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Preface
It is with my great pleasure and honor to organize the First International Conference on
Combinatorics, Graph Theory and Network Topology which is held from 25-26 November 2017
in the University of Jember, East Java, Indonesia and present a conference proceeding index by
Scopus. It is the first international conference organized by CGANT Research Group University
of Jember in cooperation with Indonesian Combinatorics Society (INACOBMS). The conference
is held to welcome participants from many countries, with broad and diverse research interests of
mathematics especially combinatorical study. The mission is to become an annual international
forum in the future, where, civil society organization and representative, research students,
academics and researchers, scholars, scientist, teachers and practitioners from all over the world
could meet in and exchange an idea to share and to discuss theoretical and practical knowledge
about mathematics and its applications. The aim of the first conference is to present and
discuss the latest research that contributes to the sharing of new theoretical, methodological
and empirical knowledge and a better understanding in the area mathematics, application of
mathematics as well as mathematics education.

The themes of this conference are as follows: (1) Connection of distance to other graph
properties, (2) Degree/diameter problem, (3) Distance-transitive and distance-regular graphs,
(4) Metric dimension and related parameters, (5) Cages and eccentric graphs, (6) Cycles and
factors in graphs, (7) Large graphs and digraphs, (8) Spectral Techniques in graph theory,
(9) Ramsey numbers, (10) Dimensions of graphs, (11) Communication networks, (12) Coding
theory, (13) Cryptography, (14) Rainbow connection, (15) Graph labelings and coloring, (16).
Applications of graph theory

The topics are not limited to the above themes but they also include the mathematical
application research of interest in general including mathematics education, such as:(1)
Applied Mathematics and Modelling, (2) Applied Physics: Mathematical Physics, Biological
Physics, Chemistry Physics,(3) Applied Engineering: Mathematical Engineering, Mechanical
engineering, Informatics Engineering, Civil Engineering,(4) Statistics and Its Application,(5)
Pure Mathematics (Analysis, Algebra and Geometry),(6) Mathematics Education, (7) Literacy
of Mathematics,(8) The Use of ICT Based Media In Mathematics Teaching and Learning,(9)
Technological, Pedagogical, Content Knowledge for Teaching Mathematics, (10) Students Higher
Order Thinking Skill of Mathematics, (11) Contextual Teaching and Realistic Mathematics,
(12) Science, Technology, Engineering, and Mathematics Approach, (13) Local Wisdom Based
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Education: Ethnomathematics, (14) Showcase of Teaching and Learning of Mathematics, (16)
The 21st Century Skills: The Integration of 4C Skill in Teaching Math.

The participants of this ICCGANT 2017 conference were 200 people consisting research
students, academics and researchers, scholars, scientist, teachers and practitioners from many
countries. The selected papers to be publish of Journal of Physics: Conference Series are 80
papers. On behalf of the organizing committee, finally we gratefully acknowledge the support
from the University of Jember of this conference. We would also like to extend our thanks to
all lovely participants who are joining this unforgettable and valuable event.

Prof. Drs. Dafik, M.Sc., Ph.D.
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Abstract. Let all graphs be a connected and simple graph. A set W = {w1, w2, w3, . . . , wk}
of veretx set of G, the k−vector ordered r(v|W ) = (d(x,w1), d(x,w2), . . . , d(x,wk)) of is a
representation of v with respect to W , for d(x,w) is the distance between the vertices x and w.
The set W is called a resolving set for G if different vertices of G have distinct representation.
The metric dimension is the minimum cardinality of resolving set W , denoted by dim(G).
Through analogue, the resolving set W of G is called non-isolated resolving set if there is no
∀v ∈ W induced by non-isolated vertex. The non-isolated resolving number is the minimum
cardinality of non-isolated resolving set W , denoted by nr(G). In our paper, we determine the
non isolated resolving number of k-corona product graph.

1. Introduction
In this paper, All graphs G is a nontrivial and connected graph, for more detail definition of
graph see [1, 2]. The concept of metric dimension was independently introduced by Slater [3]
and Harrary and Melter [4]. In his paper, Slater called this concept as a locating set. Let
u, v be two vertices in G. The distance d(u, v) is the length of a shortest path between two
vertices u and v in connected graph G. For an ordered set W = {w1, w2, ..., wk} subset of
vertex set V (G). The representation r(v|W ) of v with respect to W is the ordered k-tuple
r(v|W ) = (d(v, w1), d(v, w2), ..., d(v, wk)). The set W is called resolving set of G if every
vertices of G have distinct representation respect to W , let u and v be two any vertices in
G if r(u|W ) = r(v|W ) implies that u = v. Hence if W is a resolving set of cardinality k for a
graph G, then the representation set r(v|W ), v ∈ V (G) consists of |V (G)| distinct k-vector. A
resolving set of minimum cardinality for a graph G is called a minimum resolving set for G and
this cardinality is the metric dimension of G, denoted by dim(G). Saenpholphat and Zhang [7]
introduced the concept of connected resolving set. A resolving set W of graph G is connected if
each subgraph 〈W 〉 induced by W has no isolated vertices in G. The minimum cardinality of a
non-isolated set in a graph G is the non-isolated resolving number, denoted by nr(G). For more
detail notation of nr(G) please see in Chitra and Arumugam [5].

Until today, Chartrand et.al.[6] determined the bounds of the metric dimensions for any
connected graphs and determined the metric dimensions of some well known families of graphs
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such as tree, path, and complete graph. Citra and Arumugam [5] studied resolving set without
isolated vertices of some family graphs. Furthermore, Baca, et.al [8] showed the metric dimension
of regular bipartite graphs. In recent years, this metric dimension has been studied widely (see
[7], [9], [10], [11], [12], [13]). In the following, we present some known results and Yunika [14]
studied the metric dimension with non-isolated resolving number of corona product of graphs.
Alfarisi et al [16] studied non-isolated resolving number of graphs with pendant edges

The known results on metric dimension and local metric dimension of some particular classes
of graphs and graph operation have been discovered Chitra and Arumugam [5], Dafik [15],
Yunika [14] as follows.

