A study of local domination number of $S_{n} \unrhd H$ graph

To cite this article: Dafik et al 2017 J. Phys.: Conf. Ser. 943012003

View the article online for updates and enhancements.

A study of local domination number of $S n \unrhd H$ graph

Dafik ${ }^{1,2}$, Ika Hesti Agustin ${ }^{1,3}$, Dwi Agustin Retno Wardani ${ }^{1,4}$, Elsa Yuli Kurniawati ${ }^{1,3}$
${ }^{1}$ CGANT University of Jember, Indonesia
${ }^{2}$ Mathematics Edu. Depart. University of Jember, Indonesia
${ }^{3}$ Mathematics Depart. University of Jember, Indonesia
${ }^{4}$ Mathematics Edu. Depart. IKIP PGRI Jember, Indonesia
E-mail: d.dafik@unej.ac.id, ikahesti.fmipa@unej.ac.id, 2i.agustin@gmail.com

Abstract

All graphs in this paper are undirected, connected and simple graph. Let $G=(V, E)$ be a graph of order $|V|$ and size $|E|$. We define a set D as a dominating set if for every vertex $u \in V-D$ is adjacent to some vertex $v \in D$. The domination number $\gamma(G)$ is the minimum cardinality of dominating set. By a locating dominating set of graph $G=(V, E)$, we define for every two vertices $u, v \in V(G)-D, N(v) \cap D \neq \emptyset$. Locating dominating set is a special case of dominating set with an extra constrain above. The minimum cardinality of a locating dominating set is locating dominating number $\gamma_{L}(G)$. The value of locating dominating number is $\gamma_{L}(G) \subseteq V(G)$. This paper studies locating dominating set of edge comb product of graphs, denoted by $G H$. The graph $G \unrhd H$ is a graph obtained by taking one copy of G and $|E(G)|$ copies of H and grafting the i-th copy of H at the edge e to the i-th edge of G, where G is star graph S_{n} and H is any special graph.

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. A subset D of $V(G)$ is called a vertex dominating set of G if every vertex not in D is adjacent to some vertices in D. A graph $G=(V, E)$ is called a locating dominating set if for every two vertices $u, v \in V(G)-D, N(v) \cap D \neq \emptyset$. Slater [5], [6] defined the locating-dominating number $\gamma_{L}(G)$ of a graph G is the minimum cardinality of a locating-dominating set of G. The value of locating dominating number is $\gamma_{L}(G) \subseteq V(G)$. In this paper, we will initiate to analyze locating dominating set of edge comb product of two graphs, denoted by $G \unrhd H$, where G is path graph and H is any special graph.

Saputro et. al [7] firstly introduction a comb product of graph. Let G and H be two connected graphs. Let o be a vertex of H. The comb product between G and H, denoted by $G \triangleright H$, is a graph obtained by taking one copy of G and $|V(G)|$ copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. By the definition of comb product, we can say that $V(G \triangleright H)=\{(a, v) \mid a \in V(G), v \in V(H)\}$ and $(a, v)(b, w) \in E(G \triangleright H)$ whenever $a=b$ and $v w \in E(G)$ and $v=w=o$.

A natural extension of comb product of graph is an edge comb product of graph. Let G and H be two connected graphs. Let e be an edge of H. The edge comb product between G and H, denoted by $G \unrhd H$, is a graph obtained by taking one copy of G and $|E(G)|$ copies of H and grafting the i-th copy of H at the edge e to the i-th edge of G. By the definition of comb
product. We can say that $p=|V(G \unrhd H)|=q_{1}\left(p_{2}-2\right)+p_{1}$ and $q=|E(G \unrhd H)|=q_{1} q_{2}$, see [8] for detail.

