

PENGARUH KONSENTRASI MOLASES DAN JUMLAH PENAMBAHAN NPK TERHADAP SIFAT FISIKO KIMIA NATA DE MOLASES

(Saccharum afficinarum L.)

FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS JEMBER Januari, 2000

MOTTO:

Katakan: Kalau sekiranya (air) lautan menjadi tinta untuk (menuliskan) perkataan Allah, niscaya keringlah air lautan itu, sebel<mark>um habis perkataan Allah, sekalipun kami datangkan tinta sebanyak itu lagi sebagai tambahan.</mark>

(QS Al- Kahfi: 109)

Akal Budi dan Ilmu Pengetahuan, bagaikan raga dan jiwa. Raga tanpa jiwa bagaikan ruang kosong belaka kecuali berupa angin hampa Jiwa tanpa raga bagaikan kerangka kosong tanpa perasaan

(Kahlil Gibran)

Karya ini kupersembahkan untuk.

- Bapak Teguh Sugiadi dan Ibu Ichwaniati C.H., terima kasih atas segala yang telah diberikan baik moril maupun materiil.
- Kakakku mbak Nia dan Mas Cahyo, serta Adik-adikku Dana dan Rudi.
- Mas Willy, terima kasih atas bantuannya selama ini.
- Sahabat-sahabatku Pipit, Ema, Yayuk, Anita, Hesti, dan Dian.
- Teman-teman seperjuangan TP`95.
- Almamaterku Universitas Jember.

DOSEN PEMBIMBING:

Dr. Ir. SONY SUWASONO, MAppSc (DPU)

Dr. Ir. MARYANTO, MEng (DPA)

Diterima oleh:

FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS JEMBER

Sebagai

Karya Ilmiah Tertulis (Skripsi)

Dipertahankan pada:

Hari

: Selasa

Tanggal

: 28 Desember 1999

Tempat

: Fakultas Teknologi Pertanian

Universitas Jember

TIM PENGUJI

Ketua

(Dr. Ir. SONY SUWASONO, MAppSc)

NIP. 131 832 332

Anggota

(Dr. Ir. MARYANTO, MEng)

NIP. 131 276 660

Anggota II

(Ir. DJOKO PONTSO HARDANI)

NIP. 130 516 244

Mengesahkan

Ir WASIER

NIP. 130 516 238

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT atas limpahan rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan penulisa Karya Ilmiah Tertulis (Skripsi) yang berjudul "Pengaruh Konsentrasi Molases dan Jumlah Penambahan NPK Terhadap Sifat Fisiko Kimia Nata de Molases"

Skripsi ini disusun untuk memnuhi salah satu syarat menyelesaikan pendidikan strata satu pada jurusan Teknologi Hasil Pertanian Fakultas Teknologi Pertanian Universitas Jember.

Penulis mengucapkan terima kasih yang tidak terhingga kepada:

- 1. Ir. Wagito, selaku Dekan Fakultas Teknologi Pertanian Universitas Jember yang telah memberikan ijin dan kesempatan dalam menyusun Karya Ilmiah Tertulis ini.
- 2. Ir. Susijahadi, Ms., selaku Ketua jurusan Teknologi Hasil Pertanian Fakultas Teknologi Pertanian Universitas Jember, yang telah memberikan ijin dan kesempata kepada penulis untuk menyusun Karya Ilmiah Tertulis ini.
- 3. Dr. Ir. Sony Suwasono, MAppSc., selaku Dosen Pembimbing Utama, yang telah memberikan bimbingan, petunjuk dan nasehat dari awal hingga selesainya Karya Ilmiah Tertulis ini.
- 4. Dr. Ir. Maryanto, MEng., selaku Dosen Pembimbing Anggota I, yang telah memberikan petunjuk dan koreksi dalam penulisan Karya Ilmiah Tertulis ini.
- 5. Ir. Djoko Pontjo Hardani, selaku Dosen Pembimbing Anggota II, yang telah menyempurnakan Karya Ilmiah Tertulis ini.
- 6. Bapak, Ibu Dosen dan Staf Karyawan Fakultas Teknologi Pertanian Universitas Jember yang telah memberikan bimbingan selama perkuliahan.
- 7. Ir. Sardi S.P., manajer divisi nata de coco "Sari Mayang" yang telah banyak membantu dalam pelaksanaan penelitian.

