithm.

The proposed hierarchical algorithm, the estimated param-
eters is the summing between the surface sub-model under
LS algorithm and the bottom sub-model performed by neural
network. By performing the surface sub-model we can get the
LS parameter estimate and the residual parameter of LS is
performed using NN. The output of hierarchical learning for
parameter estimation s is stated as,

ŷ(k) = ϕT (k)θLS(N) + ϕT (k)∆θ(ϕ(k)). (25)

Incorporating to MIMO-NN, the bottom sub-model is ex-
pressed as

∆θ(ϕ(k)) = W2ΓW1((ϕ(k)) (26)

the set of network parameters is denoted by W1,W2 ∈
R(n+m)x(n+m) that is the weight matrix at the the first second
layer.

V. LEARNING STEPS

We divide the system modeling into two sub-models. The
surface sub-model will be performed using LSE algorithm and
the bottom sub-model is done by MIMO-NN. The target output
of surface sub-model is calculated by s(k) = y(k) − eLS

and the target output for bottom sub-model is b(k) = y(k)−
yLS(k). The target output for training of two sub-models are
defined as,

SM1 s(k) = ϕ(k)θLS(N). (27)

SM2 b(k) = ϕ(k)∆θT (ϕ(k)). (28)

The output of SM1 s(k) is performed under LSE algorithm
and the output of SM2 b(k) is performed by MIMO-NN of
quasi linear-ARX model. The learning processes of hierarchi-
cal algorithm are presented as

1) For initial condition, set eLS=0 and set i = 1,i is the
training sequence.

2) Estimate θLS(N) by using LSE algorithm for SM1.
3) Calculate the output of surface sub-model s(k) in SM1.

Set s(k) as yLS(k) and calculate b(k) = y(k)−yLS(k).
Use b(k) as the target output for SM2

4) Estimate ∆θT (ϕ(k)) using MIMO-NN of quasi linear-
ARX model.

5) Update the estimated parameters θ̂(k) using (23).
6) stop if a predetermined condition has been met such

as the number of training or accuracy. Stop if the
predetermined conditions are meet, otherwise go to 3).
set i = i+ 1.

VI. EXAMPLE

Consider an autoregressive moving average system taken in
[30] presented as

y(k) = ϕT (k)θ + ϑ(k) (29)

the parameters of the identified system are stated as

A(z−1)y(k) = B(z−1)u(k) + ϑ(k) (30)

A(z−1) = 1 + a1z
−1 + a2z

−2 = 1− 1.50z−1 + 0.60z−2

B(z−1) = b1z
−1 + b2z

−2 = 0.4z−1 + 0.3z−2.

The parameter of θ and the regression vector ϕ(k) are defined
by

θ = [a1, a2, b1, b2]
T

ϕ(k) = [−y(k − 1),−y(k − 2), u(k − 1), u(k − 2)]T .

The u(k) is an input of system with the zero mean and unit
variance. The ϑ(k) is a white noise with zero mean and
variance σ2. The performance of the identification results are
measured with the RMS error in (31) versus sampling times
k. The performance of parameter accuracy is presented by δ
in (32) versus sampling times.

RMS =

√∑N
k=1(yp(k)− y(k))2

N
. (31)

δ ==
∥θ̂(k)− θ∥

∥θ∥
. (32)

The output of system is mixed with noise signal perturbation
ϑ of 20% or source to noise ratio (SNR) 13.98 dB.

SNR = 20log

√√√√(

∑N
k=1 x(k)

2∑N
k=1 e(k)

2
). (33)

The SM2 is performed by MIMO-NN with the structure
parameters is set as follows: nu=2 and ny=2, the input node
n = 4 is the sum of nu=2 and ny=2, the number of training =
50. The 500 samplings of input-output data sequence shown
in Fig. 4. The results of system identification is presented by
the accuracy of output shown Fig. 5 and the accuracy of the
estimated parameters shown in in Fig. 6.

The performance of estimated parameter is compared with
the other measures shown in Table I.
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Fig. 4. The Input and Output of System

Fig. 5. Error and RMS error of the identified system

VII. RESULT AND DISCUSSION

In this novel, the fast convergence of the estimated parame-
ter is discussed under two steps identification processes. In the
first step, we identify the parameter of the system using LSE
algorithm in surface sub-model. In the second step, a bottom
sub-model is used to refine the estimated parameters using
modified QARXNN model. The proposed algorithm has better
results compared with the other measures. Based on the results
of simulation the proposed method can find the estimated
parameters faster compared with the others shown in Table

Fig. 6. Parameter estimation error

TABLE I
δ INDEX PERFORMANCE OF PARAMETER ESTIMATION.

k Proposed V-RLS V-MILS [30]
10 0.935129 - -

100 0.934860 2.52165 1.69763
200 0.934861 2.67837 0.81472
300 0.934869 1.65349 0.60837
400 0.934866 0.99951 0.60769
500 0.934853 0.91778 0.53914

I. We can get the estimated parameters with δ= 0.935129 %
in tenth sampling. The results is almost consistence which
the accuracy of the identified parameters δ did not change
significantly with the increasing number of sampling or the
number of pass input-output data.

In the first step, the parameters of system is identified under
LSE algorithm. The LSE algorithm updated the parameters
based on the error by eLS(k) = (y(k) − ϕT (k)θ̂LS(k − 1)).
However, the performance of LS algorithm is low in accuracy
and slow convergence. The LS algorithm reaches the conver-
gence when the data of information vector goes to infinity.
In order to improve the accuracy and convergence speed of
system identification the error of eLS is refined using neural
network MIMO-NN injected to QARXNN. Under hierarchical
algorithm with the proposed method, the convergence by time
using LS can be improved by the number of training.
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