Let G be path P_{n} with vertex set $V\left(P_{n}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\}$, and edge set $E(G)=$ $x_{i} x_{i+1} ; 1 \leq i \leq n-1$ so $\left|V\left(P_{n}\right)\right|=n,\left|E\left(P_{n}\right)\right|=n-1$ and H is helm graph H_{m} with vertex set and edge set are $V\left(H_{m}\right)=\{A\} \cup\left\{x_{i} ; 1 \leq i \leq m\right\} \cup\left\{y_{i} ; 1 \leq i \leq m\right\}$, $E\left(H_{m}\right)=\left\{A x_{i} ; 1 \leq i \leq m\right\} \cup\left\{x_{i} x_{i+1} ; 1 \leq i m-1\right\} \cup\left\{x_{m} x_{1}\right\} \cup\left\{x_{i} y_{i} ; 1 \leq i \leq m\right\}$. Thus $\left|V\left(H_{m}\right)\right|=2 m+1,\left|E\left(H_{m}\right)\right|=3 m$. Furthermore, the graph $P_{n} \unrhd H_{m}$ has a vertex set $V\left(P_{n} \unrhd H_{m}\right)=\left\{A_{i} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-1\right\} \cup\left\{y_{i, j} ; 1 \leq i \leq n-1 ; 1 \leq\right.$ $j \leq m\}$ and edge set $E\left(P_{n} \unrhd H_{m}\right)=\left\{x_{i, j} x_{i+1, j+1} ; 1 \leq i \leq n-1 ; 1 \leq j \leq m-2\right\} \cup\left\{A_{i} x_{i, j} ; 1 \leq\right.$ $i \leq n-1 ; 1 \leq j \leq m-1\} \cup\left\{x_{i, j} y_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-1\right\}$. The order and size of $\left(P_{n} \unrhd H_{m}\right), n \geq 3, m \geq 3$ are $\left|V\left(P_{n} \unrhd H_{m}\right)\right|=2 n m-m-2$ and $\left|E\left(P_{n} \unrhd K_{m}\right)\right|=3 m n-3 m$. We can say that $p=V|G \unrhd H|=q_{1}\left(p_{2}-2\right)+p_{1}$ and $q=|E(G \unrhd H)|=q_{1} q_{2}$. See Figure 1 as an example of edge comb product of graphs.

Figure 1. Locating dominating set of edge comb product $S_{8} \unrhd P_{4}$

2. Main Results

In this section, we determine the exact values of locating dominating number of some edge comb product of graphs, namely $S_{n} \unrhd H$. In this paper, H are complete graph K_{m}, star graph S_{m}, triangular book $B t_{m}$ and path graph P_{n}.
Theorem 2.1. Let $x_{i} x_{i+1}$ be an edge of K_{m}, as well as be a grafting edge of K_{m}. The locating domination number of comb product graph $S_{n} \unrhd K_{m}$ is $\gamma_{L}\left(S_{n} \unrhd K_{m}\right)=n m-2 n$.
Proof. An edge comb product graph $S_{n} \unrhd K_{m}, n \geq 3$ and $m \geq 4$, is a connected graph with vertex set $V\left(S_{n} \unrhd K_{m}\right)=\{A\} \bigcup\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-1\right\}$ and edge set $E\left(S_{n} \unrhd K_{m}\right)=\left\{A x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-1\right\} \bigcup\left\{x_{i, j} x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-1\right\}$. The order and size of $\left(S_{n} \unrhd K_{m}\right), n \geq 3, m \geq 4$ are $\left|V\left(S_{n} \unrhd K_{m}\right)\right|=n m-n+1$ and $\left|E\left(S_{n} \unrhd K_{m}\right)\right|=(n)\left(\frac{m(m-\overline{1})}{2}\right)$.

First we analysis the lower bound. We claim the lower bound is $\gamma_{L}\left(S_{n} \unrhd K_{m}\right) \geq n m-2 n$. To show that is the lower bound, we prove by contradiction. Assume $\gamma_{L}\left(P_{n} \unrhd K_{m}\right)<n m-2 n$, we choose locating dominating set of ($S_{n} \unrhd K_{m}$) namely $D=\left\{x_{i, j} ; 2 \leq i \leq n-1 ; 1 \leq j \leq\right.$ $m-1\} \cup\left\{x_{1, j} ; 1 \leq j \leq m-2\right\}$ with cardinality of D is $|D|=n m-2 n-1$. The vertex set without locating dominating set of ($S_{n} \unrhd K_{m}$) is $V-D=\{A\} \cup\left\{x_{i_{j}} ; 2 \leq i \leq n ; j=\right.$ $m-1\} \cup\left\{x_{1, j} ; 1 \leq j \leq m-2 \leq j \leq m-1\right\}$. The intersection between vertex set $\forall v \in(V-D)$ and D are as follows.

$$
\begin{aligned}
& N(A) \cap D=\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-2\right\} \\
& N\left(x_{i, j}\right) \cap D=\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-2\right\} \\
& N\left(x_{1, j}\right) \cap D=\left\{x_{1, j} ; 1 \leq j \leq m-2\right\}
\end{aligned}
$$

For the vertices $x_{1, m-1}, x_{1, m-2} \in(V-D)$, it can be seen that $N\left(x_{1, m-1}\right) \cap D=N\left(x_{1, m-2}\right) \cap D$, and D does not comply the properties of locating dominating set. So, we can conclude that $\gamma_{L}\left(S_{n} \unrhd K_{m}\right)<n m-2 n$ is a contradiction. Hence, the location domination number of ($S_{n} \unrhd K_{m}$) is $\gamma_{L}\left(S_{n} \unrhd K_{m}\right) \geq n m-2 n$.

