On local adjacency metric dimension of some wheei reiated graphs with pendant points

Rinurwati, Herry Suprajitno, and Slamin

Citation: AIP Conference Proceedings 1867, 020065 (2017);
View online: https://doi.org/10.1063/1.4994468
View Table of Contents: http://aip.scitation.org/toc/apc/1867/1
Published by the American Institute of Physics

Articles you may be interested in

Local metric dimension of circulant graph $\operatorname{circ}\left(n: 1,2, \ldots, \frac{n+1}{2}\right)$
AIP Conference Proceedings 1867, 020053 (2017); 10.1063/1.4994456
Density and persistence analyze on the spreading models multi-regions multi-patchs
AIP Conference Proceedings 1867, 020061 (2017); 10.1063/1.4994464
The distance between the cylinder affect the cylinder pressure
AIP Conference Proceedings 1867, 020043 (2017); 10.1063/1.4994446

On Local Adjacency Metric Dimension of Some Wheel Related Graphs with Pendant Points

Rinurwati ${ }^{1, \text { a) }}$ Herry Suprajitno ${ }^{2, \text { b) }}$ and Slamin ${ }^{3, \mathrm{c})}$

${ }^{1}$ Mathematics Department, Universitas Airlangga, Indonesia
${ }^{1}$ Mathematics Department, Institut Teknologi Sepuluh Nopember, Indonesia
${ }^{2}$ Mathematics Department, Universitas Airlangga, Indonesia
${ }^{3}$ Information System Study Program, Universitas Jember, Indonesia
a) rinur@matematika.its.ac.id
${ }^{\text {b) }}$ herry_sam@yahoo.com
${ }^{\text {c) }}$ slamin@unej.ac.id

Abstract

Let $G=(V(G), E(G))$ be any connected graph of order $n=|V(G)|$ and measure $m=|E(G)|$. For an order set of vertices $S=\left\{s_{1}, S_{2}, \ldots, s_{k}\right\}$ and a vertex v in G, the adjacency representation of v with respect to S is the ordered k tuple $r_{A}(v \mid S)=\left(d_{A}\left(v, s_{1}\right), d_{A}\left(v, s_{2}\right), \ldots, d_{A}\left(v, s_{k}\right)\right.$), where $d_{A}(u, v)$ represents the adjacency distance between the vertices u and v. The set S is called a local adjacency resolving set of G if for every two distinct vertices u and v in G, u adjacent v then $r_{A}(u \mid S) \neq r_{A}(v \mid S)$. A minimum local adjacency resolving set for G is a local adjacency metric basis of G. Local adjacency metric dimension for $G, \operatorname{dim}_{A,(}(G)$, is the cardinality of vertices in a local adjacency metric basis for G. In this paper, we study and determine the local adjacency metric dimension of some wheel related graphs G (namely gear graph, helm, sunflower and friendship graph) with pendant points, that is edge corona product of G and a trivial graph $K_{1}, G \diamond K_{1}$. Moreover, we compare among the local adjacency metric dimension of $G \diamond K_{1}$ graph,of $W_{n} \diamond K_{1}$ graph and metric dimension of W_{n}.

INTRODUCTION

This section presents about some definitions and notions that are using in this research. These concepts are taken from [4]. We begin with, $G=(V(G), E(G))$ is a simple, finite and connected graph with a set of vertices $V(G)$ and a set of edges $E(G)$, of cardinality n and m, respectively. Two adjacent vertices u and v will be write $u \sim v$ and two vertex u and v that is not adjacent with $u \nsim v$. The distance between two vertices u and v in $G, d(u, v)$ is the lenght of shortest path joining u and v. The adjacency distance between u and v denoted by $d_{A}(u, v)$, and defines by [9],

$$
d_{A}\left(u, v_{i}\right)=\left\{\begin{array}{l}
0 \text { if } u=v_{i}, \\
1 \text { if } u \sim v_{i}, \\
2 \text { if } u \nsim v_{i} .
\end{array}\right.
$$

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq V(G)$ be an order set of vertices and v is a vertex in G. The adjacency representation of v with respect to S is the ordered k-tuple $r_{A}(v \mid S)=\left(d_{A}\left(v, s_{1}\right), d_{A}\left(v, s_{2}\right), \ldots, d_{A}\left(v, s_{k}\right)\right) . S$ is called a local adjacency resolving set of G, if a pair of adjacent distinct vertex in G have different adjacency representations. A minimum local adjacency resolving set for G is a local adjacency metric basis of G. Adjacency metric dimension for $G, \operatorname{dim} \alpha, l(G)$, is the cardinality of vertices in a local adjacency metric basis for G.