Proposition 1.1 (Chitra and Arumugam [5]) Let G be a connected graph of order n ≥ 2

• For Pn, n ≥ 2, nr(Pn) = 2.

• For Kn, n ≥ 3, nr(Kn) = n− 1.

• For Km,n, m,n ≥ 2, nr(Km,n) = m + n− 2.

• For friendship G with k-triangles, k ≥ 2, nr(G) = k + 1.

• For Pn + K1, n ≥ 2, nr(Pn + K1) = bn/2c.

Proposition 1.2 (Dafik [15]) Let G and H be a connected graph, then the metric dimensio

with non-ioslated resolving number of G + H is b |V (G)|
2 c + b |V (H)|

2 c ≤nr(G + H) ≤ d |V (G)|
2 e +

d |V (H)|
2 e + max{nr(G), nr(H)}

Proposition 1.3 (Yunika [14]) Let G be a connected graph of order n ≥ 2

• For G ∼= K1 � Pn, n ≥ 2, nr(G) = bn2 c+ 1.

• For G ∼= K1 �Kn, n ≥ 2, nr(G) = n.

• For G ∼= K1 � Cn, n ≥ 2,

nr(G) =


3, if 3 ≤ n ≤ 4
bn2 c+ 1, if n ≥ 5, n is odd
bn2 c, if n ≥ 5, n is even

Fruct and Harary [17] was introduced a type corona product of grpah. Let G be a connected
graph of order n and H (not necessarily connected) be a graph of order m. A graph G corona
product H, G�H, is defined as a graph obtained by taking one copy of G and |V (G)| copies of
graph H1, H2, ....,Hn of H and connecting i-th vertex of G to the vertices of Hi, 1 ≤ i ≤ n. By
definition of corona product, we can say that

V (G�H) = V (G) ∪
⋃

i∈V (G)

V (Hi),

E(G�H) = E(G) ∪
⋃

i∈V (G)

(E(Hi) ∪ {iui|ui ∈ V (Hi)}),

For any integer k ≥ 2, we define the corona product of graph G�k H recursively of G�H as
G�k H = (G�k−1 H)�H. The graph G�k H is named as k−corona product or multicorona
product of graph G and H for more detail definiton can be seen in [18]. Figure 1 is an ilustration
of k-corona product graphs.
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Figure 1. Example of k−corona product: (a) P4; (b) P2; (c) P4 � P2; (d) P4 �2 P2

2. Main Results
In this section, we find the metric dimension with non-isolated resolving set of k-corona product
graphs. We determine the sharp lower bound and the exact value of Pn �2 Pm, Pn �2 Km,
Km �2 Pn and Kn �2 Km

Lemma 2.1 Let G be a connected graph of order |V (G)| ≥ 2 and H be a graph of order |V (H)| ≥
2, then non-isolated resolving number of G�k H is nr(G�k H) ≥ |V (G�k−1 H)|nr(K1 + H).

Proof: The k-corona product of graph G�kH recursively of G�H as G�kH = (G�k−1H)�H.
Given a resolving set W ′ of G�k H with W ′ ⊂ V (H) 6= ∅ and resolving set W” of G�k H with
W ′ ⊂ V (G�k−1H) 6= ∅. It can be shown with use Lemma 2.6.2 (i). Based on definition of non-
isolated resolving set that we get Wi = W ′i ∪W”i for every i ∈ V (G�k−1 H) with W”i = {ui}
so that Wi = W ′i ∪ {ui}. In this section, we can assume —W ′i ∪ {ui}| = nr(K1 + H). Thus, we

get resolving set W = W1 ∪W2 ∪W3 ∪ . . . ∪W|V (G�k−1H)| or W =
⋃|V (G�k−1H)|

i=1 Wi, then we
obtain the lower bound non-isolated resolving set W of G�k−1 H is

|W | ≤ |
|V (G�k−1H)|⋃

i=1

(Wi)|

= Σ
|V (G�k−1H)|
i=1 |Wi|

= |W1|+ |W2|+ . . . + |WV (G�k−1H)||
= nr(K1 + H) + nr(K1 + H) + . . . + nr(K1 + H)︸ ︷︷ ︸

|V (G�k−1H)|times

= V (G�k−1 H)|nr(K1 + H)

Hence, it is clearly that the lower bound non-isolated resolving number of G�kH is nr(G�k

H) ≥ |V (G�k−1H)|nr(K1 +H). ut

Theorem 2.1 Let Pn and Pm be a connected graph of order n,m ≥ 2, then non-isolated
resolving number of Pn �2 Pm is nr(Pn �2 Pm) = (nm + n)(bm2 c+ 1).

Proof: Let Pn �2 Pm be a corona product of path Pn and Pm with vertex set V (Pn �2

Pm) = {xi; 1 ≤ i ≤ n} ∪ {xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m} ∪ {xi,j1,j2 ; 1 ≤ i ≤ n, 1 ≤
j1 ≤ m, 1 ≤ j2 ≤ m} ∪ {xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j2 ≤ m} and edge set E(Pn �2 Pm) =
{xixi+1; 1 ≤ i ≤ n − 1} ∪ {xixi,j1 , xi,j1xi,j1,j2 , xixi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤
m} ∪ {xi,j1xi,j1+1, xi,j1,j2xi,j1,j2+1, xi,j2xi,j2+1; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤ j2 ≤ m − 1}
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with the cardinality of vertex set |V (Pn �2 Pm)| = nm2 + 2nm + n and the cardinality of edge
set |E(Pn �2 Pm)| = 2nm2 + 3mn− n− 1.