Furthermore, we show that $\gamma_{L}\left(S_{n} \unrhd K_{m}\right) \leq n m-2 n$, by choosing locating dominating set of $\left(S_{n} \unrhd K_{m}\right)$ is $D=\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-2\right\}$ with $|D|=n m-2 n$. The vertex set without locating dominating set of $\left(S_{n} \unrhd K_{m}\right)$ is $V-D=\{A\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; j=m-2\right\}$. Intersection between vertex set $\forall v \in(V-D)$ and D are as follows.

$$
\begin{aligned}
& N(A) \cap D=\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-3\right\} \\
& \left.N\left(x_{i, j}\right) \cap D=x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-3\right\}
\end{aligned}
$$

For the vertices $x_{A}, x_{i, j} \in(V-D)$ can be seen that $N\left(x_{A}\right) \cap D \neq \emptyset$ and $N\left(x_{i, j}\right) \cap D \neq \emptyset, D$ is locating dominating set of ($S_{n} \unrhd K_{m}$) because D satisfied the definition 1. In the otherhand $N\left(x_{A}\right) \cap D \neq N\left(x_{i, j}\right) \cap D$, it conclude that D satisfied to be locating dominating set, so D satisfied the definition 2. Hence the location domination number of $\left(S_{n} \unrhd K_{m}\right)$ is $\gamma_{L}\left(S_{n} \unrhd K_{m}\right) \leq n m-2 n$. Because $\gamma_{L}\left(S_{n} \unrhd K_{m}\right) \geq n m-2 n$ and $\gamma_{L}\left(S_{n} \unrhd K_{m}\right) \leq n m-2 n$, then we can say that $\gamma_{L}\left(S_{n} \unrhd K_{m}\right)=n m-2 n$.

Figure 2. Edge Comb Product $S_{4} \unrhd K_{5}$

Theorem 2.2. Given that a comb product graph $S_{n} \unrhd S_{m}$. Suppose $A x_{i}$ is a grafting edge of S_{m}. Then the locating domination number of $\gamma_{L}\left(S_{n} \unrhd S_{m}\right)=n m-n$.
Proof. An edge comb product graph $S_{n} \unrhd S_{m} n \geq 3$ and $m \geq 3$, is a connected graph with vertex set $V\left(S_{n} \unrhd S_{m}\right)=\{A\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-1\right\}$ and edge set $E\left(S_{n} \unrhd S_{m}\right)=\left\{A x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-1\right\}$. The order and size of $\left(S_{n} \unrhd S_{m}\right), n \geq 3, m \geq 3$ are $\left|V\left(S_{n} \unrhd S_{m}\right)\right|=n m+1$ and $\left|E\left(S_{n} \unrhd S_{m}\right)\right|=n m$.

First we analysis the lower bound. We claim the lower bound is $\gamma_{L}\left(S_{n} \unrhd S_{m}\right) \leq n m-n$. To show that is the lower bound, we prove by contradiction. Assume $\gamma_{L}\left(S_{n} \unrhd S_{m}\right)<n m-n$, we
choose locating dominating set of ($S_{n} \unrhd K_{m}$) namely $D=\left\{x_{i, j} ; 2 \leq i \leq n-1 ; 1 \leq j \leq m-1\right\} \cup$ $\left\{x_{1, j} ; 1 \leq j \leq m-2\right\}$ with cardinality of D is $|D|=n m-2 n-1$. The vertex set without locating dominating set of $S_{n} \unrhd S_{m}$ namely $D=\left\{x_{i} ; 1 \leq i \leq n-1\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n, 1 \leq j \leq m-2\right\}$ with cardinality of D is $|D|=n m-n-1$. The vertex set without locating dominating set of $S_{n} \unrhd S_{m}$ is $V-D=\{A\} \cup\left\{x_{n}\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; j=m-2\right\}$ Intersection between vertex set $\forall v \in(V-D)$ and D are as follows.