A Concept about local metric dimension of a graph has introduced by Okamoto et al. [3]. Research about local metric dimension of corona graphs have done by Rodriguez et al. [8] and local metric dimension of edgecorona graph by Rinurwati et al. [12]. Then, Rodriguez and Fernau [7], continuoued their reseach that is about local adjacency metric dimension of corona graphs. Their research is developing of the concept about adjacency metric dimension of graphs that has introduced by Jannesari and Omoomi [9]. Farthes before, Harary and Melter [2] have been introduced about resolving set in 1976 and independently, Slater [10] introduce this concept in 1975. This

Digital Repository Universitas Jember

concept is a basic concept that must be known when a research results metric dimension of graphs. To prove that set S is resolving set of a graph G, we only present that every vertex in $V(G)-S$ has distinct representation, because In vertex v in S is unix vertex with $d(v, v)=0$.

Motivated by results in [1], [5], [6], and [7], we study and determine the local adjacency metric dimension of some wheel related graphs G with pendant points (edge-corona of graphs $G \diamond H$ when $H \cong K_{1}$ or $H \cong m K_{1}$ for $m \geq 2$). Edge-corona of graphs G and H, denoted by $G \diamond H$, is defined as a graph formed by taking G and $m=|E(G)|$ copies of H then joining two end-vertices s_{i}, s_{h} of edge $e_{j}=s_{i} s_{h}$ of G to every vertex in the $j^{\text {th }}$-copy of H [13]. In this paper, as G, we use gear graph $\left(G_{2 n}\right)$, helm $\left(H_{n}\right)$, sunflower $\left(S F_{n}\right)$ and friendship $\left(f_{n}\right)$ graphs. All of these graphs are obtained from wheel graph, that is graph trivial K_{1} that joining with an edge to all vertices of cycle graph, C_{n}. Moreover, we compare the local adjacency metric dimension of these graphs, respectively with a wheel graph with pendant points.

RESULTS

In the following, we present some useful results on the local adjacency metric dimension of some wheel related graphs with pendant points.

Local Adjacency Metric Dimension of Gear Graphs with Pendant Points.

A gear graph $G_{2 n}$ is a graph obtained from a wheel graph $W_{n} \cong K_{1}+C_{n}$ by adding a vertex between every pair of adjacent vertices of the cycle C_{n} [6]. A gear graph with pendant points denoted by $G_{2 n} \diamond K_{1}$, that is a graph obtained from edge-corona of a gear graph $G_{2 n}$ and a trivial graph K_{1}. Let $G \cong G_{2 n} \diamond K_{1}$ with a set of vertices $V(G)=\{c\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \cup\left\{b_{11}, b_{12}, b_{21}, b_{22}, \ldots, b_{n 1}, b_{n 2}\right\}$, where
c : the vertex of K_{1} of W_{n}
$v_{j}: j$-th vertex of a cycle C_{n} of W_{n}
w_{j} : an adding vertex between every pair of j-th adjacent vertices of the cycle C_{n} of W_{n}
a_{j} : a pendant point (vertex) joining two end-vertices c, v_{j} of rim edge $e_{j}=c v_{j}$ of W_{n}
$b_{j 1}$: a pendant point (vertex) joining two end-vertices v_{j}, w_{j} of edge $e_{j}=v_{j} w_{j}$
$b_{j 2}$: a pendant point (vertex) joining two end-vertices w_{j}, v_{j+1} of edge $e_{j}=w_{j} v_{j+1}$ $j \in\{1,2, \ldots, n\}$.
As illustration, we can see FIGURE 1.

