PAPER • OPEN ACCESS

The 1st International Conference of Combinatorics, Graph Theory, and Network Topology

To cite this article: 2018 J. Phys.: Conf. Ser. 1008011001

Related content
The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Optimization of scheduling system for plant watering using electric cars in agro techno park Nelly Oktavia Adiwijaya, Yudha Herlambang and Slamin

Some Pictures of The 2015 International Conference on Mathematics, its Applications, and Mathematics Education Sudi Mungkasi

View the article online for updates and enhancements.

The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia
E-mail: d.dafik@unej.ac.id

Preface

It is with my great pleasure and honor to organize the First International Conference on Combinatorics, Graph Theory and Network Topology which is held from 25-26 November 2017 in the University of Jember, East Java, Indonesia and present a conference proceeding index by Scopus. It is the first international conference organized by CGANT Research Group University of Jember in cooperation with Indonesian Combinatorics Society (INACOBMS). The conference is held to welcome participants from many countries, with broad and diverse research interests of mathematics especially combinatorical study. The mission is to become an annual international forum in the future, where, civil society organization and representative, research students, academics and researchers, scholars, scientist, teachers and practitioners from all over the world could meet in and exchange an idea to share and to discuss theoretical and practical knowledge about mathematics and its applications. The aim of the first conference is to present and discuss the latest research that contributes to the sharing of new theoretical, methodological and empirical knowledge and a better understanding in the area mathematics, application of mathematics as well as mathematics education.

The themes of this conference are as follows: (1) Connection of distance to other graph properties, (2) Degree/diameter problem, (3) Distance-transitive and distance-regular graphs, (4) Metric dimension and related parameters, (5) Cages and eccentric graphs, (6) Cycles and factors in graphs, (7) Large graphs and digraphs, (8) Spectral Techniques in graph theory, (9) Ramsey numbers, (10) Dimensions of graphs, (11) Communication networks, (12) Coding theory, (13) Cryptography, (14) Rainbow connection, (15) Graph labelings and coloring, (16). Applications of graph theory

The topics are not limited to the above themes but they also include the mathematical application research of interest in general including mathematics education, such as:(1) Applied Mathematics and Modelling, (2) Applied Physics: Mathematical Physics, Biological Physics, Chemistry Physics,(3) Applied Engineering: Mathematical Engineering, Mechanical engineering, Informatics Engineering, Civil Engineering,(4) Statistics and Its Application,(5) Pure Mathematics (Analysis, Algebra and Geometry),(6) Mathematics Education, (7) Literacy of Mathematics,(8) The Use of ICT Based Media In Mathematics Teaching and Learning,(9) Technological, Pedagogical, Content Knowledge for Teaching Mathematics, (10) Students Higher Order Thinking Skill of Mathematics, (11) Contextual Teaching and Realistic Mathematics, (12) Science, Technology, Engineering, and Mathematics Approach, (13) Local Wisdom Based

Education: Ethnomathematics, (14) Showcase of Teaching and Learning of Mathematics, (16) The 21st Century Skills: The Integration of 4C Skill in Teaching Math.

The participants of this ICCGANT 2017 conference were 200 people consisting research students, academics and researchers, scholars, scientist, teachers and practitioners from many countries. The selected papers to be publish of Journal of Physics: Conference Series are 80 papers. On behalf of the organizing committee, finally we gratefully acknowledge the support from the University of Jember of this conference. We would also like to extend our thanks to all lovely participants who are joining this unforgettable and valuable event.

Prof. Drs. Dafik, M.Sc., Ph.D.

PAPER • OPEN ACCESS

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Related content

- List of committees
- List of Committees

Committees

To cite this article: 2018 J. Phys.: Conf. Ser. 1008011002

View the article online for updates and enhancements.

The Committees of The First International Conference on Combinatorics, Graph Theory and Network Topology (ICCGANT)

Dafik
Editor in Chief of ICCGANTs Publication, University of Jember, Jember, Indonesia Professor of Combinatorics and Graph Theory
E-mail: d.dafik@unej.ac.id

Advisory Committee

Moch. Hasan Rector of the University of Jember
Zulfikar Vice Rector of the University of Jember
Slamin President of Indonesian Combinatorial Society

Organizing Committee
Dafik Chairperson
Ika Hesti Agustin Secretary

Advisory Editorial Board

Surahmat University of Islam Malang, Indonesia Syafrizal Sy University of Andalas, Indonesia

Editorial Board

Arika Indah Kristiana	University of Jember, Indonesia
Abduh Riski	University of Jember, Indonesia
Ikhsanul Halikin	University of Jember, Indonesia
Ridho Alfarisi	University of Jember, Indonesia
Rafiantika Megahnia Prihandini	University of Jember, Indonesia
Kusbudiono	University of Jember, Indonesia
Ermita Rizky Albirri	University of Jember, Indonesia
Robiatul Adawiyah	University of Jember, Indonesia
Dwi Agustin Retno Wardani	IKIP PGRI Jember, Indonesia

Scientific Committee and Reviewers

Joe Ryan University of Newcastle, Australia
Kinkar Chandra Das Sungkyunkwan University, Republic of Korea
Octavio Paulo Vera Villagran University of Bio-Bio, Chile
Ali Ahmad Jazan University, Saudi Arabia
Roslan Hasni Universiti Malaysia Terengganu, Malaysia
Kiki A. Sugeng University of Indonesia, Indonesia
Rinovia Simajuntak Institut Teknologi Bandung, Indonesia
Hilda Assiyatun Institut Teknologi Bandung, Indonesia
Liliek Susilowati Universitas Airlangga, Indonesia
Diary Indriati Universitas Sebelas Maret, Indonesia
Syaiful Bukhori University of Jember, Indonesia
Antonius Cahya Prihandoko University of Jember, Indonesia
Bambang Sujanarko University of Jember, Indonesia
Khairul Anam University of Jember, Indonesia

The committees of the First International Conference on Combinatorics, Graph Theory and Network Topology would like to express gratitude to all Committees for the volunteering support and contribution in the editing and reviewing process.

Digital Repository Universitas Jember

Digital Repository Universitas Jember

Journal of Physics: Conference Series 。

This website uses cookies to ensure you get the best experience on our website

PAPER • OPEN ACCESS

The non-isolated resolving number of k-corona product of graphs

To cite this article: Ridho Alfarisi et al 2018 J. Phys.: Conf. Ser. 1008012040

Related content

Non-isolated Resolving Sets of certain Graphs Cartesian Product with a Path I M Hasibuan, A N M Salman and S W Saputro

- A THEOREM ON CARDINALITY

A V Arkhangel'skii
Domination Number of Vertex
Amalgamation of Graphs
Y Wahyuni, M I Utoyo and Slamin

View the article online for updates and enhancements.