For n,m ≥ 2, based on Lemma 2.1 and Proposition 1.3 then we have nr(Pn �2 Pm) ≥
|V (Pn�Pm)|nr(K1+Pm) = (nm+n)(bm2 c+1). However, we can attain the sharpest lower bound.
Furthermore, we prove that nr(Pn �2 Pm) ≤ (nm + n)(bm2 c+ 1). Choosing W ⊂ V (Pn �2 Pm)
with W = {xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m} ∪ {xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤
j2 ≤ m − 1, j1 and j2 is odd} is a non-isolated resolving set of Pn �2 Pm and the cardinality
of non-isolated resolving set is |W | = |{xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m}| + |{xi,j1,j2 , xi,j2 ; 1 ≤
i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤ j2 ≤ m − 1, j1 and j2 is odd}| = (nm + n)(bm2 c + 1). Thus, the
representation of vertices v ∈ V (Pn �2 Pm)−W respecting to W are as follows.
The vertex representation of xi,j1,j2 for m even respect to W is
r(xi,j1,j2 |W ) = (a, tj1−1, t

′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bm
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
j2
2
−1

, 1, 1, 2, . . . , 2︸ ︷︷ ︸
bm

2
c− j2

2
−

, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, . . . ,

tm−j1 , t
′
m−j1 , . . . , t

′
m−j1︸ ︷︷ ︸

bm
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bm

2
c

, c); 1 ≤ i ≤ n, 1 ≤ j1 ≤ m 1 ≤ j2 ≤ m− 1 and j is even.

with tl = l + 1, 1 ≤ l ≤ m − j1 and t′l = l + 2, 1 ≤ l ≤ m − j1, 1 ≤ j1 ≤ m; tk = k + 1,
1 ≤ k ≤ j1 − 1 and t′k = k + 2, 1 ≤ k ≤ j1 − 1, 1 ≤ j1 ≤ m.
The vertex representation of xi,j1,m for m even respect to W is
r(xi,j1,m|W ) = (a, tj1−1, t

′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bm
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
m
2
−1

, 1, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, . . . , tm−j1 ,

t′m−j1 , . . . , t
′
m−j1︸ ︷︷ ︸

bm
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bm

2
c

, c); 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m− 1.

with tl = l + 1, 1 ≤ l ≤ m − j1 and t′l = l + 2, 1 ≤ l ≤ m − j1, 1 ≤ j1 ≤ m; tk = k + 1,
1 ≤ k ≤ j1 − 1 and t′k = k + 2, 1 ≤ k ≤ j1 − 1, 1 ≤ j1 ≤ m.
The vertex representation of xi,j1,j2 for m odd respect to W is
r(xi,j1,j2 |W ) = (a, tj1−1, t

′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bm
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
j2
2
−1

, 1, 1, 2, . . . , 2︸ ︷︷ ︸
bm

2
c− j2

2
−

, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, . . . ,

tm−j1 , t
′
m−j1 , . . . , t

′
m−j1︸ ︷︷ ︸

bm
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bm

2
c

, c); 1 ≤ i ≤ n, 1 ≤ j1 ≤ m 1 ≤ j2 ≤ m− 2 and j is even.

with tl = l + 1, 1 ≤ l ≤ m − j1 and t′l = l + 2, 1 ≤ l ≤ m − j1, 1 ≤ j1 ≤ m; tk = k + 1,
1 ≤ k ≤ j1 − 1 and t′k = k + 2, 1 ≤ k ≤ j1 − 1, 1 ≤ j1 ≤ m.
The vertex representation of xi,j1,m−1 and xi,j1,m for m odd respect to W is
r(xi,j1,m−1|W ) = (a, tj1−1, t

′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bm
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
bm

2
c−1

, 1, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, . . . , tm−j1 ,

t′m−j1 , . . . , t
′
m−j1︸ ︷︷ ︸

bm
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bm

2
c

, c); 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m− 1.

r(xi,j1,m|W ) = (a, tj1−1, t
′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bm
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
bm

2
c

, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bm
2
c

, . . . , tm−j1 ,

t′m−j1 , . . . , t
′
m−j1︸ ︷︷ ︸

bm
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bm

2
c

, c); 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m− 1.

with tl = l + 1, 1 ≤ l ≤ m − j1 and t′l = l + 2, 1 ≤ l ≤ m − j1, 1 ≤ j1 ≤ m; tk = k + 1,
1 ≤ k ≤ j1 − 1 and t′k = k + 2, 1 ≤ k ≤ j1 − 1, 1 ≤ j1 ≤ m.
where
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a = (t1i−1, t
2
i−1, . . . , t

2
i−1︸ ︷︷ ︸

bm
2
c

, t3i−1, . . . , t
3
i−1︸ ︷︷ ︸

m

, t4i−1, . . . , t
4
i−1︸ ︷︷ ︸

mbm
2
c

, . . . , t11, t
2
1, . . . , t

2
1︸ ︷︷ ︸

bm
2
c

, t31, . . . , t
3
1︸ ︷︷ ︸

m

, t41, . . . , t
4
1︸ ︷︷ ︸

mbm
2
c

)

c = (t11, t
2
1, . . . , t

2
1︸ ︷︷ ︸

bm
2
c

, t31, . . . , t
3
1︸ ︷︷ ︸

m

, t41, . . . , t
4
1︸ ︷︷ ︸

mbm
2
c

, . . . , t1n−i, t
2
n−i, . . . , t

2
n−i︸ ︷︷ ︸

bm
2
c

, t3n−i, . . . , t
3
n−i︸ ︷︷ ︸

m

, t4n−i, . . . , t
4
n−i︸ ︷︷ ︸

mbm
2
c

)

with t1l = l + 2, 1 ≤ l ≤ n− i ; t2l = l + 3, 1 ≤ l ≤ n− i ; t3l = l + 3, 1 ≤ l ≤ n− i ; t4l = l + 4,
1 ≤ l ≤ n− i ; t1k = k + 2, 1 ≤ k ≤ i− 1 ; t2k = k + 3, 1 ≤ k ≤ i− 1 ; t3k = k + 3, 1 ≤ k ≤ i− 1 ;
t4k = k + 4, 1 ≤ k ≤ i− 1