- Rekan-rekan seperjuangan yang telah membina kerja sama yang baik selama belajar di Fakultas Teknologi Pertanian Universitas Jember.
- 9. Semua pihak yang secara langsung maupun tidak langsung ikut membantu kelancaran penulisan Karya Ilmiah Tertulis ini.

Penulis menyadari bahwa tulisan ini masih jauh dari sempurna, sehingga kritik dan saran sangat penulis harapkan untuk kesempurnaan Karya Ilmiah Tertulis ini.

Jember, Desember 1999

Penulis

DAFTAR ISI

		Halaman
KATA PENGANTAR		. vi
DAFTAR ISI	•	. viii
DAFTAR TABEL	•	. xii
DAFTAR GAMBAR		. xiv
DAFTAR LAMPIRAN		. xv
RINGKASAN		. xvi
I. PENDAHULUAN		. 1
1.1 Latar Belakang Permasalahan		. 1
1.2 Tujuan Penelitian		. 2
1.3 Kegunaan Penelitian		. 3
II. TINJAUAN PUSTAKA		. 4
2.1 Tinjauan Pustaka		. 4
2.1.1 Molases		. 4
2.1.2 Nata		. 5
2.1.3 Bakteri Pembentuk Nata		. 5
2.1.4 Aktivitas Pembentukan Nata		. 7
2.1.5 Faktor faktor yang Mempengaruhi Terbentuknya Nata		. 8

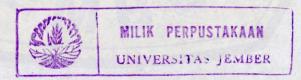
2.1.5.1 Kondisi Fermentasi		•					. 4	8
2.1.5.2 Umur Bakteri								10
2.1.5.3 Jumlah Larutan Starter				×.				10
2.2 Hipotesis							*	11
III. BAHAN DAN METODE PENELITIAN.						•		12
3.1 Bahan dan Alat Penelitian								12
3.1.1 Bahan Penelitian								12
3.1.2 Alat Penelitian								12
3.2 Tempat dan Waktu Penelitian								12
3.2.1 Tempat Penelitian.			•	•				12
3.2.2 Waktu Penelitian			•					13
3.3 Metode Penelitian								13
3.3.1 Rancangan Percobaan			Ē					13
3.3.2 Uji Lanjutan	700						•	15
3.4 Tahap-tahap Proses			•					15
3.5 Pengamatan				1	•			17
3.5.1 Pengamatan Utama					•			17
3.5.1.1 Tebal nata					•		•	17
3.5.1.2 Berat nata			•				•	17
3.5.1.3 Tekstur nata							14	17
3.5.1.4 Warna nata								17

	3.5.2 Pengamatan P	enunjang	. • .						X 9 .5		•	•	8 - 8	18
	3.5.2.1 Kadar	Gula Red	luksi											18
	3.5.2.2 Kadar	Abu							•					19
	3.5.2.3 pH Me	dium Sis	a Fer	mer	itas	ì.								20
	3.5.2.4 Kadar	Air							•					20
	3.5.2.5 Volum	e Mediur	n Sis	a.								*		21
IV. H	ASIL DAN PEMBAI	HASAN												22
4	.1 Berat Nata										*	.01		22
4	.2 Ketebalan				·							•		25
4	.3 Tekstur			-							(• c)	•	•	28
4	.4 Warna				•				in.					31
4	.5 Kadar Air													34
4	.6 Kadar Abu						•		•					37
4	.7 Kadar Gula Reduks	Medium	Sisa	a Fei	rme	ntas	si .	•			*			39
4	.8 PH Medium Sisa Fe	rmentasi	<i>(</i>)				•			•				43
4	.9 Volume Medium Si	sa Ferme	ntasi									•	•	46
V. F	KESIMPULAN DAN	SARAN												50
5	.1 Kesimpulan												•	50
5	2 Saran		46											50