The non-isolated resolving number of k-corona product of graphs

Ridho Alfarisi ${ }^{1,4}$, Dafik 1,2, Slamin 1,5, I. H. Agustin ${ }^{1,3}$, A. I. Kristiana ${ }^{1,2}$
${ }^{1}$ CGANT-University of Jember, Jember, Indonesia
${ }^{2}$ Department of Mathematics Education, University of Jember, Jember, Indonesia
${ }^{3}$ Department of Mathematics, University of Jember, Jember, Indonesia
${ }^{4}$ Department of Elementary School Teacher Education, University of Jember, Jember, Indonesia
${ }^{5}$ Department of Information System, University of Jember, Jember, Indonesia
E-mail: alfarisi.fkip@unej.ac.id, d.dafik@unej.ac.id, s.slamin@unej.ac.id

Abstract

Let all graphs be a connected and simple graph. A set $W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{k}\right\}$ of veretx set of G, the k-vector ordered $r(v \mid W)=\left(d\left(x, w_{1}\right), d\left(x, w_{2}\right), \ldots, d\left(x, w_{k}\right)\right)$ of is a representation of v with respect to W, for $d(x, w)$ is the distance between the vertices x and w. The set W is called a resolving set for G if different vertices of G have distinct representation. The metric dimension is the minimum cardinality of resolving set W, denoted by $\operatorname{dim}(G)$. Through analogue, the resolving set W of G is called non-isolated resolving set if there is no $\forall v \in W$ induced by non-isolated vertex. The non-isolated resolving number is the minimum cardinality of non-isolated resolving set W, denoted by $\operatorname{nr}(G)$. In our paper, we determine the non isolated resolving number of k-corona product graph.

1. Introduction

In this paper, All graphs G is a nontrivial and connected graph, for more detail definition of graph see [1, 2]. The concept of metric dimension was independently introduced by Slater [3] and Harrary and Melter [4]. In his paper, Slater called this concept as a locating set. Let u, v be two vertices in G. The distance $d(u, v)$ is the length of a shortest path between two vertices u and v in connected graph G. For an ordered set $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ subset of vertex set $V(G)$. The representation $r(v \mid W)$ of v with respect to W is the ordered k-tuple $r(v \mid W)=\left(d\left(v, w_{1}\right), d\left(v, w_{2}\right), \ldots, d\left(v, w_{k}\right)\right)$. The set W is called resolving set of G if every vertices of G have distinct representation respect to W, let u and v be two any vertices in G if $r(u \mid W)=r(v \mid W)$ implies that $u=v$. Hence if W is a resolving set of cardinality k for a graph G, then the representation set $r(v \mid W), v \in V(G)$ consists of $|V(G)|$ distinct k-vector. A resolving set of minimum cardinality for a graph G is called a minimum resolving set for G and this cardinality is the metric dimension of G, denoted by $\operatorname{dim}(G)$. Saenpholphat and Zhang [7] introduced the concept of connected resolving set. A resolving set W of graph G is connected if each subgraph $\langle W\rangle$ induced by W has no isolated vertices in G. The minimum cardinality of a non-isolated set in a graph G is the non-isolated resolving number, denoted by $n r(G)$. For more detail notation of $n r(G)$ please see in Chitra and Arumugam [5].

Until today, Chartrand et.al.[6] determined the bounds of the metric dimensions for any connected graphs and determined the metric dimensions of some well known families of graphs
such as tree, path, and complete graph. Citra and Arumugam [5] studied resolving set without isolated vertices of some family graphs. Furthermore, Baca, et.al [8] showed the metric dimension of regular bipartite graphs. In recent years, this metric dimension has been studied widely (see [7], [9], [10], [11], [12], [13]). In the following, we present some known results and Yunika [14] studied the metric dimension with non-isolated resolving number of corona product of graphs. Alfarisi et al [16] studied non-isolated resolving number of graphs with pendant edges

The known results on metric dimension and local metric dimension of some particular classes of graphs and graph operation have been discovered Chitra and Arumugam [5], Dafik [15], Yunika [14] as follows.

Proposition 1.1 (Chitra and Arumugam [5]) Let G be a connected graph of order $n \geq 2$

- For $P_{n}, n \geq 2, n r\left(P_{n}\right)=2$.
- For $K_{n}, n \geq 3, n r\left(K_{n}\right)=n-1$.
- For $K_{m, n}, m, n \geq 2, n r\left(K_{m, n}\right)=m+n-2$.
- For friendship G with k-triangles, $k \geq 2, n r(G)=k+1$.
- For $P_{n}+K_{1}, n \geq 2, n r\left(P_{n}+K_{1}\right)=\lfloor n / 2\rfloor$.

Proposition 1.2 (Dafik [15]) Let G and H be a connected graph, then the metric dimensio with non-ioslated resolving number of $G+H$ is $\left\lfloor\frac{|V(G)|}{2}\right\rfloor+\left\lfloor\frac{|V(H)|}{2}\right\rfloor \leq n r(G+H) \leq\left\lceil\frac{|V(G)|}{2}\right\rceil+$ $\left\lceil\frac{|V(H)|}{2}\right\rceil+\max \{n r(G), n r(H)\}$

Proposition 1.3 (Yunika [14]) Let G be a connected graph of order $n \geq 2$

- For $G \cong K_{1} \odot P_{n}, n \geq 2, n r(G)=\left\lfloor\frac{n}{2}\right\rfloor+1$.
- For $G \cong K_{1} \odot K_{n}, n \geq 2, n r(G)=n$.
- For $G \cong K_{1} \odot C_{n}, n \geq 2$,

$$
n r(G)= \begin{cases}3, & \text { if } 3 \leq n \leq 4 \\ \left\lfloor\frac{n}{2}\right\rfloor+1, & \text { if } n \geq 5, n \text { is odd } \\ \left\lfloor\frac{n}{2}\right\rfloor, & \text { if } n \geq 5, n \text { is even }\end{cases}
$$

Fruct and Harary [17] was introduced a type corona product of grpah. Let G be a connected graph of order n and H (not necessarily connected) be a graph of order m. A graph G corona product $H, G \odot H$, is defined as a graph obtained by taking one copy of G and $|V(G)|$ copies of graph $H_{1}, H_{2}, \ldots, H_{n}$ of H and connecting i-th vertex of G to the vertices of $H_{i}, 1 \leq i \leq n$. By definition of corona product, we can say that

$$
\begin{gathered}
V(G \odot H)=V(G) \cup \bigcup_{i \in V(G)} V\left(H_{i}\right) \\
E(G \odot H)=E(G) \cup \bigcup_{i \in V(G)}\left(E\left(H_{i}\right) \cup\left\{i u_{i} \mid u_{i} \in V\left(H_{i}\right)\right\}\right),
\end{gathered}
$$

For any integer $k \geq 2$, we define the corona product of graph $G \odot_{k} H$ recursively of $G \odot H$ as $G \odot_{k} H=\left(G \odot_{k-1} H\right) \odot H$. The graph $G \odot_{k} H$ is named as k-corona product or multicorona product of graph G and H for more detail definiton can be seen in [18]. Figure 1 is an ilustration of k-corona product graphs.

Figure 1. Example of k-corona product: (a) $P_{4} ;$ (b) P_{2}; (c) $P_{4} \odot P_{2}$; (d) $P_{4} \odot_{2} P_{2}$

2. Main Results

In this section, we find the metric dimension with non-isolated resolving set of k-corona product graphs. We determine the sharp lower bound and the exact value of $P_{n} \odot_{2} P_{m}, P_{n} \odot_{2} K_{m}$, $K_{m} \odot_{2} P_{n}$ and $K_{n} \odot_{2} K_{m}$

Lemma 2.1 Let G be a connected graph of order $|V(G)| \geq 2$ and H be a graph of order $|V(H)| \geq$ 2, then non-isolated resolving number of $G \odot_{k} H$ is $\operatorname{nr}\left(G \odot_{k} H\right) \geq\left|V\left(G \odot_{k-1} H\right)\right| n r\left(K_{1}+H\right)$.