$$
\begin{aligned}
& N(A) \cap D=\left\{x_{i} ; 1 \leq i \leq n-1\right\} \\
& N\left(x_{i, j}\right) \cap D=\left\{x_{i} ; 1 \leq i \leq n-1\right\} \\
& N\left(x_{n}\right) \cap D=\emptyset
\end{aligned}
$$

For the vertices $x_{n} \in(V-D)$, it can be seen that $N\left(x_{n}\right) \cap D=\emptyset$, and D not satisfied properties of locating dominating set. So, we can conclude that $\gamma_{L}\left(S_{n} \unrhd S_{m}\right)<n m-n$ is a contradiction. Hence, the location domination number of ($S_{m} \unrhd S_{m}$) is $\gamma_{L}\left(S_{n} \unrhd S_{m}\right) \geq n m-n$.

Furthermore, we show that $\gamma_{L}\left(S_{n} \unrhd S_{m}\right) \leq n m-n$, by choosing locating dominating set of $\left(S_{m} \unrhd S_{m}\right)$ is $D=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-2\right\}$ with $|D|=n m-n$. The vertex set without locating dominating set of $\left(S_{m} \unrhd S_{m}\right)$ is $V-D=\{A\} \cup\left\{x_{i, m-1} ; 1 \leq i \leq n\right\}$. Intersection between vertex set $\forall v \in(V-D)$ and D are as follows.

$$
\begin{aligned}
& N(A) \cap D \\
& N\left(x_{i, m-1}\right) \cap D=\left\{x_{i} ; 1 \leq i \leq n\right\} \\
& =\left\{x_{i} ; 1 \leq i \leq n\right\}
\end{aligned}
$$

For the vertices $A, x_{i, m-1} \in(V-D)$ can be seen that $N(A) \cap D \neq \emptyset$ and $N\left(x_{i, m-1}\right) \cap D \neq \emptyset$, D is locating dominating set of $S_{n} \unrhd S_{m}$ because D satisfied the definition 1. In the otherhand $N(A) \cap D \neq N\left(x_{i, m-1}\right) \cap D$ it conclude that D satisfied to be locating dominating set, so D satisfied the definition 2. Hence the location domination number of $S_{n} \unrhd S_{m}$ is $\gamma_{L}\left(S_{n} \unrhd S_{m}\right) \leq n m-n$. Because $\gamma_{L}\left(S_{n} \unrhd S_{m}\right) \geq n m-n$ and $\gamma_{L}\left(S_{n} \unrhd S_{m}\right) \leq n m-n$, then we can say that $\gamma_{L}\left(S_{n} \unrhd S_{m}\right)=n m-n$.

Figure 3. Edge Comb Product $S_{4} \unrhd S_{4}$

Theorem 2.3. Given that a comb product graph $S_{n} \unrhd B t_{m}$ and $A B$ is a graft edge of $B t_{m}$. Then locating domination number of $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right)=n m$.

Proof. An edge comb product graph $S_{n} \unrhd B t_{m}, n \geq 3$ and $m \geq 3$, is a connected graph with vertex set $V\left(S_{n} \unrhd B t_{m}\right)=\{A\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m\right\}$, and edge set $E\left(S_{n} \unrhd B t_{m}\right)=\left\{A x_{i} ; 1 \leq i \leq n\right\} \cup\left\{A x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m\right\} \cup\left\{x_{i} x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m\right\}$. The order and size of $\left(S_{n} \unrhd B t_{m}\right), n \geq 3, m \geq 3$ are $\left|V\left(S_{n} \unrhd B t_{m}\right)\right|=n+n m+1$ and $\left|E\left(S_{n} \unrhd P_{m}\right)\right|=n+2 n m$.

First we analysis the lower bound. We claim the lower bound is $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right) \geq n m$. To show that is the lower bound, we prove by contradiction. Assume $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right)<n m$, we choose locating dominating set of $S_{n} \unrhd B t_{m}$ namely $D=\left\{x_{i, j} ; 2 \leq i \leq n-1 ; 1 \leq j \leq m\right\} \cup\left\{x_{1, j} ; 2 \leq m\right\}$ with cardinality of D is $|D|=n m-1$. The vertex set without locating dominating set of $S_{n} \unrhd B t_{m}$ is $V-D=\{A\} \cup\left\{x_{1,1}\right\}$ Intersection between vertex set $\forall v \in(V-D)$ and D are as follows.

$$
\begin{aligned}
& N(A) \cap D=\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m\right\} \\
& N\left(x_{1,1}\right) \cap D=\emptyset
\end{aligned}
$$

For the vertices $x_{1,1} \in(V-D)$, it can be seen that $N\left(x_{1,1}\right) \cap D=\emptyset$, and D does not comply the properties of locating dominating set. So, we can conclude that $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right)<n m$ is a contradiction. Hence, the location domination number of $\left(S_{n} \unrhd B t_{m}\right)$ is $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right) \geq n m$.

