On local adjacency metric dimension of some wheel related graphs with pendant points

Rinurwati, Herry Suprajitno, and Slamin

Citation: AIP Conference Proceedings **1867**, 020065 (2017); View online: https://doi.org/10.1063/1.4994468 View Table of Contents: http://aip.scitation.org/toc/apc/1867/1 Published by the American Institute of Physics

Articles you may be interested in

Local metric dimension of circulant graph $circ(n:1, 2, ..., \frac{n+1}{2})$ AIP Conference Proceedings **1867**, 020053 (2017); 10.1063/1.4994456

Density and persistence analyze on the spreading models multi-regions multi-patchs AIP Conference Proceedings **1867**, 020061 (2017); 10.1063/1.4994464

The distance between the cylinder affect the cylinder pressure AIP Conference Proceedings **1867**, 020043 (2017); 10.1063/1.4994446

On Local Adjacency Metric Dimension of Some Wheel Related Graphs with Pendant Points

Rinurwati^{1, a)} Herry Suprajitno^{2, b)} and Slamin^{3, c)}

¹Mathematics Department, Universitas Airlangga, Indonesia ¹Mathematics Department, Institut Teknologi Sepuluh Nopember, Indonesia ²Mathematics Department, Universitas Airlangga, Indonesia ³Information System Study Program, Universitas Jember, Indonesia

> ^{a)} rinur@matematika.its.ac.id ^{b)} herry_sam@yahoo.com ^{c)} slamin@unej.ac.id

Abstract. Let G = (V(G), E(G)) be any connected graph of order n = |V(G)| and measure m = |E(G)|. For an order set of vertices $S = \{s_1, s_2, ..., s_k\}$ and a vertex v in G, the adjacency representation of v with respect to S is the ordered ktuple $r_A(v|S) = (d_A(v, s_1), d_A(v, s_2), ..., d_A(v, s_k))$, where $d_A(u, v)$ represents the adjacency distance between the vertices uand v. The set S is called a local adjacency resolving set of G if for every two distinct vertices u and v in G, u adjacent v then $r_A(u|S) \neq r_A(v|S)$. A minimum local adjacency resolving set for G is a local adjacency metric basis of G. Local adjacency metric dimension for G, $\dim_{A,I}(G)$, is the cardinality of vertices in a local adjacency metric basis for G. In this paper, we study and determine the local adjacency metric dimension of some wheel related graphs G (namely gear graph, helm, sunflower and friendship graph) with pendant points, that is edge corona product of G and a trivial graph $K_1, G \Diamond K_1$. Moreover, we compare among the local adjacency metric dimension of $G \Diamond K_1$ graph, of $W_n \Diamond K_1$ graph and metric dimension of W_n .

INTRODUCTION

This section presents about some definitions and notions that are using in this research. These concepts are taken from [4]. We begin with, G = (V(G), E(G)) is a simple, finite and connected graph with a set of vertices V(G) and a set of edges E(G), of cardinality n and m, respectively. Two adjacent vertices u and v will be write $u \sim v$ and two vertex u and v that is not adjacent with $u \neq v$. The distance between two vertices u and v in G, d(u,v) is the lenght of shortest path joining u and v. The adjacency distance between u and v denoted by $d_A(u,v)$, and defines by [9],

$$d_A(u,v_i) = \begin{cases} 0 & \text{if } u = v_i, \\ 1 & \text{if } u \sim v_i, \\ 2 & \text{if } u \neq v_i. \end{cases}$$

Let $S = \{s_1, s_2, ..., s_k\} \subseteq V(G)$ be an order set of vertices and v is a vertex in G. The adjacency representation of v with respect to S is the ordered k-tuple $r_A(v|S) = (d_A(v, s_1), d_A(v, s_2), ..., d_A(v, s_k))$. S is called a local adjacency resolving set of G, if a pair of adjacent distinct vertex in G have different adjacency representations. A minimum local adjacency resolving set for G is a local adjacency metric basis of G. Adjacency metric dimension for G, dim_{A,I}(G), is the cardinality of vertices in a local adjacency metric basis for G.