Proof: The k-corona product of graph $G \odot_{k} H$ recursively of $G \odot H$ as $G \odot_{k} H=\left(G \odot_{k-1} H\right) \odot H$. Given a resolving set W^{\prime} of $G \odot_{k} H$ with $W^{\prime} \subset V(H) \neq \emptyset$ and resolving set $W^{\prime \prime}$ of $G \odot_{k} H$ with $W^{\prime} \subset V\left(G \odot_{k-1} H\right) \neq \emptyset$. It can be shown with use Lemma 2.6.2 (i). Based on definition of nonisolated resolving set that we get $W_{i}=W_{i}^{\prime} \cup W^{\prime \prime}{ }_{i}$ for every $i \in V\left(G \odot_{k-1} H\right)$ with $W^{\prime \prime}{ }_{i}=\left\{u_{i}\right\}$ so that $W_{i}=W_{i}^{\prime} \cup\left\{u_{i}\right\}$. In this section, we can assume $-W_{i}^{\prime} \cup\left\{u_{i}\right\} \mid=n r\left(K_{1}+H\right)$. Thus, we get resolving set $W=W_{1} \cup W_{2} \cup W_{3} \cup \ldots \cup W_{\left|V\left(G \odot_{k-1} H\right)\right|}$ or $W=\bigcup_{i=1}^{\left|V\left(G \odot_{k-1} H\right)\right|} W_{i}$, then we obtain the lower bound non-isolated resolving set W of $G \odot_{k-1} H$ is

$$
\begin{aligned}
|W| & \leq\left|\bigcup_{i=1}^{\left|V\left(G \odot_{k-1} H\right)\right|}\left(W_{i}\right)\right| \\
& =\Sigma_{i=1}^{\left|V\left(G \odot_{k-1} H\right)\right|}\left|W_{i}\right| \\
& =\left|W_{1}\right|+\left|W_{2}\right|+\ldots+\left|W_{V\left(G \odot_{k-1} H\right) \mid}\right| \\
& =\underbrace{n r\left(K_{1}+H\right)+n r\left(K_{1}+H\right)+\ldots+n r\left(K_{1}+H\right)}_{\left|V\left(G \odot_{k-1} H\right)\right| \text { times }} \\
& =V\left(G \odot_{k-1} H\right) \mid n r\left(K_{1}+H\right)
\end{aligned}
$$

Hence, it is clearly that the lower bound non-isolated resolving number of $G \odot_{k} H$ is $n r\left(G \odot_{k}\right.$ $H) \geq\left|V\left(G \odot_{k-1} H\right)\right| n r\left(K_{1}+H\right)$.

Theorem 2.1 Let P_{n} and P_{m} be a connected graph of order $n, m \geq 2$, then non-isolated resolving number of $P_{n} \odot_{2} P_{m}$ is $n r\left(P_{n} \odot_{2} P_{m}\right)=(n m+n)\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)$.

Proof: Let $P_{n} \odot_{2} P_{m}$ be a corona product of path P_{n} and P_{m} with vertex set $V\left(P_{n} \odot_{2}\right.$ $\left.P_{m}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}} ; 1 \leq i \leq n, 1 \leq\right.$ $\left.j_{1} \leq m, 1 \leq j_{2} \leq m\right\} \cup\left\{x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{2} \leq m\right\}$ and edge set $E\left(P_{n} \odot_{2} P_{m}\right)=$ $\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i, j_{1}}, x_{i, j_{1}} x_{i, j_{1}, j_{2}}, x_{i} x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq\right.$ $m\} \cup\left\{x_{i, j_{1}} x_{i, j_{1}+1}, x_{i, j_{1}, j_{2}} x_{i, j_{1}, j_{2}+1}, x_{i, j_{2}} x_{i, j_{2}+1} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1\right\}$

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012040 doi:10.1088/1742-6596/1008/1/012040
with the cardinality of vertex set $\left|V\left(P_{n} \odot_{2} P_{m}\right)\right|=n m^{2}+2 n m+n$ and the cardinality of edge set $\left|E\left(P_{n} \odot_{2} P_{m}\right)\right|=2 n m^{2}+3 m n-n-1$.

For $n, m \geq 2$, based on Lemma 2.1 and Proposition 1.3 then we have $n r\left(P_{n} \odot_{2} P_{m}\right) \geq$ $\left|V\left(P_{n} \odot P_{m}\right)\right| n r\left(K_{1}+P_{m}\right)=(n m+n)\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)$. However, we can attain the sharpest lower bound. Furthermore, we prove that $n r\left(P_{n} \odot_{2} P_{m}\right) \leq(n m+n)\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)$. Choosing $W \subset V\left(P_{n} \odot_{2} P_{m}\right)$ with $W=\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq\right.$ $j_{2} \leq m-1, j_{1}$ and j_{2} is odd $\}$ is a non-isolated resolving set of $P_{n} \odot_{2} P_{m}$ and the cardinality of non-isolated resolving set is $|W|=\left|\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\}\right|+\mid\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq\right.$ $i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1, j_{1}$ and j_{2} is odd $\} \left\lvert\,=(n m+n)\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)\right.$. Thus, the representation of vertices $v \in V\left(P_{n} \odot_{2} P_{m}\right)-W$ respecting to W are as follows.
The vertex representation of $x_{i, j_{1}, j_{2}}$ for m even respect to W is
$r\left(x_{i, j_{1}, j_{2}} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\frac{j_{2}}{2}-1}, 1,1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor-\frac{j_{2}}{2}-}, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots$,
$t_{m-j_{1}}, \underbrace{t_{m-j_{1}}^{\prime}, \ldots, t_{m-j_{1}}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{m}{2}\right\rfloor}, c) ; 1 \leq i \leq n, 1 \leq j_{1} \leq m 1 \leq j_{2} \leq m-1$ and j is even.
with $t_{l}=l+1,1 \leq l \leq m-j_{1}$ and $t_{l}^{\prime}=l+2,1 \leq l \leq m-j_{1}, 1 \leq j_{1} \leq m ; t_{k}=k+1$, $1 \leq k \leq j_{1}-1$ and $t_{k}^{\prime}=k+2,1 \leq k \leq j_{1}-1,1 \leq j_{1} \leq m$.
The vertex representation of $x_{i, j_{1}, m}$ for m even respect to W is
$r\left(x_{i, j_{1}, m} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\frac{m}{2}-1}, 1, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{m-j_{1}}$,
$\underbrace{t_{m-j_{1}}^{\prime}, \ldots, t_{m-j_{1}}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{m}{2}\right\rfloor}, c) ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m-1$.
with $t_{l}=l+1,1 \leq l \leq m-j_{1}$ and $t_{l}^{\prime}=l+2,1 \leq l \leq m-j_{1}, 1 \leq j_{1} \leq m ; t_{k}=k+1$, $1 \leq k \leq j_{1}-1$ and $t_{k}^{\prime}=k+2,1 \leq k \leq j_{1}-1,1 \leq j_{1} \leq m$.
The vertex representation of $x_{i, j_{1}, j_{2}}$ for m odd respect to W is
$r\left(x_{i, j_{1}, j_{2}} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\frac{j_{2}}{2}-1}, 1,1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor-\frac{j_{2}}{2}-}, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots$, $t_{m-j_{1}}, \underbrace{t_{m-j_{1}}^{\prime}, \ldots, t_{m-j_{1}}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{m}{2}\right\rfloor}, c) ; 1 \leq i \leq n, 1 \leq j_{1} \leq m 1 \leq j_{2} \leq m-2$ and j is even.
with $t_{l}=l+1,1 \leq l \leq m-j_{1}$ and $t_{l}^{\prime}=l+2,1 \leq l \leq m-j_{1}, 1 \leq j_{1} \leq m ; t_{k}=k+1$, $1 \leq k \leq j_{1}-1$ and $t_{k}^{\prime}=k+2,1 \leq k \leq j_{1}-1,1 \leq j_{1} \leq m$.
The vertex representation of $x_{i, j_{1}, m-1}$ and $x_{i, j_{1}, m}$ for m odd respect to W is
$r\left(x_{i, j_{1}, m-1} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor-1}, 1, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{m-j_{1}}$,
$\underbrace{t_{m-j_{1}}^{\prime}, \ldots, t_{m-j_{1}}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{m}{2}\right\rfloor}, c) ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m-1$.
$r\left(x_{i, j_{1}, m} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor}, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{m-j_{1}}$,
$\underbrace{t_{m-j_{1}}^{\prime}, \ldots, t_{m-j_{1}}^{\prime}}_{\left\lfloor\frac{m}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{m}{2}\right\rfloor}, c) ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m-1$.
with $t_{l}=l+1,1 \leq l \leq m-j_{1}$ and $t_{l}^{\prime}=l+2,1 \leq l \leq m-j_{1}, 1 \leq j_{1} \leq m ; t_{k}=k+1$, $1 \leq k \leq j_{1}-1$ and $t_{k}^{\prime}=k+2,1 \leq k \leq j_{1}-1,1 \leq j_{1} \leq m$.
where