The vertex representation of xi,j2 for m even respect to W is
r(xi,j2 |W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸

j2
2
−1

, 1, 1, 2, . . . , 2︸ ︷︷ ︸
bm

2
c− j2

2
−

, 2, . . . , 2︸ ︷︷ ︸
m

, 3, . . . , 3︸ ︷︷ ︸
m(bm

2
c)

, c); 1 ≤ i ≤ n, 1 ≤ j2 ≤ m− 1 and j is

even.
The vertex representation of xi,m for m even respect to W is
r(xi,m|W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸

m
2

, 1, c); 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m− 1.

The vertex representation of xi,j2 for m odd respect to W is
r(xi,j2 |W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸

j2
2
−1

, 1, 1, 2, . . . , 2︸ ︷︷ ︸
bm

2
c− j2

2
−

, 2, . . . , 2︸ ︷︷ ︸
m

, 3, . . . , 3︸ ︷︷ ︸
m(bm

2
c)

, c); 1 ≤ i ≤ n, 1 ≤ j2 ≤ m− 2 and j is

even.
The vertex representation of xi,m−1 and xi,m for m odd respect to W is
r(xi,m−1|W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸

bm
2
c−1

, 1, 2, . . . , 2︸ ︷︷ ︸
m

, 3, . . . , 3︸ ︷︷ ︸
m(bm

2
c)

, c); 1 ≤ i ≤ n.

r(xi,m|W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸
bm

2
c

, 2, . . . , 2︸ ︷︷ ︸
m

, 3, . . . , 3︸ ︷︷ ︸
m(bm

2
c)

, c); 1 ≤ i ≤ n.

where
a = (t1i−1, t

2
i−1, . . . , t

2
i−1︸ ︷︷ ︸

bm
2
c

, t3i−1, . . . , t
3
i−1︸ ︷︷ ︸

m

, t4i−1, . . . , t
4
i−1︸ ︷︷ ︸

mbm
2
c

, . . . , t11, t
2
1, . . . , t

2
1︸ ︷︷ ︸

bm
2
c

, t31, . . . , t
3
1︸ ︷︷ ︸

m

, t41, . . . , t
4
1︸ ︷︷ ︸

mbm
2
c

)

c = (t11, t
2
1, . . . , t

2
1︸ ︷︷ ︸

bm
2
c

, t31, . . . , t
3
1︸ ︷︷ ︸

m

, t41, . . . , t
4
1︸ ︷︷ ︸

mbm
2
c

, . . . , t1n−i, t
2
n−i, . . . , t

2
n−i︸ ︷︷ ︸

bm
2
c

, t3n−i, . . . , t
3
n−i︸ ︷︷ ︸

m

, t4n−i, . . . , t
4
n−i︸ ︷︷ ︸

mbm
2
c

)

with t1l = l + 1, 1 ≤ l ≤ n− i ; t2l = l + 2, 1 ≤ l ≤ n− i ; t3l = l + 2, 1 ≤ l ≤ n− i ; t4l = l + 3,
1 ≤ l ≤ n− i ; t1k = k + 1, 1 ≤ k ≤ i− 1 ; t2k = k + 2, 1 ≤ k ≤ i− 1 ; t3k = k + 2, 1 ≤ k ≤ i− 1 ;
t4k = k + 3, 1 ≤ k ≤ i− 1

It is clearly that every vertices v ∈ V (Pn �2 Pm) − W has the distinct representation
respect to W . Furthermore, we need to shown that all vertices in non-isolated resolving set
W without isolated vertex. All vertices in vertex set W = {xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤
m} ∪ {xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤ j2 ≤ m − 1, j1 and j2 is odd} without
isolated vertex by the edge set {xixi,j1 , xi,j1xi,j1,j2 , xixi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m}
which all vertices in W induces subgraph Pn �2 Pm with pendant edges. Hence, 〈W 〉 has
no isolated vertices. So, the upper bound non-isolated resolving number of Pn �2 Pm is
nr(Pn �2 Pm) ≤ (nm + n)(bm2 c+ 1).

Hence, the lower bound non-isolated resolving number of Pn �2 Pm is nr(Pn �2

Pm) ≥ (nm + n)(bm2 c + 1). It concludes that nr(Pn �2 Pm) = (nm + n)(bm2 c + 1).
ut

Theorem 2.2 Let Pn and Km be a connected graph of order n ≥ 2 and m ≥ 3, then non-isolated
resolving number of Pn �2 Km is nr(Pn �2 Km) = nm2 + nm.
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Proof: Let Pn �2 Km be a be a corona product of path Pn and complete graph Km with
vertex set V (Pn �2 Km) = {xi; 1 ≤ i ≤ n} ∪ {xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m} ∪ {xi,j1,j2 ; 1 ≤ i ≤
n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m} ∪ {xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j2 ≤ m} and edge set E(Pn �2 Km) =
{xixi+1; 1 ≤ i ≤ n − 1} ∪ {xixi,j1 , xi,j1xi,j1,j2 , xixi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤
m} ∪ {xi,j1xi,j1+r1 , xi,j1,j2xi,j1,j2+r2 , xi,j2xi,j2+r2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m, 1 ≤ r1 ≤
m− j1 and 1 ≤ r2 ≤ m− j2} with the cardinality of vertex set |V (Pn�2Km)| = nm2 + 2nm+n

and the cardinality of edge set |E(Pn �2 Km)| = 2nm2 + mn + n + mn(m
2−m
2 )− 1.