The local adjacency metric dimension of gear graphs with pendant points is mentioned in the following theorem.
Theorem 1. Let $G \cong G_{2 n} \diamond K_{1}$ with $|V(G)|=5 n+1$, then $\operatorname{dim}_{A, l}(G)=n$ for $n \geq 3$.
Proof. Choose $S=\left\{v_{1}, v_{2}, \ldots, v_{n} ; v_{n+1}=v_{1}\right\} \subseteq V(G)$. We will show that S is a local adjacency resolving set of G. The local adjacency representations of vertices from $V(G)-S$ are as follows:

$$
\begin{aligned}
& r_{A}(c \mid S)=(1,1, \ldots, 1) \\
& r_{A}\left(a_{j} \mid S\right)=(2, \ldots, 2, \underset{j-\text { term }}{1}, 2, \ldots, 2)=r\left(b_{j 1} \mid S\right) ; \quad j \in\{1,2, \ldots, n\}, \text { but } a_{j} \nmid b_{j 1} \\
& r_{A}\left(b_{(j-1) 2} \mid S\right)=r\left(b_{j 1} \mid S\right) ; \quad j \in\{2, \ldots, n\}, \text { but } b_{j 1} \nsim b_{(j-1) 2} \nsim a_{j} . \\
& r_{A}\left(b_{n 2} \mid S\right)=r\left(b_{11} \mid S\right), \text { and } b_{n 2} \nsim b_{11} . \\
& r_{A}\left(w_{n} \mid S\right)=(1,2, \ldots, 2,1) \\
& r_{A}\left(w_{j} \mid S\right)=\left(2, \ldots, 2, \underset{j-\text { term }}{1}, \underset{(j+1)^{*} \text {-term }}{1}, 2, \ldots, 2\right) ; \quad j \in\{1,2, \ldots, n-1\} .
\end{aligned}
$$

As we see that all of the adjacency representation of adjacent vertices are distinct. So, $S=\left\{v_{1}, v_{2}, \ldots, v_{n} ; v_{n+1}=v_{1}\right\}$ is a local adjacency resolving set for G. The cardinality of $S,|S|=n$ is minimum, because if $|S|<n$ certainly there are $x \neq y \in V(G)-S \quad$ such that $\quad r(x \mid S)=r(y \mid S) . \quad$ Let $S_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\},\left|S_{1}\right|=n-1<n$, then $r\left(v_{n} \mid S_{1}\right)=(2,2, \ldots, 2)=r\left(b_{n 2} \mid S_{1}\right)$ and $b_{n 2} \sim v_{n}$, also $r\left(w_{n} \mid S_{1}\right)=(2,2, \ldots, 2,1)=r\left(b_{n 1} \mid S_{1}\right)$ and $b_{n 1} \sim w_{n}$. Thus, $\operatorname{dim}_{A, l}(G)=n$.

Local Adjacency Metric Dimension of Helm Graphs with Pendant Points.

A helm graph H_{n} is a graph obtained from a wheel graph $W_{n} \cong K_{1}+C_{n}$ with cycle C_{n} having a pendant edge attached to each vertex of the cycle [6]. A helm graph with pendant points, $H_{n} \diamond K_{1}$ is a graph obtained from edgecorona of a helm graph H_{n} and a trivial graph K_{1}. Let $G \cong H_{n} \diamond K_{1}$ with a set of vertices $V(G)=\{c\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where
c : the vertex of K_{1} of W_{n}
$v_{j}: j$-th vertex of a cycle C_{n} of W_{n}
u_{j} : a pendant point (vertex) joining two end-vertices c, v_{j} of rim edge $e_{j}=c v_{j}$ of W_{n}
a_{j} : a pendant point (vertex) joining two end-vertices c, v_{j} of pendant edge $e_{j}=v_{j} x_{j}$ of C_{n} of W_{n} w_{j} : a pendant point (vertex) joining two end-vertices v_{j}, v_{j+1} of edge $e_{j}=v_{j} v_{j+1}$ of C_{n} of W_{n} $j \in\{1,2, \ldots, n\}$.
The following figure is an example of $H_{n} \diamond K_{1}$ graphs.

FIGURE 2. $H_{4} \diamond K_{1}$
The following theorem is the local adjacency metric dimension of helm graphs with pendant points.
Theorem 2. Let $G \cong H_{n} \diamond K_{1}$ with $|V(G)|=5 n+1$, then $\operatorname{dim}_{A, l}(G)=n+1$ for $n \geq 3$.