A Concept about local metric dimension of a graph has introduced by Okamoto et al. [3]. Research about local metric dimension of corona graphs have done by Rodriguez et al. [8] and local metric dimension of edgecorona graph by Rinurwati et al. [12]. Then, Rodriguez and Fernau [7], continuoued their research that is about local adjacency metric dimension of corona graphs. Their research is developing of the concept about adjacency metric dimension of graphs that has introduced by Jannesari and Omoomi [9]. Farthes before, Harary and Melter [2] have been introduced about resolving set in 1976 and independently, Slater [10] introduce this concept in 1975. This

> International Conference on Mathematics: Pure, Applied and Computation AIP Conf. Proc. 1867, 020065-1–020065-6; doi: 10.1063/1.4994468 Published by AIP Publishing. 978-0-7354-1547-8/\$30.00

concept is a basic concept that must be known when a research results metric dimension of graphs. To prove that set *S* is resolving set of a graph *G*, we only present that every vertex in V(G)-*S* has distinct representation, because In vertex *v* in *S* is unix vertex with d(v, v) = 0.

Motivated by results in [1], [5], [6], and [7], we study and determine the local adjacency metric dimension of some wheel related graphs G with pendant points (edge-corona of graphs $G \diamond H$ when $H \cong K_1$ or $H \cong mK_1$ for $m \ge 2$). Edge-corona of graphs G and H, denoted by $G \diamond H$, is defined as a graph formed by taking G and m = |E(G)| copies of H then joining two end-vertices s_i , s_h of edge $e_j = s_i s_h$ of G to every vertex in the j^{th} -copy of H [13]. In this paper, as G, we use gear graph (G_{2n}) , helm (H_n) , sunflower (SF_n) and friendship (f_n) graphs. All of these graphs are obtained from wheel graph, that is graph trivial K_1 that joining with an edge to all vertices of cycle graph, C_n . Moreover, we compare the local adjacency metric dimension of these graphs, respectively with a wheel graph with pendant points.

RESULTS

In the following, we present some useful results on the local adjacency metric dimension of some wheel related graphs with pendant points.

Local Adjacency Metric Dimension of Gear Graphs with Pendant Points.

A gear graph G_{2n} is a graph obtained from a wheel graph $W_n \cong K_1 + C_n$ by adding a vertex between every pair of adjacent vertices of the cycle C_n [6]. A gear graph with pendant points denoted by $G_{2n} \diamond K_1$, that is a graph obtained from edge-corona of a gear graph G_{2n} and a trivial graph K_1 . Let $G \cong G_{2n} \diamond K_1$ with a set of vertices $V(G) = \{c\} \cup \{v_1, v_2, ..., v_n\} \cup \{w_1, w_2, ..., w_n\} \cup \{a_1, a_2, ..., a_n\} \cup \{b_{11}, b_{12}, b_{21}, b_{22}, ..., b_{n1}, b_{n2}\}$, where

- c: the vertex of K_1 of W_n
- v_j : *j*-th vertex of a cycle C_n of W_n

 w_j : an adding vertex between every pair of j-th adjacent vertices of the cycle C_n of W_n

- a_j : a pendant point (vertex) joining two end-vertices c, v_j of rim edge $e_j = cv_j$ of W_n
- b_{j1} : a pendant point (vertex) joining two end-vertices v_j, w_j of edge $e_j = v_j w_j$
- b_{j2} : a pendant point (vertex) joining two end-vertices w_j, v_{j+1} of edge $e_j = w_j v_{j+1}$

$$j \in \{1, 2, ..., n\}$$

As illustration, we can see FIGURE 1.

The local adjacency metric dimension of gear graphs with pendant points is mentioned in the following theorem.

Theorem 1. Let $G \cong G_{2n} \Diamond K_1$ with |V(G)| = 5n+1, then $\dim_{A,l}(G) = n$ for $n \ge 3$. **Proof.** Choose $S = \{v_1, v_2, ..., v_n; v_{n+1} = v_1\} \subseteq V(G)$. We will show that *S* is a local adjacency resolving set of *G*. The local adjacency representations of vertices from V(G) - S are as follows:

$$\begin{split} r_A(c \mid S) &= (1,1,...,1) \\ r_A(a_j \mid S) &= (2,...,2, \underbrace{1}_{j-term}, 2,...,2) = r(b_{j_1} \mid S); \quad j \in \{1,2,...,n\}, \text{ but } a_j \neq b_{j_1} \\ r_A(b_{(j-1)2} \mid S) &= r(b_{j_1} \mid S); \quad j \in \{2,...,n\}, \text{ but } b_{j_1} \neq b_{(j-1)2} \neq a_j. \\ r_A(b_{n2} \mid S) &= r(b_{11} \mid S), \text{ and } b_{n2} \neq b_{11}. \\ r_A(w_n \mid S) &= (1,2,...,2,1) \\ r_A(w_j \mid S) &= (2,...,2, \underbrace{1}_{j-term}, \underbrace{1}_{(j+1)-term}, 2,...,2); \quad j \in \{1,2,...,n-1\}. \end{split}$$