For n ≥ 2 and m ≥ 3, based on Lemma 2.1 and Proposition 1.3 then we have the lower bound
non isolated resolving number of Pn �2 Km is nr(Pn �2 Km) ≥ |V (Pn �Km)|nr(K1 + Km) =
(nm + n)m = nm2 + nm. However, we can attain the sharpest lower bound. Furthermore, we
prove that nr(Pn �2 Km) ≤ nm2 + nm. Choosing W ⊂ V (Pn �2 Km) with W = {xi, xi,j1 ; 1 ≤
i ≤ n, 1 ≤ j1 ≤ m} ∪ {xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m− 1, 1 ≤ j2 ≤ m− 1} is a non-isolated
resolving set of Pn�2Km and the cardinality of non-isolated resolving set is |W | = |{xi, xi,j1 ; 1 ≤
i ≤ n, 1 ≤ j1 ≤ m}|+ |{xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m− 1, 1 ≤ j2 ≤ m− 1}| = nm2 + nm.
Thus, the representation of vertices v ∈ V (Pn �2 Km)−W respecting to W are as follows.
The vertex representation of xi,j1,j2 respect to W is
r(xi,j1,j2 |W ) = (a, 2, 3, . . . , 3︸ ︷︷ ︸

m−1

, . . . , 2, 3, . . . , 3︸ ︷︷ ︸
m−1︸ ︷︷ ︸

j1−1

, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 3, . . . , 3︸ ︷︷ ︸
m−1

, . . . , 2, 3, . . . , 3︸ ︷︷ ︸
m−1︸ ︷︷ ︸

m−j1

, 2, 3, . . . , 3︸ ︷︷ ︸
m−1

, c); 1 ≤

i ≤ n, 1 ≤ j1 ≤ m, j2 = m.
where
a = (t1i−1, t

2
i−1, . . . , t

2
i−1︸ ︷︷ ︸

m−1

, t3i−1, . . . , t
3
i−1︸ ︷︷ ︸

m

, t4i−1, . . . , t
4
i−1︸ ︷︷ ︸

m(m−1)

, . . . , t11, t
2
1, . . . , t

2
1︸ ︷︷ ︸

m−1

, t31, . . . , t
3
1︸ ︷︷ ︸

m

, t41, . . . , t
4
1︸ ︷︷ ︸

m(m−1

)

c = (t11, t
2
1, . . . , t

2
1︸ ︷︷ ︸

m−1

, t31, . . . , t
3
1︸ ︷︷ ︸

m

, t41, . . . , t
4
1︸ ︷︷ ︸

m(m−1

, . . . , t1n−i, t
2
n−i, . . . , t

2
n−i︸ ︷︷ ︸

m−1

, t3n−i, . . . , t
3
n−i︸ ︷︷ ︸

m

, t4n−i, . . . , t
4
n−i︸ ︷︷ ︸

m(m−1)

)

with t1l = l + 2, 1 ≤ l ≤ n− i ; t2l = l + 3, 1 ≤ l ≤ n− i ; t3l = l + 3, 1 ≤ l ≤ n− i ; t4l = l + 4,
1 ≤ l ≤ n− i ; t1k = k + 2, 1 ≤ k ≤ i− 1 ; t2k = k + 3, 1 ≤ k ≤ i− 1 ; t3k = k + 3, 1 ≤ k ≤ i− 1 ;
t4k = k + 4, 1 ≤ k ≤ i− 1

The vertex representation of xi,j2 respect to W is
r(xi,j2 |W ) = (a, 1, . . . , 1︸ ︷︷ ︸

m

, 2, . . . , 2︸ ︷︷ ︸
m

, 3, . . . , 3︸ ︷︷ ︸
m(m−1)

, c); 1 ≤ i ≤ n, j2 = m.

where
a = (t1i−1, t

2
i−1, . . . , t

2
i−1︸ ︷︷ ︸

m−1

, t3i−1, . . . , t
3
i−1︸ ︷︷ ︸

m

, t4i−1, . . . , t
4
i−1︸ ︷︷ ︸

m(m−1)

, . . . , t11, t
2
1, . . . , t

2
1︸ ︷︷ ︸

m−1

, t31, . . . , t
3
1︸ ︷︷ ︸

m

, t41, . . . , t
4
1︸ ︷︷ ︸

m(m−1

)

c = (t11, t
2
1, . . . , t

2
1︸ ︷︷ ︸

m−1

, t31, . . . , t
3
1︸ ︷︷ ︸

m

, t41, . . . , t
4
1︸ ︷︷ ︸

m(m−1

, . . . , t1n−i, t
2
n−i, . . . , t

2
n−i︸ ︷︷ ︸

m−1

, t3n−i, . . . , t
3
n−i︸ ︷︷ ︸

m

, t4n−i, . . . , t
4
n−i︸ ︷︷ ︸

m(m−1)

)

with t1l = l + 1, 1 ≤ l ≤ n− i ; t2l = l + 2, 1 ≤ l ≤ n− i ; t3l = l + 2, 1 ≤ l ≤ n− i ; t4l = l + 3,
1 ≤ l ≤ n− i ; t1k = k + 1, 1 ≤ k ≤ i− 1 ; t2k = k + 2, 1 ≤ k ≤ i− 1 ; t3k = k + 2, 1 ≤ k ≤ i− 1 ;
t4k = k + 3, 1 ≤ k ≤ i− 1

It is clearly that every vertices v ∈ V (Pn �2 Km) − W has the distinct representation
respect to W . Furthermore, we need to shown that all vertices in non-isolated resolving set
W without isolated vertex. All vertices in vertex set W = {xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤
m} ∪ {xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤ j2 ≤ m − 1} without isolated vertex by the
edge set {xixi,j1 , xi,j1xi,j1,j2 , xixi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m} which all vertices in W
induces subgraph Pn �2 Km with pendant edges. Hence, 〈W 〉 has no isolated vertices. So, the
upper bound non-isolated resolving number of Pn �2 Km is nr(Pn �2 Km) ≤ nm2 + nm.
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Hence, the lower bound non-isolated resolving number of Pn�2Km is nr(Pn�2Km) ≥ nm2+
nm. It concludes that nr(Pn�2Km) = nm2+nm ut

Theorem 2.3 Let Km and Pn be a connected graph of order n ≥ 2 and m ≥ 3, then non-isolated
resolving number of Km �2 Pn is nr(Km �2 Pn) = (mn + m)(bn2 c+ 1).