Furthermore, we show that $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right) \leq n m$, by choosing locating dominating set of $\left(S_{n} \unrhd B t_{m}\right)$ is $D=\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m\right\}$ with $|D|=n m$. The vertex set without locating dominating set of ($S_{n} \unrhd B t_{m}$) is $V-D=\{A\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\}$. Intersection between vertex set $\forall v \in(V-D)$ and D are as follows.

$$
\begin{aligned}
& N(A) \cap D=\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m\right\} \\
& \left.N\left(x_{i}\right) \cap D=\left\{\begin{array}{l}
\text { i }
\end{array}\right) ; 1 \leq i \leq n ; 1 \leq j \leq m\right\}
\end{aligned}
$$

For the vertices $A, x_{(i)} \in(V-D)$ can be seen that $N(A) \cap D \neq \emptyset$ and $N\left(x_{i}\right) \cap D \neq \emptyset, D$ is locating dominating set of $S_{n} \unrhd B t_{m}$ because D satisfied the definition 1. In the otherhand $N(A) \cap D \neq N\left(x_{i}\right) \cap D$ it conclude that D satisfied to be locating dominating set, so D satisfied the definition 2. Hence the location domination number of $S_{n} \unrhd B t_{m}$ is $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right) \leq n m$. Because $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right) \geq n m$ and $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right) \leq n m$, then we can say that $\gamma_{L}\left(S_{n} \unrhd B t_{m}\right)=n m$.

Figure 4. Edge Comb Product $S_{4} \unrhd B t_{3}$

Theorem 2.4. Given that a comb product graph $S_{n} \unrhd P_{m}$ and $x_{1} x_{2}$ is a grafting edge of P_{m}. Then locating domination number of $\gamma_{L}\left(S_{n} \unrhd P_{m}\right)=n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$.
Proof. An edge comb product graph $S_{n} \unrhd P_{m}, n \geq 3$ and $m \geq 5$, is a connected graph with vertex set $V\left(S_{n} \unrhd P_{m}\right)=\{A\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; 1 \leq j \leq m-1\right\}$, and edge set $E\left(S_{n} \unrhd P_{m}\right)=\left\{A x_{i, j} ; 1 \leq i \leq n ; j=1\right\} \cup\left\{x_{i, j} x_{i, j+1} ; 1 \leq i \leq n ; 1 \leq j \leq m-2\right\}$. The order and size of $\left(S_{n} \unrhd P_{m}\right), n \geq 3, m \geq 5$ are $\left|V\left(S_{n} \unrhd P_{m}\right)\right|=n m-n+1$ and $\left|E\left(S_{n} \unrhd P_{m}\right)\right|=n m-n$.

First we analysis the lower bound. We claim the lower bound is $\gamma_{L}\left(S_{n} \unrhd P_{m}\right) \geq n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$. To show that is the lower bound, we prove by contradiction. Assume $\gamma_{L}\left(S_{n} \unrhd P_{m}\right)<n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$, we choose locating dominating set of $S_{n} \unrhd P_{m}$ namely $D=\left\{x_{i, j} ; 1 \leq i \leq n-1 ; j \equiv 2+0 \mathrm{mod}\right.$
$2\} \cup\left\{x_{n}, j ; j \geq 3 ; j \equiv 2+0 \bmod 2\right\}$ with cardinality of D is $|D|=n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)-1$. The vertex set without locating dominating set of $S_{n} \unrhd P_{m}$ is $V-D=\{A\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; j \equiv 1 \bmod \right.$ $2\} \cup\left\{x_{n, j} ; 1 \leq j \leq 2\right\}$ Intersection between vertex set $\forall v \in(V-D)$ and D are as follows.

$$
\begin{aligned}
& N(A) \cap D=\left\{x_{i, 1} ; 1 \leq i \leq n-1\right\} \\
& N\left(x_{i, j} \cap D=x_{i, j} ; 1 \leq i \leq n ; j \equiv 2+0 \bmod 2\right. \\
& N\left(x_{n, j}\right) \cap D=\emptyset
\end{aligned}
$$

For the vertices $x_{n, j} \in(V-D)$, it can be seen that $N\left(x_{n, j}\right) \cap D=\emptyset$, and D does not comply the properties of locating dominating set. So, we can conclude that $\gamma_{L}\left(S_{n} \unrhd P_{m}\right)<n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$ is a contradiction. Hence, the locating dominating number of $\left(S_{n} \unrhd P_{m}\right)$ is $\gamma_{L}\left(S_{n} \unrhd P_{m}\right) \geq n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$.