As we see that all of the adjacency representation of adjacent vertices are distinct. So, $S = \{v_1, v_2, ..., v_n; v_{n+1} = v_1\}$ is a local adjacency resolving set for *G*. The cardinality of *S*, |S| = n is minimum, because if |S| < n certainly there are $x \neq y \in V(G) - S$ such that $r(x \mid S) = r(y \mid S)$. Let $S_1 = \{v_1, v_2, ..., v_{n-1}\}, |S_1| = n - 1 < n$, then $r(v_n \mid S_1) = (2, 2, ..., 2) = r(b_{n2} \mid S_1)$ and $b_{n2} \sim v_n$, also $r(w_n \mid S_1) = (2, 2, ..., 2, 1) = r(b_{n1} \mid S_1)$ and $b_{n1} \sim w_n$. Thus, dim_{*A*,*l*</sup>(*G*) = *n*.}

Local Adjacency Metric Dimension of Helm Graphs with Pendant Points.

A helm graph H_n is a graph obtained from a wheel graph $W_n \cong K_1 + C_n$ with cycle C_n having a pendant edge attached to each vertex of the cycle [6]. A helm graph with pendant points, $H_n \Diamond K_1$ is a graph obtained from edgecorona of a helm graph H_n and a trivial graph K_1 . Let $G \cong H_n \Diamond K_1$ with a set of vertices $V(G) = \{c\} \cup \{y, y, y, y, y\} \cup \{y, w, y, y\} \cup \{y, y, y, y\} \cup \{y, y, y, y\}$ where

$$C(G) = \{c\} \cup \{v_1, v_2, ..., v_n\} \cup \{w_1, w_2, ..., w_n\} \cup \{u_1, u_2, ..., u_n\} \cup \{x_1, x_2, ..., x_n\} \cup \{a_1, a_2, ..., a_n\}, \text{ where } c : \text{the vertex of } K_1 \text{ of } W_n$$

 v_j : *j*-th vertex of a cycle C_n of W_n u_j : a pendant point (vertex) joining two end-vertices c, v_j of rim edge $e_j = cv_j$ of W_n a_j : a pendant point (vertex) joining two end-vertices c, v_j of pendant edge $e_j = v_j x_j$ of C_n of W_n w_j : a pendant point (vertex) joining two end-vertices v_j, v_{j+1} of edge $e_j = v_j v_{j+1}$ of C_n of W_n $j \in \{1, 2, ..., n\}$.

The following figure is an example of $H_n \Diamond K_1$ graphs.

FIGURE 2. $H_4 \diamondsuit K_1$

The following theorem is the local adjacency metric dimension of helm graphs with pendant points.

Theorem 2. Let $G \cong H_n \Diamond K_1$ with |V(G)| = 5n+1, then $\dim_{A,l}(G) = n+1$ for $n \ge 3$.

Proof. Choose $S = \{a_1, a_2, ..., a_n, c\} \subseteq V(G)$. Adjacency representation of vertices in V(G) - S as follows:

So, $S = \{a_1, a_2, ..., a_n, c\}$ is a local adjacency resolving set for G.

|S| = n+1 is minimum, because if |S| < n+1 certainly there are $x \neq y \in V(G) - S$ such that $r(x \mid S) = r(y \mid S)$. Let $S_1 = \{a_1, a_2, ..., a_n\}, |S_1| = n < n+1$, then $r(u_j \mid S_1) = (2, 2, ..., 2) = r(c \mid S_1)$ and $c \sim u_j$ also for every $i \in \{1, 2, ..., n\}$. Thus, dim_{A,l}(G) = n+1.

Local Adjacency Metric Dimension of Sunflower Graphs with Pendant Points.

A Sunflower graph SF_n is a graph obtained from a wheel graph $W_n \cong K_1 + C_n$ with K_1 as a central vertex c and C_n as an n-cycle $w_0, w_1, w_2, ..., w_{n-1}$, and additional n vertices $v_0, v_1, v_2, ..., v_{n-1}$ where v_j is joined by edges to w_j, w_{j+1} for $j \in \{1, 2, ..., n-1\}$ with j+1 is taken modulo n. Order of a sunflower graph SF_n is 2n + 1 and its measure is 4n [6].