Proof: Let Km �2 Pn be a be a corona product of complete graph Km and path Pn with
vertex set V (Km �2 Pn) = {xi; 1 ≤ i ≤ n} ∪ {xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m} ∪ {xi,j1,j2 ; 1 ≤ i ≤
n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m} ∪ {xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j2 ≤ m} and edge set E(Km �2 Pn) =
{xixi+r; 1 ≤ i ≤ n, 1 ≤ r ≤ n − i} ∪ {xixi,j1 , xi,j1xi,j1,j2 , xixi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤
m} ∪ {xi,j1xi,j1+1, xi,j1,j2xi,j1,j2+1, xi,j2xi,j2+1; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤ j2 ≤ m − 1} with
the cardinality of vertex set |V (Km �2 Pn)| = nm2 + 2nm + n and the cardinality of edge set

|E(Km �2 Pn)| = 2nm2 + 3mn− 2n + n2−n
2 .

For n ≥ 2 and m ≥ 3, based on Lemma 2.1 and Proposition 1.3 then we have nr(Km�2Pn) ≥
|V (Km�Pn)|nr(K1+Pn) = (nm+m)(bn2 c+1). However, we can attain the sharpest lower bound.
Furthermore, we prove that nr(Km �2 Pn) ≤ (nm+m)(bn2 c+ 1). Choosing W ⊂ V (Km �2 Pn)
with W = {xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m} ∪ {xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤
j2 ≤ m − 1, j1 and j2 is odd} is a non-isolated resolving set of Km �2 Pn and the cardinality
of non-isolated resolving set is |W | = |{xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m}| + |{xi,j1,j2 , xi,j2 ; 1 ≤
i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤ j2 ≤ m − 1, j1 and j2 is odd}| = (nm + m)(bn2 c + 1). Thus, the
representation of vertices v ∈ V (Km �2 Pn)−W respecting to W are as follows.
The vertex representation of xi,j1,j2 for n even respect to W is
r(xi,j1,j2 |W ) = (a, tj1−1, t

′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bn
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
j2
2
−1

, 1, 1, 2, . . . , 2︸ ︷︷ ︸
bm

2
c− j2

2
−

, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, . . . ,

tn−j1 , t
′
n−j1 , . . . , t

′
n−j1︸ ︷︷ ︸

bn
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bn
2
c

, c); 1 ≤ i ≤ m, 1 ≤ j1 ≤ n 1 ≤ j2 ≤ n− 1 and j is even.

with tl = l+1, 1 ≤ l ≤ n−j1 and t′l = l+2, 1 ≤ l ≤ n−j1, 1 ≤ j1 ≤ n; tk = k+1, 1 ≤ k ≤ j1−1
and t′k = k + 2, 1 ≤ k ≤ j1 − 1, 1 ≤ j1 ≤ n.
The vertex representation of xi,j1,n for n even respect to W is
r(xi,j1,n|W ) = (a, tj1−1, t

′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bn
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
n
2
−1

, 1, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, . . . , tn−j1 ,

t′n−j1 , . . . , t
′
n−j1︸ ︷︷ ︸

bn
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bn
2
c

, c); 1 ≤ i ≤ m, 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n− 1.

with tl = l+1, 1 ≤ l ≤ n−j1 and t′l = l+2, 1 ≤ l ≤ n−j1, 1 ≤ j1 ≤ n; tk = k+1, 1 ≤ k ≤ j1−1
and t′k = k + 2, 1 ≤ k ≤ j1 − 1, 1 ≤ j1 ≤ n.
The vertex representation of xi,j1,j2 for n odd respect to W is
r(xi,j1,j2 |W ) = (a, tj1−1, t

′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bn
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
j2
2
−1

, 1, 1, 2, . . . , 2︸ ︷︷ ︸
bn
2
c− j2

2
−

, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, . . . ,

tn−j1 , t
′
n−j1 , . . . , t

′
n−j1︸ ︷︷ ︸

bn
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bn
2
c

, c); 1 ≤ i ≤ m, 1 ≤ j1 ≤ n 1 ≤ j2 ≤ n− 2 and j is even.

with tl = l+1, 1 ≤ l ≤ n−j1 and t′l = l+2, 1 ≤ l ≤ n−j1, 1 ≤ j1 ≤ n; tk = k+1, 1 ≤ k ≤ j1−1
and t′k = k + 2, 1 ≤ k ≤ j1 − 1, 1 ≤ j1 ≤ n.
The vertex representation of xi,j1,n−1 and xi,j1,n for n odd respect to W is
r(xi,j1,m−1|W ) = (a, tj1−1, t

′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bn
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
bn
2
c−1

, 1, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, . . . , tn−j1 ,

t′n−j1 , . . . , t
′
n−j1︸ ︷︷ ︸

bn
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bn
2
c

, c); 1 ≤ i ≤ m, 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n− 1.
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r(xi,j1,n|W ) = (a, tj1−1, t
′
j1−1, . . . , t

′
j1−1︸ ︷︷ ︸

bn
2
c

, . . . , t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, 1, 2, . . . , 2︸ ︷︷ ︸
bn
2
c