$$
\left.\begin{array}{l}
a=(t_{i-1}^{1}, \underbrace{t_{i-1}^{2}, \ldots, t_{i-1}^{2}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \underbrace{t_{i-1}^{3}, \ldots, t_{i-1}^{3}}_{m}, \underbrace{t_{i-1}^{4}, \ldots, t_{i-1}^{4}}_{m\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{1}^{1}, \underbrace{t_{2}^{2}, \ldots, t_{1}^{2}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \underbrace{t_{2}^{3}, \ldots, t_{1}^{3}}_{m}, \underbrace{t_{4}^{4}, \ldots, t_{1}^{4}}_{m\left\lfloor\frac{m}{2}\right\rfloor}) \\
c=(t_{1}^{1}, \underbrace{t_{1}^{2}, \ldots, t_{1}^{2},}_{\left\lfloor\frac{m}{2}\right\rfloor}, \underbrace{t_{1}^{3}, \ldots, t_{1}^{3}}_{m}, \underbrace{\left.t_{2}^{4}\right\rfloor}_{m\left\lfloor\ldots, t_{1}^{4}\right\rfloor}, \ldots, t_{n-i}^{1}, \underbrace{2}_{m-i}, \ldots, t_{n-i}^{2}, \underbrace{t_{n-i}^{3}, \ldots, t_{n-i}^{3}}_{m-i}, \underbrace{4}_{m-i}, \ldots, t_{n-i}^{4})
\end{array}\right)
$$

with $t_{l}^{1}=l+2,1 \leq l \leq n-i ; t_{l}^{2}=l+3,1 \leq l \leq n-i ; t_{l}^{3}=l+3,1 \leq l \leq n-i ; t_{l}^{4}=l+4$, $1 \leq l \leq n-i ; t_{k}^{1}=k+2,1 \leq k \leq i-1 ; t_{k}^{2}=k+3,1 \leq k \leq i-1 ; t_{k}^{3}=k+3,1 \leq k \leq i-1 ;$ $t_{k}^{4}=k+4,1 \leq k \leq i-1$

The vertex representation of $x_{i, j_{2}}$ for m even respect to W is
$r\left(x_{i, j_{2}} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\frac{j_{2}}{2}-1}, 1,1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor-\frac{j_{2}}{2}-}, \underbrace{2, \ldots, 2}_{m}, \underbrace{3, \ldots, 3}_{m\left(\left\lfloor\frac{m}{2}\right\rfloor\right)}, c) ; 1 \leq i \leq n, 1 \leq j_{2} \leq m-1$ and j is
even.
The vertex representation of $x_{i, m}$ for m even respect to W is
$r\left(x_{i, m} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\frac{m}{2}}, 1, c) ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m-1$.
The vertex representation of $x_{i, j_{2}}$ for m odd respect to W is
$r\left(x_{i, j_{2}} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\frac{j_{2}}{2}-1}, 1,1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor-\frac{j_{2}}{2}-}, \underbrace{2, \ldots, 2}_{m}, \underbrace{3, \ldots, 3}_{m\left(\left\lfloor\frac{m}{2}\right\rfloor\right)}, c) ; 1 \leq i \leq n, 1 \leq j_{2} \leq m-2$ and j is
even.
The vertex representation of $x_{i, m-1}$ and $x_{i, m}$ for m odd respect to W is
$r\left(x_{i, m-1} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor-1}, 1, \underbrace{2, \ldots, 2}_{m}, \underbrace{3, \ldots, 3}_{m\left(\left\lfloor\frac{m}{2}\right\rfloor\right)}, c) ; 1 \leq i \leq n$.
$r\left(x_{i, m} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor}, \underbrace{2, \ldots, 2}_{m}, \underbrace{3, \ldots, 3}_{m\left(\left\lfloor\frac{m}{2}\right\rfloor\right)}, c) ; 1 \leq i \leq n$.
where
$a=(t_{i-1}^{1}, \underbrace{t_{i-1}^{2}, \ldots, t_{i-1}^{2}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \underbrace{t_{i-1}^{3}, \ldots, t_{i-1}^{3}}_{m}, \underbrace{t_{i-1}^{4}, \ldots, t_{i-1}^{4}}_{m\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{1}^{1}, \underbrace{t_{1}^{2}, \ldots, t_{1}^{2}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \underbrace{t_{1}^{3}, \ldots, t_{1}^{3}}_{m}, \underbrace{4}_{m\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{1}^{4})$
$c=(t_{1}^{1}, \underbrace{t_{1}^{2}, \ldots, t_{1}^{2}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \underbrace{t_{1}^{3}, \ldots, t_{1}^{3}}_{m}, \underbrace{t_{1}^{4}, \ldots, t_{1}^{4}}_{m\left\lfloor\frac{m}{2}\right\rfloor}, \ldots, t_{n-i}^{1}, \underbrace{t_{n-i}^{2}, \ldots, t_{n-i}^{2}}_{\left\lfloor\frac{m}{2}\right\rfloor}, \underbrace{t_{n-i}^{3}, \ldots, t_{n-i}^{3}}_{m}, \underbrace{t_{n-i}^{4}, \ldots, t_{n-i}^{4}}_{m\left\lfloor\frac{m}{2}\right\rfloor})$
with $t_{l}^{1}=l+1,1 \leq l \leq n-i ; t_{l}^{2}=l+2,1 \leq l \leq n-i ; t_{l}^{3}=l+2,1 \leq l \leq n-i ; t_{l}^{4}=l+3$, $1 \leq l \leq n-i ; t_{k}^{1}=k+1,1 \leq k \leq i-1 ; t_{k}^{2}=k+2,1 \leq k \leq i-1 ; t_{k}^{3}=k+2,1 \leq k \leq i-1 ;$ $t_{k}^{4}=k+3,1 \leq k \leq i-1$

It is clearly that every vertices $v \in V\left(P_{n} \odot_{2} P_{m}\right)-W$ has the distinct representation respect to W. Furthermore, we need to shown that all vertices in non-isolated resolving set W without isolated vertex. All vertices in vertex set $W=\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq\right.$ $m\} \cup\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1, j_{1}\right.$ and j_{2} is odd $\}$ without isolated vertex by the edge set $\left\{x_{i} x_{i, j_{1}}, x_{i, j_{1}} x_{i, j_{1}, j_{2}}, x_{i} x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m\right\}$ which all vertices in W induces subgraph $P_{n} \odot_{2} P_{m}$ with pendant edges. Hence, $\langle W\rangle$ has no isolated vertices. So, the upper bound non-isolated resolving number of $P_{n} \odot_{2} P_{m}$ is $n r\left(P_{n} \odot_{2} P_{m}\right) \leq(n m+n)\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)$.