A Sunflower graph with pendant points, $SF_n \Diamond K_1$ is a graph obtained from edge-corona of a sunflower graph SF_n and a trivial graph K_1 . Let $G \cong SF_n \Diamond K_1$ with a set of vertices $V(G) = \{c\} \cup \{w_0, w_1, \dots, w_{n-1}\} \cup \{v_0, v_1, \dots, v_{n-1}\} \cup \{a_0, a_1, \dots, a_{n-1}\} \cup \{b_0, b_1, \dots, b_{n-1}\} \cup \{u_0, u_1, \dots, u_{n-1}\} \cup \{x_0, x_1, \dots, x_{n-1}\}.$

The following figure is an example of $SF_n \Diamond K_1$ graphs.

FIGURE 3. $SF_4 \diamondsuit K_1$

The following theorem is the local adjacency metric dimension of sunflower graphs with pendant points.

Theorem 3. Let $G \cong SF_n \Diamond K_1$ with |V(G)| = 6n+1, then $dim_{A,l}(G) = n$ for $n \ge 3$. **Proof.** Choose $S = \{w_0, w_1, ..., w_{n-1}\} \subseteq V(G)$. We will show that *S* is a local adjacency resolving set of *G*. The local adjacency representations of vertices from V(G) - S are as follows:

$$\begin{split} r_A(c \mid S) &= (1,1,...,1) \\ r_A(a_j \mid S) &= (2,...,2, \underbrace{1}_{(j+1)-term}, 2,...,2) = r(x_j \mid S); \quad j \in \{1,2,...,n-1\}, \text{ but } a_{j+1} \neq x_{j+1} \\ r_A(b_j \mid S) &= (2,...,2, \underbrace{1}_{(j+2)-term}, 2,...,2); \quad j \in \{1,...,n-1\}. \\ r_A(u_j \mid S) &= (2,...,2, \underbrace{1}_{(j+1)-term}, \underbrace{1}_{(j+2)-term}, 2,...,2) = r(v_j \mid S); \quad j \in \{1,2,...,n-1\}, \text{ but } u_j \neq v_{j+1} \\ \end{split}$$

As we see that all of the adjacency representation of adjacent vertices are distinct. So, $S = \{w_0, w_1, ..., w_{n-1}\}$ is a local adjacency resolving set for G. The cardinality of S, |S| = n is minimum, because if |S| < n certainly there are $x \neq y \in V(G) - S$ such that $r(x \mid S) = r(y \mid S)$. Let $S_1 = \{w_0, w_1, ..., w_{n-2}\}, |S_1| = n - 1 < n$ then $r(a_{n-1} \mid S_1) = (2, 2, ..., 2, 1) = r(v_{n-1} \mid S_1)$. Therefore, dim_{4,1}(G) = n.

Local Adjacency Metric Dimension of Friendship Graphs with Pendant Points.

A friendship graph f_n is a graph obtained from a wheel graph $W_n \cong K_1 + C_n$ by deleting alternate edges of the cycle C_n . In the other word, friendship graph f_n is collection of n triangles with a common point [6]. A friendship graph with pendant points denoted by $f_n \diamond K_1$, that is a graph obtained from edge-corona of a friendship graph f_n and a trivial graph K_1 . Let $G \cong f_n \diamond K_1$ with a set of vertices $V(G) = \{c\} \cup \{v_{ij} \mid i = 1, 2, ..., n; j = 1, 2\} \cup \{a_{ik} \mid i = 1, 2, ..., n; k = 1, 2, 3\}$. As illustration, we can see FIGURE 4.

FIGURE 4. $f_4 \diamondsuit K_1$

Theorem 4. Let $G \cong f_n \Diamond K_1$ with |V(G)| = 5n+1, then $\dim_{A,l}(G) = n$ for $n \ge 3$. **Proof.** Choose $S = \{a_{i_2} \mid i = 1, 2, ..., n\} \subseteq V(G)$. We will show that *S* is a local adjacency resolving set of *G*. The adjacency representations of vertices from V(G) - S are as follows:

$$r_{A}(c \mid S) = (1,1,...,1)$$

$$r_{A}(a_{i1} \mid S) = (2,2,...,2) = r(a_{i3} \mid S); \quad i \in \{1,2,...,n\}, \text{ but } a_{i1} \neq a_{i3}$$

$$r_{A}(v_{i1} \mid S) = (2,...,2, \underbrace{1}_{i-term}, 2,...,2) = r_{A}(v_{i2} \mid S); \quad i \in \{2,...,n\}, \text{ but } v_{i1} \neq v_{i2}.$$