, t1, t
′
1, . . . , t

′
1︸ ︷︷ ︸

bn
2
c

, . . . , tn−j1 ,

t′n−j1 , . . . , t
′
n−j1︸ ︷︷ ︸

bn
2
c

2, 3, . . . , 3︸ ︷︷ ︸
bn
2
c

, c); 1 ≤ i ≤ m, 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n− 1.

with tl = l+1, 1 ≤ l ≤ n−j1 and t′l = l+2, 1 ≤ l ≤ n−j1, 1 ≤ j1 ≤ n; tk = k+1, 1 ≤ k ≤ j1−1
and t′k = k + 2, 1 ≤ k ≤ j1 − 1, 1 ≤ j1 ≤ n.
where
a = (3, 4, . . . , 4︸ ︷︷ ︸

bn
2
c

, 4, . . . , 4︸ ︷︷ ︸
n

, 5, . . . , 5︸ ︷︷ ︸
nbn

2
c

, . . . , 3, 4, . . . , 4︸ ︷︷ ︸
bn
2
c

, 4, . . . , 4︸ ︷︷ ︸
n

, 5, . . . , 5︸ ︷︷ ︸
nbn

2
c︸ ︷︷ ︸

i−1

)

c = (3, 4, . . . , 4︸ ︷︷ ︸
bn
2
c

, 4, . . . , 4︸ ︷︷ ︸
n

, 5, . . . , 5︸ ︷︷ ︸
nbn

2
c

, . . . , 3, 4, . . . , 4︸ ︷︷ ︸
bn
2
c

, 4, . . . , 4︸ ︷︷ ︸
n

, 5, . . . , 5︸ ︷︷ ︸
nbn

2
c︸ ︷︷ ︸

m−i

)

The vertex representation of xi,j2 for n even respect to W is
r(xi,j2 |W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸

j2
2
−1

, 1, 1, 2, . . . , 2︸ ︷︷ ︸
bn
2
c− j2

2
−1

, 2, . . . , 2︸ ︷︷ ︸
n

, 3, . . . , 3︸ ︷︷ ︸
n(bn

2
c)

, c); 1 ≤ i ≤ m, 1 ≤ j2 ≤ n − 1 and j2

is even.
The vertex representation of xi,n for n even respect to W is
r(xi,n|W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸

n
2

, 1, c); 1 ≤ i ≤ m, 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ n− 1.

The vertex representation of xi,j2 for m odd respect to W is
r(xi,j2 |W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸

j2
2
−1

, 1, 1, 2, . . . , 2︸ ︷︷ ︸
bn
2
c− j2

2
−

, 2, . . . , 2︸ ︷︷ ︸
n

, 3, . . . , 3︸ ︷︷ ︸
n(bn

2
c)

, c); 1 ≤ i ≤ m, 1 ≤ j2 ≤ n− 2 and j2 is

even.
The vertex representation of xi,n−1 and xi,n for n odd respect to W is
r(xi,n−1|W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸

bn
2
c−1

, 1, 2, . . . , 2︸ ︷︷ ︸
n

, 3, . . . , 3︸ ︷︷ ︸
n(bn

2
c)

, c); 1 ≤ i ≤ m.

r(xi,n|W ) = (a, 1, 2, . . . , 2︸ ︷︷ ︸
bn
2
c

, 2, . . . , 2︸ ︷︷ ︸
n

, 3, . . . , 3︸ ︷︷ ︸
n(bn

2
c)

, c); 1 ≤ i ≤ m.

where
a = (2, 3, . . . , 3︸ ︷︷ ︸

bn
2
c

, 3, . . . , 3︸ ︷︷ ︸
n

, 4, . . . , 4︸ ︷︷ ︸
nbn

2
c

, . . . , 2, 3, . . . , 3︸ ︷︷ ︸
bn
2
c

, 3, . . . , 3︸ ︷︷ ︸
n

, 4, . . . , 4︸ ︷︷ ︸
nbn

2
c︸ ︷︷ ︸

i−1

)

c = (2, 3, . . . , 3︸ ︷︷ ︸
bn
2
c

, 3, . . . , 3︸ ︷︷ ︸
n

, 4, . . . , 4︸ ︷︷ ︸
nbn

2
c

, . . . , 2, 3, . . . , 3︸ ︷︷ ︸
bn
2
c

, 3, . . . , 3︸ ︷︷ ︸
n

, 4, . . . , 4︸ ︷︷ ︸
nbn

2
c︸ ︷︷ ︸

m−i

)

It is clearly that every vertices v ∈ V (Km �2 Pn) − W has the distinct representation
respect to W . Furthermore, we need to shown that all vertices in non-isolated resolving set
W without isolated vertex. All vertices in vertex set W = {xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤
m} ∪ {xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤ j2 ≤ m − 1, j1 and j2 is odd} without
isolated vertex by the edge set {xixi,j1 , xi,j1xi,j1,j2 , xixi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m}
which all vertices in W induces subgraph Km �2 Pn with pendant edges. Hence, 〈W 〉 has
no isolated vertices. So, the upper bound non-isolated resolving number of Km �2 Pn is
nr(Km �2 Pn) ≤ (nm + m)(bn2 c+ 1).

Hence, the lower bound non-isolated resolving number of Km �2 Pn is nr(Km �2
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Pn) ≥ (nm + m)(bn2 c + 1). It concludes that nr(Km �2 Pn) = (nm + m)(bn2 c + 1)
ut

Theorem 2.4 Let Kn and Km be a connected graph of order n,m ≥ 3, then non-isolated
resolving number of Kn �2 Km is nr(Kn �2 Km) = nm2 + nm.