Hence, the lower bound non-isolated resolving number of $P_{n} \odot_{2} P_{m}$ is $n r\left(P_{n} \odot_{2}\right.$ $\left.P_{m}\right) \geq(n m+n)\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)$. It concludes that $n r\left(P_{n} \odot_{2} P_{m}\right)=(n m+n)\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)$.

Theorem 2.2 Let P_{n} and K_{m} be a connected graph of order $n \geq 2$ and $m \geq 3$, then non-isolated resolving number of $P_{n} \odot_{2} K_{m}$ is $n r\left(P_{n} \odot_{2} K_{m}\right)=n m^{2}+n m$.

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012040 doi:10.1088/1742-6596/1008/1/012040

Proof: Let $P_{n} \odot_{2} K_{m}$ be a be a corona product of path P_{n} and complete graph K_{m} with vertex set $V\left(P_{n} \odot_{2} K_{m}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}} ; 1 \leq i \leq\right.$ $\left.n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m\right\} \cup\left\{x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{2} \leq m\right\}$ and edge set $E\left(P_{n} \odot_{2} K_{m}\right)=$ $\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i} x_{i, j_{1}}, x_{i, j_{1}} x_{i, j_{1}, j_{2}}, x_{i} x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq\right.$ $m\} \cup\left\{x_{i, j_{1}} x_{i, j_{1}+r_{1}}, x_{i, j_{1}, j_{2}} x_{i, j_{1}, j_{2}+r_{2}}, x_{i, j_{2}} x_{i, j_{2}+r_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m, 1 \leq r_{1} \leq\right.$ $m-j_{1}$ and $\left.1 \leq r_{2} \leq m-j_{2}\right\}$ with the cardinality of vertex set $\left|V\left(P_{n} \odot_{2} K_{m}\right)\right|=n m^{2}+2 n m+n$ and the cardinality of edge set $\left|E\left(P_{n} \odot_{2} K_{m}\right)\right|=2 n m^{2}+m n+n+m n\left(\frac{m^{2}-m}{2}\right)-1$.

For $n \geq 2$ and $m \geq 3$, based on Lemma 2.1 and Proposition 1.3 then we have the lower bound non isolated resolving number of $P_{n} \odot_{2} K_{m}$ is $n r\left(P_{n} \odot_{2} K_{m}\right) \geq\left|V\left(P_{n} \odot K_{m}\right)\right| n r\left(K_{1}+K_{m}\right)=$ $(n m+n) m=n m^{2}+n m$. However, we can attain the sharpest lower bound. Furthermore, we prove that $n r\left(P_{n} \odot_{2} K_{m}\right) \leq n m^{2}+n m$. Choosing $W \subset V\left(P_{n} \odot_{2} K_{m}\right)$ with $W=\left\{x_{i}, x_{i, j_{1}} ; 1 \leq\right.$ $\left.i \leq n, 1 \leq j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1\right\}$ is a non-isolated resolving set of $P_{n} \odot_{2} K_{m}$ and the cardinality of non-isolated resolving set is $|W|=\mid\left\{x_{i}, x_{i, j_{1}} ; 1 \leq\right.$ $\left.i \leq n, 1 \leq j_{1} \leq m\right\}\left|+\left|\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1\right\}\right|=n m^{2}+n m\right.$. Thus, the representation of vertices $v \in V\left(P_{n} \odot_{2} K_{m}\right)-W$ respecting to W are as follows.
The vertex representation of $x_{i, j_{1}, j_{2}}$ respect to W is
$r\left(x_{i, j_{1}, j_{2}} \mid W\right)=(a, 2, \underbrace{\underbrace{3, \ldots, 3}_{m-1}, \ldots, 2, \underbrace{3, \ldots, 3}_{m-1}}_{j_{1}-1}, \underbrace{1, \ldots, 1}_{m}, \underbrace{2, \underbrace{3, \ldots, 3}_{m-1}, \ldots, 2, \underbrace{3, \ldots, 3}_{m-1}}_{m-j_{1}}, 2, \underbrace{3, \ldots, 3}_{m-1}, c) ; 1 \leq$
$i \leq n, 1 \leq j_{1} \leq m, j_{2}=m$.
where
$a=(t_{i-1}^{1}, \underbrace{t_{i-1}^{2}, \ldots, t_{i-1}^{2}}_{m-1}, \underbrace{t_{i-1}^{3}, \ldots, t_{i-1}^{3}}_{m}, \underbrace{t_{i-1}^{4}, \ldots, t_{i-1}^{4}}_{m(m-1)}, \ldots, t_{1}^{1}, \underbrace{t_{1}^{2}, \ldots, t_{1}^{2}}_{m-1}, \underbrace{t_{1}^{3}, \ldots, t_{1}^{3}}_{m}, \underbrace{t_{1}^{4}, \ldots, t_{1}^{4}}_{m(m-1})$
$c=(t_{1}^{1}, \underbrace{t_{1}^{2}, \ldots, t_{1}^{2}}_{m-1}, \underbrace{t_{1}^{3}, \ldots, t_{1}^{3}}_{m}, \underbrace{t_{1}^{4}, \ldots, t_{1}^{4}}_{m(m-1}, \ldots, t_{n-i}^{1}, \underbrace{t_{n-i}^{2}, \ldots, t_{n-i}^{2}}_{m-1}, \underbrace{t_{n-i}^{3}, \ldots, t_{n-i}^{3}}_{m}, \underbrace{4}_{m(m-1)} \underbrace{4}_{m-i}, \ldots, t_{n-i}^{4})$
with $t_{l}^{1}=l+2,1 \leq l \leq n-i ; t_{l}^{2}=l+3,1 \leq l \leq n-i ; t_{l}^{3}=l+3,1 \leq l \leq n-i ; t_{l}^{4}=l+4$, $1 \leq l \leq n-i ; t_{k}^{1}=k+2,1 \leq k \leq i-1 ; t_{k}^{2}=k+3,1 \leq k \leq i-1 ; t_{k}^{3}=k+3,1 \leq k \leq i-1 ;$ $t_{k}^{4}=k+4,1 \leq k \leq i-1$