Furthermore, we show that $\gamma_{L}\left(S_{n} \unrhd P_{m}\right) \leq n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$, by choosing locating dominating set of $\left(S_{n} \unrhd P_{m}\right)$ is $D=\left\{x_{i, j} ; 1 \leq i \leq n ; j \equiv 2+0 \bmod 2\right\}$ with $|D|=n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$. The vertex set without locating dominating set of $\left(S_{n} \unrhd P_{m}\right)$ is $V-D=\{A\} \cup\left\{x_{i, j} ; 1 \leq i \leq n ; j \equiv 1 \bmod 2\right\}$. Intersection between vertex set $\forall v \in(V-D)$ and D are as follows.

$$
\begin{aligned}
& N(A) \cap D=\left\{x_{i, 1} ; 1 \leq i \leq n\right\} \\
& N\left(x_{i, j} \cap D=\left\{x_{i, j} ; 1 \leq i \leq n ; j \equiv 2+0 \bmod 2\right\}\right.
\end{aligned}
$$

For the vertices $x_{A}, x_{i, j} \in(V-D)$ can be seen that $N\left(x_{A}\right) \cap D \neq \emptyset$ and $N\left(x_{i, j}\right) \cap D \neq \emptyset$, D is locating dominating set of $S_{n} \unrhd P_{m}$ because D satisfied the definition 1. In the otherhand $N\left(x_{A}\right) \cap D \neq N\left(x_{i, j}\right) \cap D$ satisfied to be locating dominating set, so D satisfied the definition 2. Hence the location domination number of $S_{n} \unrhd P_{m}$ is $\gamma_{L}\left(S_{n} \unrhd P_{m}\right) \leq n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$. Because $\gamma_{L}\left(S_{n} \unrhd P_{m}\right) \geq n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$ and $\gamma_{L}\left(S_{n} \unrhd P_{m}\right) \leq n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$, then we can say that $\gamma_{L}\left(S_{n} \unrhd P_{m}\right)=$ $n\left(\left\lfloor\frac{2 m}{5}\right\rfloor\right)$.

Figure 5. Edge Comb Product $S_{8} \unrhd P_{4}$

3. Concluding Remarks

In this paper, we have obtained the exact values of locating dominating number of some edge comb product graph, namely $S_{n} \unrhd H$. In this paper, we studied H as complete graph K_{m}, star graph S_{m}, triangular book $B t_{m}$ and path graph P_{n}. We have found he exact values of their locating dominating number. However for H is any graph we have found any result yet. Therefore we proposed the following open problem.

Open Problem 3.1. Determine the sharp lower bound or upper bound of locating dominating number of $S_{n} \unrhd H$ for H is any graph.

3.1. Acknowledgments

We gratefully acknowledge the support from CGANT University of Jember of year 2017.

References

[1] A. Finbow, B.L. Hartnell 1988 On locating dominating sets and well-covered graphs, Congr. Numer. 65 191-200.
[2] C.J. Colbourn, P.J. Slater, L.K. Stewart 1987 Locating-dominating sets in series-parallel networks, Congr. Numer. 56 135-162.
[3] Chartrand G and Lesniak L 2000 Graphs and digraphs 3rd ed (London: Chapman and Hall).
[4] Foucaud, F., Henning, M. A., Lawenstein, C. and Sasse, T 2016 Locating dominating sets in twin-free graphs, Discrete Applied Mathematics. 200 52-58.
[5] P.J. Slater 1987 Dominating and location in acyclic graphs, Networks 17 55-64.
[6] P.J. Slater 1988 Dominating and reference sets in graphs, J. Math. Phys. Sci. 22455.
[7] Saputro, S. W. 2013. The Metric Dimension of Comb Product Graphs. Graph Theory Conference in Honor of Egawas 60th Birthday. 1-2.
[8] Wardani, D. A. R., Dafik, A. C. Prihandoko, and A. I. Kristiana 2016 On The Total r-Dynamic Coloring of Graph: A New Graph Coloring Study. International Conference on Mathematics: Education, Theory and Aplication. ICMETA. Surakarta.