Proof: Let Kn �2 Km be a be a corona product of complete graph Kn and Km with vertex
set V (Kn �2 Km) = {xi; 1 ≤ i ≤ n} ∪ {xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m} ∪ {xi,j1,j2 ; 1 ≤ i ≤
n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m} ∪ {xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j2 ≤ m} and edge set E(Kn �2 Km) =
{xixi+r; 1 ≤ i ≤ n, 1 ≤ r ≤ n − i} ∪ {xixi,j1 , xi,j1xi,j1,j2 , xixi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤
m} ∪ {xi,j1xi,j1+r1 , xi,j1,j2xi,j1,j2+r2 , xi,j2xi,j2+r2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m, 1 ≤ r1 ≤
m− j1 and 1 ≤ r2 ≤ m− j2} with the cardinality of vertex set |V (Kn�2Km)| = nm2 +2nm+n

and the cardinality of edge set |E(Kn �2 Km)| = 2nm2 + mn + mn(m
2−m
2 ) + n2−n

2 .
For n ≥ 2 and m ≥ 3, based on Lemma 2.1 and Proposition 1.3 then we have nr(Kn�2Km) ≥

|V (Kn�Km)|nr(K1+Km) = (nm+n)m = nm2+nm. However, we can attain the sharpest lower
bound. Furthermore, we prove that nr(Kn�2 Km) ≤ nm2 +nm. Choosing W ⊂ V (Kn�2 Km)
with W = {xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m} ∪ {xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m− 1, 1 ≤ j2 ≤
m− 1} is a non-isolated resolving set of Kn�2 Km and the cardinality of non-isolated resolving
set is |W | = |{xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m}| + |{xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤
j2 ≤ m−1}| = nm2+nm. Thus, the representation of vertices v ∈ V (Kn�2Km)−W respecting
to W are as follows.
The vertex representation of xi,j1,j2 respect to W is
r(xi,j1,m|W ) = (a, 2, 3, . . . , 3︸ ︷︷ ︸

m−1

, . . . , 2, 3, . . . , 3︸ ︷︷ ︸
m−1︸ ︷︷ ︸

j1−1

, 1, . . . , 1︸ ︷︷ ︸
m

, 2, 3, . . . , 3︸ ︷︷ ︸
m−1

, . . . , 2, 3, . . . , 3︸ ︷︷ ︸
m−1︸ ︷︷ ︸

m−j1

, 2, 3, . . . , 3︸ ︷︷ ︸
m−1

, c); 1 ≤

i ≤ n, 1 ≤ j1 ≤ m, j2 = m.
where
a = (3, 4, . . . , 4︸ ︷︷ ︸

m−1

, 4, . . . , 4︸ ︷︷ ︸
m

, 5, . . . , 5︸ ︷︷ ︸
m(m−1)

, . . . , 3, 4, . . . , 4︸ ︷︷ ︸
m−1

, 4, . . . , 4︸ ︷︷ ︸
m

, 5, . . . , 5︸ ︷︷ ︸
m(m−1)︸ ︷︷ ︸

i−1

)

c = (3, 4, . . . , 4︸ ︷︷ ︸
m−1

, 4, . . . , 4︸ ︷︷ ︸
m

, 5, . . . , 5︸ ︷︷ ︸
m(m−1)

, . . . , 3, 4, . . . , 4︸ ︷︷ ︸
m−1

, 4, . . . , 4︸ ︷︷ ︸
m

, 5, . . . , 5︸ ︷︷ ︸
m(m−1)︸ ︷︷ ︸

n−i

)

The vertex representation of xi,j2 respect to W is
r(xi,j2 |W ) = (a, 1, . . . , 1︸ ︷︷ ︸

m

, 2, . . . , 2︸ ︷︷ ︸
m

, 3, . . . , 3︸ ︷︷ ︸
m(m−1)

, c); 1 ≤ i ≤ n, j2 = m.

where
a = (2, 3, . . . , 3︸ ︷︷ ︸

m−1

, 3, . . . , 3︸ ︷︷ ︸
m

, 4, . . . , 4︸ ︷︷ ︸
m(m−1)

, . . . , 2, 3, . . . , 3︸ ︷︷ ︸
m−1

, 3, . . . , 3︸ ︷︷ ︸
m

, 4, . . . , 4︸ ︷︷ ︸
m(m−1)︸ ︷︷ ︸

i−1

)

c = (2, 3, . . . , 3︸ ︷︷ ︸
m−1

, 3, . . . , 3︸ ︷︷ ︸
m

, 4, . . . , 4︸ ︷︷ ︸
m(m−1)

, . . . , 2, 3, . . . , 3︸ ︷︷ ︸
m−1

, 3, . . . , 3︸ ︷︷ ︸
m

, 4, . . . , 4︸ ︷︷ ︸
m(m−1)︸ ︷︷ ︸

n−i

)

It is clearly that every vertices v ∈ V (Kn �2 Km) − W has the distinct representation
respect to W . Furthermore, we need to shown that all vertices in non-isolated resolving
set W without isolated vertex. All vertices in vertex set W = {xi, xi,j1 ; 1 ≤ i ≤ n, 1 ≤
j1 ≤ m} ∪ {xi,j1,j2 , xi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m − 1, 1 ≤ j2 ≤ m − 1} without isolated
vertex by the edge set {xixi,j1 , xi,j1xi,j1,j2 , xixi,j2 ; 1 ≤ i ≤ n, 1 ≤ j1 ≤ m, 1 ≤ j2 ≤ m}
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which all vertices in W induces subgraph Kn �2 Km with pendant edges. Hence, 〈W 〉 has
no isolated vertex. So, the upper bound non-isolated resolving number of Kn �2 Km is
nr(Kn �2 Km) ≤ nm2 + nm. Hence, the lower bound non-isolated resolving number of
Kn �2 Km is nr(Kn �2 Km) ≥ nm2 + nm. It concludes that nr(Kn �2 Km) = nm2 + nm
ut

3. Conclusion
The results show that the non-isolated resolving number attain the best lower bound. There are
some open problem as follows

Open Problem 1 Find the non-isolated resolving number of G�k H with k ≥ 3 for G,H are
connected graph except path Pn and complete graph Kn.
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