The vertex representation of $x_{i, j_{2}}$ respect to W is
$r\left(x_{i, j_{2}} \mid W\right)=(a, \underbrace{1, \ldots, 1}_{m}, \underbrace{2, \ldots, 2}_{m}, \underbrace{3, \ldots, 3}_{m(m-1)}, c) ; 1 \leq i \leq n, j_{2}=m$.
where
$a=(t_{i-1}^{1}, \underbrace{t_{i-1}^{2}, \ldots, t_{i-1}^{2}}_{m-1}, \underbrace{t_{i-1}^{3}, \ldots, t_{i-1}^{3}}_{m}, \underbrace{t_{i-1}^{4}, \ldots, t_{i-1}^{4}}_{m(m-1)}, \ldots, t_{1}^{1}, \underbrace{t_{1}^{2}, \ldots, t_{1}^{2}}_{m-1}, \underbrace{t_{1}^{3}, \ldots, t_{1}^{3}}_{m}, \underbrace{4}_{m(m-1}, \ldots, t_{1}^{4})$
$c=(t_{1}^{1}, \underbrace{t_{1}^{2}, \ldots, t_{1}^{2}}_{m-1}, \underbrace{t_{1}^{3}, \ldots, t_{1}^{3}}_{m}, \underbrace{t_{1}^{4}, \ldots, t_{1}^{4}}_{m(m-1}, \ldots, t_{n-i}^{1}, \underbrace{t_{n-i}^{2}, \ldots, t_{n-i}^{2}}_{m-1}, \underbrace{t_{n-i}^{3}, \ldots, t_{n-i}^{3}}_{m}, \underbrace{t_{n-i}^{4}, \ldots, t_{n-i}^{4}}_{m(m-1)})$
with $t_{l}^{1}=l+1,1 \leq l \leq n-i ; t_{l}^{2}=l+2,1 \leq l \leq n-i ; t_{l}^{3}=l+2,1 \leq l \leq n-i ; t_{l}^{4}=l+3$, $1 \leq l \leq n-i ; t_{k}^{1}=k+1,1 \leq k \leq i-1 ; t_{k}^{2}=k+2,1 \leq k \leq i-1 ; t_{k}^{3}=k+2,1 \leq k \leq i-1 ;$ $t_{k}^{4}=k+3,1 \leq k \leq i-1$

It is clearly that every vertices $v \in V\left(P_{n} \odot_{2} K_{m}\right)-W$ has the distinct representation respect to W. Furthermore, we need to shown that all vertices in non-isolated resolving set W without isolated vertex. All vertices in vertex set $W=\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq\right.$ $m\} \cup\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1\right\}$ without isolated vertex by the edge set $\left\{x_{i} x_{i, j_{1}}, x_{i, j_{1}} x_{i, j_{1}, j_{2}}, x_{i} x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m\right\}$ which all vertices in W induces subgraph $P_{n} \odot_{2} K_{m}$ with pendant edges. Hence, $\langle W\rangle$ has no isolated vertices. So, the upper bound non-isolated resolving number of $P_{n} \odot_{2} K_{m}$ is $n r\left(P_{n} \odot_{2} K_{m}\right) \leq n m^{2}+n m$.

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012040 doi:10.1088/1742-6596/1008/1/012040

Hence, the lower bound non-isolated resolving number of $P_{n} \odot_{2} K_{m}$ is $n r\left(P_{n} \odot_{2} K_{m}\right) \geq n m^{2}+$ $n m$. It concludes that $n r\left(P_{n} \odot_{2} K_{m}\right)=n m^{2}+n m$

Theorem 2.3 Let K_{m} and P_{n} be a connected graph of order $n \geq 2$ and $m \geq 3$, then non-isolated resolving number of $K_{m} \odot_{2} P_{n}$ is $n r\left(K_{m} \odot_{2} P_{n}\right)=(m n+m)\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$.

Proof: Let $K_{m} \odot_{2} P_{n}$ be a be a corona product of complete graph K_{m} and path P_{n} with vertex set $V\left(K_{m} \odot_{2} P_{n}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}} ; 1 \leq i \leq\right.$ $\left.n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m\right\} \cup\left\{x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{2} \leq m\right\}$ and edge set $E\left(K_{m} \odot_{2} P_{n}\right)=$ $\left\{x_{i} x_{i+r} ; 1 \leq i \leq n, 1 \leq r \leq n-i\right\} \cup\left\{x_{i} x_{i, j_{1}}, x_{i, j_{1}} x_{i, j_{1}, j_{2}}, x_{i} x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq\right.$ $m\} \cup\left\{x_{i, j_{1}} x_{i, j_{1}+1}, x_{i, j_{1}, j_{2}} x_{i, j_{1}, j_{2}+1}, x_{i, j_{2}} x_{i, j_{2}+1} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1\right\}$ with the cardinality of vertex set $\left|V\left(K_{m} \odot_{2} P_{n}\right)\right|=n m^{2}+2 n m+n$ and the cardinality of edge set $\left|E\left(K_{m} \odot_{2} P_{n}\right)\right|=2 n m^{2}+3 m n-2 n+\frac{n^{2}-n}{2}$.

For $n \geq 2$ and $m \geq 3$, based on Lemma 2.1 and Proposition 1.3 then we have $n r\left(K_{m} \odot_{2} P_{n}\right) \geq$ $\left|V\left(K_{m} \odot P_{n}\right)\right| n r\left(K_{1}+P_{n}\right)=(n m+m)\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$. However, we can attain the sharpest lower bound. Furthermore, we prove that $n r\left(K_{m} \odot_{2} P_{n}\right) \leq(n m+m)\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$. Choosing $W \subset V\left(K_{m} \odot_{2} P_{n}\right)$ with $W=\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq\right.$ $j_{2} \leq m-1, j_{1}$ and j_{2} is odd $\}$ is a non-isolated resolving set of $K_{m} \odot_{2} P_{n}$ and the cardinality of non-isolated resolving set is $|W|=\left|\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\}\right|+\mid\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq\right.$ $i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1, j_{1}$ and j_{2} is odd $\} \left\lvert\,=(n m+m)\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\right.$. Thus, the representation of vertices $v \in V\left(K_{m} \odot_{2} P_{n}\right)-W$ respecting to W are as follows.
The vertex representation of $x_{i, j_{1}, j_{2}}$ for n even respect to W is
$r\left(x_{i, j_{1}, j_{2}} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\frac{j_{2}}{2}-1}, 1,1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{m}{2}\right\rfloor-\frac{j_{2}}{2}-}, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots$, $t_{n-j_{1}}, \underbrace{t_{n-j_{1}}^{\prime}, \ldots, t_{n-j_{1}}^{\prime}} 2, \underbrace{3, \ldots, 3}, c) ; 1 \leq i \leq m, 1 \leq j_{1} \leq n 1 \leq j_{2} \leq n-1$ and j is even.
with $t_{l}=l+1,1 \leq l \leq n-j_{1}$ and $t_{l}^{\prime}=l+2,1 \leq l \leq n-j_{1}, 1 \leq j_{1} \leq n ; t_{k}=k+1,1 \leq k \leq j_{1}-1$ and $t_{k}^{\prime}=k+2,1 \leq k \leq j_{1}-1,1 \leq j_{1} \leq n$.
The vertex representation of $x_{i, j_{1}, n}$ for n even respect to W is
$r\left(x_{i, j_{1}, n} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\frac{n}{2}-1}, 1, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, t_{n-j_{1}}$,
$\underbrace{t_{n-j_{1}}^{\prime}, \ldots, t_{n-j_{1}}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{n}{2}\right\rfloor}, c) ; 1 \leq i \leq m, 1 \leq j_{1} \leq n, 1 \leq j_{2} \leq n-1$.
with $t_{l}=l+1,1 \leq l \leq n-j_{1}$ and $t_{l}^{\prime}=l+2,1 \leq l \leq n-j_{1}, 1 \leq j_{1} \leq n ; t_{k}=k+1,1 \leq k \leq j_{1}-1$ and $t_{k}^{\prime}=k+2,1 \leq k \leq j_{1}-1,1 \leq j_{1} \leq n$.
The vertex representation of $x_{i, j_{1}, j_{2}}$ for n odd respect to W is
$r\left(x_{i, j_{1}, j_{2}} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime} \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\frac{j_{2}}{2}-1}, 1,1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{n}{2}\right\rfloor-\frac{j_{2}}{2}-}, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots$,
$t_{n-j_{1}}, \underbrace{t_{n-j_{1}}^{\prime}, \ldots, t_{n-j_{1}}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{n}{2}\right\rfloor}, c) ; 1 \leq i \leq m, 1 \leq j_{1} \leq n 1 \leq j_{2} \leq n-2$ and j is even.
with $t_{l}=l+1,1 \leq l \leq n-j_{1}$ and $t_{l}^{\prime}=l+2,1 \leq l \leq n-j_{1}, 1 \leq j_{1} \leq n ; t_{k}=k+1,1 \leq k \leq j_{1}-1$ and $t_{k}^{\prime}=k+2,1 \leq k \leq j_{1}-1,1 \leq j_{1} \leq n$.
The vertex representation of $x_{i, j_{1}, n-1}$ and $x_{i, j_{1}, n}$ for n odd respect to W is $r\left(x_{i, j_{1}, m-1} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{n}{2}\right\rfloor-1}, 1, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, t_{n-j_{1}}$,
$\underbrace{t_{n-j_{1}}^{\prime}, \ldots, t_{n-j_{1}}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{n}{2}\right\rfloor}, c) ; 1 \leq i \leq m, 1 \leq j_{1} \leq n, 1 \leq j_{2} \leq n-1$.