Proof. Choose $S=\left\{a_{1}, a_{2}, \ldots, a_{n}, c\right\} \subseteq V(G)$. Adjacency representation of vertices in $V(G)-S$ as follows:

$$
\begin{aligned}
& r_{A}(c \mid S)=(2,2, \ldots, 2,0) . \\
& r_{A}\left(a_{j} \mid S\right)=(2,2, \ldots, 2, \underset{j \text {-term }}{1}, 2, \ldots, 2,2) . \\
& r_{A}\left(u_{j} \mid S\right)=(2,2, \ldots, 2,1), \text { for every } j \in\{1,2, \ldots, n\}, u_{i} \nmid u_{j}, \text { and } i \neq j . \\
& r_{A}\left(w_{j} \mid S\right)=(2,2, \ldots, 2,2), \text { for every } j \in\{1,2, \ldots, n\}, w_{i} \nsim w_{j}, \text { and } i \neq j . \\
& r_{A}\left(x_{j} \mid S\right)=(2,2, \ldots, 2, \underset{j-\text {-term }}{1}, 2, \ldots, 2,2), j \in\{1,2, \ldots, n\} . \\
& r_{A}\left(v_{j} \mid S\right)=(2,2, \ldots, 2, \underset{j-\text { term }}{1}, 2, \ldots, 2,1), j \in\{1,2, \ldots, n\} .
\end{aligned}
$$

So, $S=\left\{a_{1}, a_{2}, \ldots, a_{n}, c\right\}$ is a local adjacency resolving set for G.
$|S|=n+1$ is minimum, because if $|S|<n+1$ certainly there are $x \neq y \in V(G)-S$ such that $r(x \mid S)=r(y \mid S)$. Let $S_{1}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\},\left|S_{1}\right|=n<n+1$, then $r\left(u_{j} \mid S_{1}\right)=(2,2, \ldots, 2)=r\left(c \mid S_{1}\right)$ and $c \sim u_{j}$ also for every $i \in\{1,2, \ldots, n\}$. Thus, $\operatorname{dim}_{A, l}(G)=n+1$.

Local Adjacency Metric Dimension of Sunflower Graphs with Pendant Points.

A Sunflower graph $S F_{n}$ is a graph obtained from a wheel graph $W_{n} \cong K_{1}+C_{n}$ with K_{1} as a central vertex c and C_{n} as an n-cycle $w_{\mathrm{o}}, w_{1}, w_{2}, \ldots, w_{n-1}$, and additional n vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}$ where v_{j} is joined by edges to w_{j}, w_{j+1} for $j \in\{1,2, \ldots, n-1\}$ with $j+1$ is taken modulo n. Order of a sunflower graph $S F_{n}$ is $2 n+1$ and its measure is $4 n$ [6].

A Sunflower graph with pendant points, $S F_{n} \diamond K_{1}$ is a graph obtained from edge-corona of a sunflower graph $S F_{n}$ and a trivial graph K_{1}. Let $G \cong S F_{n} \diamond K_{1}$ with a set of vertices
$V(G)=\{c\} \cup\left\{w_{0}, w_{1}, \ldots, w_{n-1}\right\} \cup\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\} \cup\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\} \cup\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\} \cup\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\} \cup\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$. The following figure is an example of $S F_{n} \diamond K_{1}$ graphs.

FIGURE 3. $S F_{4} \diamond K_{1}$
The following theorem is the local adjacency metric dimension of sunflower graphs with pendant points.
Theorem 3. Let $G \cong S F_{n} \diamond K_{1}$ with $|V(G)|=6 n+1$, then $\operatorname{dim}_{A, l}(G)=n$ for $n \geq 3$.
Proof. Choose $S=\left\{w_{0}, w_{1}, \ldots, w_{n-1}\right\} \subseteq V(G)$. We will show that S is a local adjacency resolving set of G. The local adjacency representations of vertices from $V(G)-S$ are as follows:

$$
\begin{aligned}
& r_{A}(c \mid S)=(1,1, \ldots, 1) \\
& r_{A}\left(a_{j} \mid S\right)=(2, \ldots, 2, \underset{(j+1) \text {-term }}{4}, 2, \ldots, 2)=r\left(x_{j} \mid S\right) ; \quad j \in\{1,2, \ldots, n-1\}, \text { but } a_{j+1} \ngtr x_{j+1} \\
& r_{A}\left(b_{j} \mid S\right)=\left(2, \ldots, 2, \underset{(j+2)^{2} \text {-term }}{1}, 2, \ldots, 2\right) ; \quad j \in\{1, \ldots, n-1\} . \\
& r_{A}\left(u_{j} \mid S\right)=\left(2, \ldots, 2, \underset{(j+1)^{-}-\text {-term }}{1}, \underset{(j+2)^{2} \text {-term }}{1}, 2, \ldots, 2\right)=r\left(v_{j} \mid S\right) ; \quad j \in\{1,2, \ldots, n-1\}, \text { but } u_{j} \nmid v_{j+1}
\end{aligned}
$$

As we see that all of the adjacency representation of adjacent vertices are distinct. So, $S=\left\{w_{0}, w_{1}, \ldots, w_{n-1}\right\}$ is a local adjacency resolving set for G. The cardinality of $S,|S|=n$ is minimum, because if $|S|<n$ certainly there are $x \neq y \in V(G)-S$ such that $r(x \mid S)=r(y \mid S)$. Let $S_{1}=\left\{w_{0}, w_{1}, \ldots, w_{n-2}\right\},\left|S_{1}\right|=n-1<n$ then $r\left(a_{n-1} \mid S_{1}\right)=(2,2, \ldots, 2,1)=r\left(v_{n-1} \mid S_{1}\right)$. Therefore, $\operatorname{dim}_{A, l}(G)=n$.

Local Adjacency Metric Dimension of Friendship Graphs with Pendant Points.

A friendship graph f_{n} is a graph obtained from a wheel graph $W_{n} \cong K_{1}+C_{n}$ by deleting alternate edges of the cycle C_{n}. In the other word, friendship graph f_{n} is collection of n triangles with a common point [6]. A friendship graph with pendant points denoted by $f_{n} \diamond K_{1}$, that is a graph obtained from edge-corona of a friendship graph f_{n} and a trivial graph K_{1}. Let $G \cong f_{n} \diamond K_{1}$ with a set of vertices $V(G)=\{c\} \cup\left\{v_{i j} \mid i=1,2, \ldots, n ; j=1,2\right\} \cup$ $\left\{a_{i k} \mid i=1,2, \ldots, n ; k=1,2,3\right\}$. As illustration, we can see FIGURE 4.

FIGURE 4. $f_{4} \diamond K_{1}$

Theorem 4. Let $G \cong f_{n} \diamond K_{1}$ with $|V(G)|=5 n+1$, then $\operatorname{dim}_{A, l}(G)=n$ for $n \geq 3$.
Proof. Choose $S=\left\{a_{i 2} \mid i=1,2, \ldots, n\right\} \subseteq V(G)$. We will show that S is a local adjacency resolving set of G. The adjacency representations of vertices from $V(G)-S$ are as follows:

$$
\begin{aligned}
& r_{A}(c \mid S)=(1,1, \ldots, 1) \\
& r_{A}\left(a_{i 1} \mid S\right)=(2,2, \ldots, 2)=r\left(a_{i 3} \mid S\right) ; \quad i \in\{1,2, \ldots, n\}, \text { but } a_{i 1} \nsucc a_{i 3} \\
& r_{A}\left(v_{i 1} \mid S\right)=(2, \ldots, 2, \underset{i \text {-term }}{1}, 2, \ldots, 2)=r_{A}\left(v_{i 2} \mid S\right) ; \quad i \in\{2, \ldots, n\}, \text { but } v_{i 1} \nsucc v_{i 2} .
\end{aligned}
$$

All of the adjacency representations of adjacent vertices are distinct. So, $S=\left\{a_{i 2} \mid i=1,2, \ldots, n\right\}$ is a local adjacency resolving set for G. The cardinality of $S,|S|=n$ is minimum, because if $|S|<n$ certainly there are $x \neq y \in V(G)-S$ such that $r(x \mid S)=r(y \mid S) . \quad$ Let $S_{1}=\left\{a_{i 2} \mid i=1,2, \ldots, n-1\right\}, \quad\left|S_{1}\right|=n-1<n$ then $r\left(a_{n 1} \mid S_{1}\right)=(2,2, \ldots, 2)=r\left(v_{n 1} \mid S_{1}\right)=r\left(a_{n 2} \mid S_{1}\right)=r\left(v_{n 2} \mid S_{1}\right)=r\left(a_{n 3} \mid S_{1}\right)$, and $a_{n 1} \sim v_{n 1} \sim a_{n 2} \sim v_{n 2} \sim$ $a_{n 3}$. So, $\operatorname{dim}_{A, l}(G)=n$.