All of the adjacency representations of adjacent vertices are distinct. So, $S = \{a_{i2} \mid i = 1, 2, ..., n\}$ is a local adjacency resolving set for G. The cardinality of S, |S| = n is minimum, because if |S| < n certainly there are $x \neq y \in V(G) - S$ such that $r(x \mid S) = r(y \mid S)$. Let $S_1 = \{a_{i2} \mid i = 1, 2, ..., n-1\}$, $|S_1| = n-1 < n$ then $r(a_{n1} \mid S_1) = (2, 2, ..., 2) = r(v_{n1} \mid S_1) = r(a_{n2} \mid S_1) = r(v_{n2} \mid S_1) = r(a_{n3} \mid S_1)$, and $a_{n1} \sim v_{n1} \sim a_{n2} \sim v_{n2} \sim a_{n3}$. So, dim_{A,l}(G) = n. \Box

Local Adjacency Metric Dimension of Wheel Graphs with Pendant Points.

Theorem 5. Let $G \cong W_n \Diamond K_1$ with |V(G)| = 3n+1, then $\dim_{A,l}(G) = \left\lfloor \frac{n+9}{6} \right\rfloor$ for $n \ge 4$.

Buczkowski et.al. in [11] have mentioned that the metric dimension of the wheel graph, $W_n = K_1 + C_n$, is

$$\dim(W_n) = \begin{cases} 3 & \text{, for } n = 3,6\\ \left\lfloor \frac{2n+2}{5} \right\rfloor & \text{, otherwise.} \end{cases}$$

where K_1 is a trivial graph and C_n is a cycle graph of order *n*.

From the results have discussed above, we can conclude that $\dim_{A,l}(W_n \diamond K_1) \leq \dim(W_n)$ and

 $\dim_{A,l}(W_n \diamond K_1) \leq \dim_{A,l}(G \diamond K_1)$ with G be a wheel related graph.

ACKNOWLEDGEMENTS

Authors would like to thank very much to referee who have give usefull comment to improve this paper.

REFERENCES

- 1. D. Kuziak, J. A. Rodriguez-Velazquez, and I. G. Yero, Corrections to the article "The metric dimension of graphs with pendant edges," *Arxiv*:1010.1784v1 [math.CO] 8 Oct 2010.
- 2. F. Harary and R. A. Melter,"On the metric dimension of a graph," Ars Combinatoria 2, 1976, pp.191–195.
- 3. F. Okamoto, B. Phinezy, and P. Zhang, "The local metric dimension of a graph," *Mathematica Bohemica* **135**, 3, 2010, 239-255.
- 4. G. Chartrand, and L. Lesniak, Graph and Digraph Third Edition (Chapman & Hall/CRC, Florida, 2000), 1-21.
- 5. I. Javaid and S. Shokat, "On the partition dimension of wheel related graphs," *Journal of Prime Research Mathematics*, Vol. 4, 2008, pp. 154-164.
- 6. J. A. Gallian," Dynamic survey of graph labeling," Elect. Jour. Combin. 15, 2008, DS6.
- 7. J.A. Rodriguez-Velazquez and H. Fernau, "On the (adjacency) metric dimension of corona and strong product graphs and their local variants," *Combinatorial and Computational Results, Arxiv*: 1309.2275.v1[math.CO].
- 8. J. A. Rodriguez-Velazquez, G. A. Barragan-Ramirez, and C. G. Gomez, "On The local metric dimension of corona product graphs," *Bulletin of the Malaysian Mathematical Sciences*, **39**, 2015, 157-173.
- 9. M. Jannesari and B. Omoomi, "The metric dimension of the lexicographic product of graphs," *Discrete Mathematics* **312**, 2012, pp.3349-3356.
- 10. P. J. Slater, "Leaves of trees," Proceeding of the 6th Southeastern Conference on Combinatorics, GraphTheory and Computing, Congressus Numerantium 14, 1975, pp. 549–559.
- 11. P.S. Buczkowski, P. Zhang, C. Poisson, and G. Chartrand, "On k-dimensional graphs and their basis," *Periodica Math. Hung.*, 46, 1, 2003, 9-15.
- 12. Rinurwati, Slamin, and H. Suprajitno, "General results of local metric dimensions of edge-corona of graphs," *International Mathematical Forum*, Vol. **11**, no.16, 2016, 793–799.
- 13. Y. Hou and W. C. Shiu, "The spectrum of the edge corona of two graphs," *Electronic Journal of Linear Algebra* 20, 2010, pp. 586-594.