$r\left(x_{i, j_{1}, n} \mid W\right)=(a, t_{j_{1}-1}, \underbrace{t_{j_{1}-1}^{\prime}, \ldots, t_{j_{1}-1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, 1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{n}{2}\right\rfloor}, t_{1}, \underbrace{t_{1}^{\prime}, \ldots, t_{1}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, t_{n-j_{1}}$, $\underbrace{t_{n-j_{1}}^{\prime}, \ldots, t_{n-j_{1}}^{\prime}}_{\left\lfloor\frac{n}{2}\right\rfloor} 2, \underbrace{3, \ldots, 3}_{\left\lfloor\frac{n}{2}\right\rfloor}, c) ; 1 \leq i \leq m, 1 \leq j_{1} \leq n, 1 \leq j_{2} \leq n-1$.

with $t_{l}=l+1,1 \leq l \leq n-j_{1}$ and $t_{l}^{\prime}=l+2,1 \leq l \leq n-j_{1}, 1 \leq j_{1} \leq n ; t_{k}=k+1,1 \leq k \leq j_{1}-1$ and $t_{k}^{\prime}=k+2,1 \leq k \leq j_{1}-1,1 \leq j_{1} \leq n$.
where

The vertex representation of $x_{i, j_{2}}$ for n even respect to W is
$r\left(x_{i, j_{2}} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\frac{j_{2}}{2}-1}, 1,1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{n}{2}\right\rfloor-\frac{j_{2}}{2}-1}, \underbrace{2, \ldots, 2}_{n}, \underbrace{3, \ldots, 3}_{n\left(\left\lfloor\frac{n}{2}\right\rfloor\right)}, c) ; 1 \leq i \leq m, 1 \leq j_{2} \leq n-1$ and j_{2}
is even.
The vertex representation of $x_{i, n}$ for n even respect to W is
$r\left(x_{i, n} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\frac{n}{2}}, 1, c) ; 1 \leq i \leq m, 1 \leq j_{1} \leq n, 1 \leq j_{2} \leq n-1$.
The vertex representation of $x_{i, j_{2}}$ for m odd respect to W is $r\left(x_{i, j_{2}} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\frac{j_{2}}{2}-1}, 1,1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{n}{2}\right\rfloor-\frac{j_{2}}{2}-}, \underbrace{2, \ldots, 2}_{n}, \underbrace{3, \ldots, 3}_{n\left(\left\lfloor\frac{n}{2}\right\rfloor\right)}, c) ; 1 \leq i \leq m, 1 \leq j_{2} \leq n-2$ and j_{2} is
even.
The vertex representation of $x_{i, n-1}$ and $x_{i, n}$ for n odd respect to W is
$r\left(x_{i, n-1} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{n}{2}\right\rfloor-1}, 1, \underbrace{2, \ldots, 2}_{n}, \underbrace{3, \ldots, 3}_{n\left(\left\lfloor\frac{n}{2}\right\rfloor\right)}, c) ; 1 \leq i \leq m$.
$r\left(x_{i, n} \mid W\right)=(a, 1, \underbrace{2, \ldots, 2}_{\left\lfloor\frac{n}{2}\right\rfloor}, \underbrace{2, \ldots, 2}_{n}, \underbrace{3, \ldots, 3}_{n\left(\left\lfloor\frac{n}{2}\right\rfloor\right)}, c) ; 1 \leq i \leq m$.
where

It is clearly that every vertices $v \in V\left(K_{m} \odot_{2} P_{n}\right)-W$ has the distinct representation respect to W. Furthermore, we need to shown that all vertices in non-isolated resolving set W without isolated vertex. All vertices in vertex set $W=\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq\right.$ $m\} \cup\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1, j_{1}\right.$ and j_{2} is odd $\}$ without isolated vertex by the edge set $\left\{x_{i} x_{i, j_{1}}, x_{i, j_{1}} x_{i, j_{1}, j_{2}}, x_{i} x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m\right\}$ which all vertices in W induces subgraph $K_{m} \odot_{2} P_{n}$ with pendant edges. Hence, $\langle W\rangle$ has no isolated vertices. So, the upper bound non-isolated resolving number of $K_{m} \odot_{2} P_{n}$ is $n r\left(K_{m} \odot_{2} P_{n}\right) \leq(n m+m)\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$.

Hence, the lower bound non-isolated resolving number of $K_{m} \odot_{2} P_{n}$ is $n r\left(K_{m} \odot_{2}\right.$

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012040 doi:10.1088/1742-6596/1008/1/012040
$\left.P_{n}\right) \geq(n m+m)\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$. It concludes that $n r\left(K_{m} \odot_{2} P_{n}\right)=(n m+m)\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$

Theorem 2.4 Let K_{n} and K_{m} be a connected graph of order $n, m \geq 3$, then non-isolated resolving number of $K_{n} \odot_{2} K_{m}$ is $n r\left(K_{n} \odot_{2} K_{m}\right)=n m^{2}+n m$.