Digital Repository Universitas Jember

Local Adjacency Metric Dimension of Wheel Graphs with Pendant Points.

Theorem 5. Let $G \cong W_{n} \diamond K_{1}$ with $|V(G)|=3 n+1$, then $\operatorname{dim}_{A, l}(G)=\left\lfloor\frac{n+9}{6}\right\rfloor$ for $n \geq 4$.

Buczkowski et.al. in [11] have mentioned that the metric dimension of the wheel graph, $W_{n}=K_{1}+C_{n}$, is

$$
\operatorname{dim}\left(W_{n}\right)=\left\{\begin{array}{cl}
3 & , \text { for } n=3,6 \\
\left.\frac{2 n+2}{5}\right\rfloor & , \text { otherwise }
\end{array}\right.
$$

where K_{1} is a trivial graph and C_{n} is a cycle graph of order n.
From the results have discussed above, we can conclude that $\operatorname{dim}_{A, l}\left(W_{n} \diamond K_{1}\right) \leq \operatorname{dim}\left(W_{n}\right)$ and $\operatorname{dim}_{A, l}\left(W_{n} \diamond K_{1}\right) \leq \operatorname{dim}_{A, l}\left(G \diamond K_{1}\right)$ with G be a wheel related graph.

ACKNOWLEDGEMENTS

Authors would like to thank very much to referee who have give usefull comment to improve this paper.

REFERENCES

1. D. Kuziak, J. A. Rodriguez-Velazquez, and I. G. Yero, Corrections to the article "The metric dimension of graphs with pendant edges," Arxiv:1010.1784v1 [math.CO] 8 Oct 2010.
2. F. Harary and R. A. Melter,"On the metric dimension of a graph," Ars Combinatoria 2, 1976, pp.191-195.
3. F. Okamoto, B. Phinezy, and P. Zhang, "The local metric dimension of a graph," Mathematica Bohemica 135, 3, 2010, 239-255.
4. G. Chartrand, and L. Lesniak, Graph and Digraph Third Edition (Chapman \& Hall/CRC, Florida, 2000), 1-21.
5. I. Javaid and S. Shokat, "On the partition dimension of wheel related graphs," Journal of Prime Research Mathematics, Vol. 4, 2008, pp. 154-164.
6. J. A. Gallian," Dynamic survey of graph labeling," Elect. Jour. Combin. 15, 2008, DS6.
7. J.A. Rodriguez-Velazquez and H. Fernau, "On the (adjacency) metric dimension of corona and strong product graphs and their local variants," Combinatorial and Computational Results, Arxiv: 1309.2275.v1[math.CO].
8. J. A. Rodriguez-Velazquez, G. A. Barragan-Ramirez, and C. G. Gomez, "On The local metric dimension of corona product graphs," Bulletin of the Malaysian Mathematical Sciences, 39, 2015, 157-173.
9. M. Jannesari and B. Omoomi, "The metric dimension of the lexicographic product of graphs," Discrete Mathematics 312, 2012, pp.3349-3356.
10. P. J. Slater, "Leaves of trees," Proceeding of the 6th Southeastern Conference on Combinatorics, GraphTheory and Computing, Congressus Numerantium 14, 1975, pp. 549-559.
11. P.S. Buczkowski, P. Zhang, C. Poisson, and G. Chartrand, "On k-dimensional graphs and their basis," Periodica Math. Hung., 46, 1, 2003, 9-15.
12. Rinurwati, Slamin, and H. Suprajitno, "General results of local metric dimensions of edge-corona of graphs," International Mathematical Forum, Vol. 11, no.16, 2016, 793-799.
13. Y. Hou and W. C. Shiu, "The spectrum of the edge corona of two graphs," Electronic Journal of Linear Algebra 20, 2010, pp. 586-594.