Proof: Let $K_{n} \odot_{2} K_{m}$ be a be a corona product of complete graph K_{n} and K_{m} with vertex set $V\left(K_{n} \odot_{2} K_{m}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}} ; 1 \leq i \leq\right.$ $\left.n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m\right\} \cup\left\{x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{2} \leq m\right\}$ and edge set $E\left(K_{n} \odot_{2} K_{m}\right)=$ $\left\{x_{i} x_{i+r} ; 1 \leq i \leq n, 1 \leq r \leq n-i\right\} \cup\left\{x_{i} x_{i, j_{1}}, x_{i, j_{1}} x_{i, j_{1}, j_{2}}, x_{i} x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq\right.$ $m\} \cup\left\{x_{i, j_{1}} x_{i, j_{1}+r_{1},}, x_{i, j_{1}, j_{2}} x_{i, j_{1}, j_{2}+r_{2}}, x_{i, j_{2}} x_{i, j_{2}+r_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m, 1 \leq r_{1} \leq\right.$ $m-j_{1}$ and $\left.1 \leq r_{2} \leq m-j_{2}\right\}$ with the cardinality of vertex set $\left|V\left(K_{n} \odot_{2} K_{m}\right)\right|=n m^{2}+2 n m+n$ and the cardinality of edge set $\left|E\left(K_{n} \odot_{2} K_{m}\right)\right|=2 n m^{2}+m n+m n\left(\frac{m^{2}-m}{2}\right)+\frac{n^{2}-n}{2}$.

For $n \geq 2$ and $m \geq 3$, based on Lemma 2.1 and Proposition 1.3 then we have $n r\left(K_{n} \odot_{2} K_{m}\right) \geq$ $\left|V\left(K_{n} \odot K_{m}\right)\right| n r\left(K_{1}+K_{m}\right)=(n m+n) m=n m^{2}+n m$. However, we can attain the sharpest lower bound. Furthermore, we prove that $n r\left(K_{n} \odot_{2} K_{m}\right) \leq n m^{2}+n m$. Choosing $W \subset V\left(K_{n} \odot_{2} K_{m}\right)$ with $W=\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq\right.$ $m-1\}$ is a non-isolated resolving set of $K_{n} \odot_{2} K_{m}$ and the cardinality of non-isolated resolving set is $|W|=\left|\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m\right\}\right|+\mid\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq\right.$ $\left.j_{2} \leq m-1\right\} \mid=n m^{2}+n m$. Thus, the representation of vertices $v \in V\left(K_{n} \odot_{2} K_{m}\right)-W$ respecting to W are as follows.
The vertex representation of $x_{i, j_{1}, j_{2}}$ respect to W is

$i \leq n, 1 \leq j_{1} \leq m, j_{2}=m$.
where

The vertex representation of $x_{i, j_{2}}$ respect to W is
$r\left(x_{i, j_{2}} \mid W\right)=(a, \underbrace{1, \ldots, 1}_{m}, \underbrace{2, \ldots, 2}_{m}, \underbrace{3, \ldots, 3}_{m(m-1)}, c) ; 1 \leq i \leq n, j_{2}=m$.
where

It is clearly that every vertices $v \in V\left(K_{n} \odot_{2} K_{m}\right)-W$ has the distinct representation respect to W. Furthermore, we need to shown that all vertices in non-isolated resolving set W without isolated vertex. All vertices in vertex set $W=\left\{x_{i}, x_{i, j_{1}} ; 1 \leq i \leq n, 1 \leq\right.$ $\left.j_{1} \leq m\right\} \cup\left\{x_{i, j_{1}, j_{2}}, x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m-1,1 \leq j_{2} \leq m-1\right\}$ without isolated vertex by the edge set $\left\{x_{i} x_{i, j_{1}}, x_{i, j_{1}} x_{i, j_{1}, j_{2}}, x_{i} x_{i, j_{2}} ; 1 \leq i \leq n, 1 \leq j_{1} \leq m, 1 \leq j_{2} \leq m\right\}$

IOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018) 012040 doi:10.1088/1742-6596/1008/1/012040
which all vertices in W induces subgraph $K_{n} \odot_{2} K_{m}$ with pendant edges. Hence, $\langle W\rangle$ has no isolated vertex. So, the upper bound non-isolated resolving number of $K_{n} \odot_{2} K_{m}$ is $n r\left(K_{n} \odot_{2} K_{m}\right) \leq n m^{2}+n m$. Hence, the lower bound non-isolated resolving number of $K_{n} \odot_{2} K_{m}$ is $n r\left(K_{n} \odot_{2} K_{m}\right) \geq n m^{2}+n m$. It concludes that $n r\left(K_{n} \odot_{2} K_{m}\right)=n m^{2}+n m$

3. Conclusion

The results show that the non-isolated resolving number attain the best lower bound. There are some open problem as follows

Open Problem 1 Find the non-isolated resolving number of $G \odot_{k} H$ with $k \geq 3$ for G, H are connected graph except path P_{n} and complete graph K_{n}.

Acknowledgement

We gratefully acknowledge the support from CGANT - University of Jember of year 2018.

References

[1] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory Second Edition CRC Press Taylor and Francis Group
[2] Chartrand G and Lesniak L 2000 Graphs and digraphs 3rd ed (London: Chapman and Hall)
[3] Slater P J 1975 Leaves of trees. in:Proc. 6th Southeast Conf. Comb., Graph Theory, Comput. Boca Rotan No. 14 549-559
[4] Harary F and Melter R A 1976 On The metric dimension of a graph, Ars Combin No. 2 191-195
[5] Chitra P J B and Arumugam S 2015 Resolving Sets without Isolated Vertices, Procedia Computer Science $\mathbf{7 4}$ 38-42
[6] Chartrand G, Eroh L, Johnson M A and Oellermann O R 2000 Resolvability in graphs and the metric dimension of a graph Discrete Appl. Math No. 105 99-113
[7] Saenpholphat V and Zhang P 2002 Connected partition dimension of a graphs Discussiones Mathematicae Graph Theory 22 305-323
[8] Baca M, Baskoro E T, Salman A N M, Saputro S W and Suprijanto D 2011 The Metric Dimension of Regular Bipartite Graphs Bull. Math. Soc. Sci. Math. Roumanie, Tome 54(102) 15-28
[9] Iswadi H, Baskoro E T and Simanjuntak R 2011 On the Metric Dimension of Corona Product Graphs, Far East Journal of Mathematical Sciences 52155170
[10] Rodriguez-Velazquez J A and Fernau H 2013 On the (Adjacency) Metric Dimension of Corona and Strong Product Graph and Their Local Variants Combinatorial And Computational Results Arxiv: 1309.2275.v1 (Math Co)
[11] Simanjuntak R, Uttunggadewa S and Saputro S W 2013 Metric Dimension of Amalgamation of Graphs arXiv:1312.0191v2 [math.CO]
[12] Saputro S W, Suprijanto D, Baskoro E T and Salman A N M 2012 The Metric Dimension of a Graph Composition Products With Star J. Indones. Math. Soc. 18 85-92
[13] Yero I G, Kuziak D and Rodriguez-Velazquez J A 2010 On the Metric Dimension of Corona Product Graphs Combinatorial and Computational Results arXiv:1009.2586v2[math CO]
[14] Yunika S M 2017 Analisa Dimensi Metrik dengan Himpunan Pembeda Tak-Terisolasi Graf Hasil Operasi Korona Thesis
[15] Dafik, Agustin I H, Surahmat, Syafrizal Sy and Alfarisi R 2017 On non-isolated resolving number of some graph operations Far East Journal of Mathematical Sciences 102 (2) 2473-2492
[16] Alfarisi R, Dafik, Agustin I H, Kristiana A I 2017 On non-isolated resolving number of graphs with pendant edges Journal Interconnection Network Submitted
[17] Frucht R and Harary F 1970 On the corona of two graphs Aequationes Math 4 322-325
[18] Furmanczyk H, Kubale M and Mkrtchyan V V 2012 Equitable Colorings of Corona Multiproducts of Graphs, arXiv:1210.6568v1 [cs.DM]