DAFTAR PUSTAKA										51
			•							
LAMPIRAN										53

DAFTAR TABEL

Tabel	На	laman
1.	Komposisi Molases	4
2.	Hasil Sidik Ragam Berat Nata de molases	22
3.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap Berat Nata de molases	23
4.	Uji BNJ Pengaruh Penambahan NPK terhadap Berat Nata de molases	23
5.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases dan Penambahan NPK terhadap Berat Nata de molases	24
6.	Hasil Sidik Ragam Ketebalan Nata de molases	26
7.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap Ketebalan Nata de molases	26
8.	Uji BNJ Pengaruh Penambahan NPK terhadap Ketebalan Nata de molases	27
9.	Hasil Sidik Ragam Tekstur Nata de molases	28
10.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap Tekstur Nata de molases	29
11.	Uji BNJ Pengaruh Penambahan NPK terhadap Tekstur Nata de molases	29
12.	Hasil Sidik Ragam Warna Nata de molases	31
13.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap Warna Nata de molases	32
14.	Hasil sidik ragam kadar air nata de molases	34
15.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap Kadar Air Nata de molases	34


16.	Uji BNJ Pengaruh Penambahan NPK terhadap Kadar Air Nata de molases	35
17.	Hasil Sidik Ragam Kadar Abu Nata de Molases	37
18.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap Kadar Abu Nata de molases	37
19.	Hasil Sidik Ragam Kadar Gula Reduksi Medium Sisa Nata de molases	39
20.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap Gula Reduksi Medium Sisa Fermentasi Nata de molases	40
21.	Uji BNJ Pengaruh Penambahan NPK terhadap Kadar Gula reduksi Medium Sisa fermentasi Nata de molases	41
22.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases dan Penambahan NPK terhadap Kadar Gula Reduksi Medium Sisa Fermentasi Nata de molases	41
23.	Hasil Sidik Ragam Keasaman Medium Nata de molases	43
24.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap pH Nata de molases	44
25.	Uji BNJ Pengaruh Penambahan NPK terhadap pH Nata de molases	44
26.	Hasil Sidik Ragam Volume Medium Sisa Nata de molases	46
27.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases terhadap Volume Medium Sisa Nata de molases	47
28.	Uji BNJ Pengaruh Penambahan NPK terhadap Volume Sisa Nata de molases	48
29.	Uji BNJ Pengaruh Perbedaan Konsentrasi molases dan Penambahan NPK terhadap Volume Sisa Nata de molases	51

DAFTAR GAMBAR

Gambar 1.	Rumus Bangun Selulosa (Martin et al., 1984)	Halaman
2.	Mekanisme Pembentukan Selulosa oleh Bakteri Acetobacter xylinum (Muchtadi, 1997)	
3.	Diagram Alir Pembuatan Nata dari Molases	21
4.	Pengaruh Konsentrasi Molases dan Jumlah Penambahan NPK terhadap Berat Nata de Molases	25
5.	Pengaruh Konsentrasi Molases dan Penambahan NPK terhadap Ketebalan Nata de molases	27
6.	Pengaruh Konsentrasi Molases dan Penambahan NPK terhadap Tekstur Nata de Molases	
7.	Pengaruh Konsentrasi Molases dan Penambahan NPK terhadap Warna Nata de molases.	33
8.	Pengaruh Konsentrasi Molases dan Penambahan NPK terhadap Kadar Air Nata de Molases	36
9.	Pengaruh Konsentrasi molases dan Penambahan NPK terhadap Kadar Abu Nata de molases	38
10.	Hubungan antara Konsentrasi Molases dan penambahan NPK Terhadap Kadar Gula Reduksi Medium Sisa Fermentasi	42
11.	Pengaruh Konsentrasi Molases dan Penambahan NPK terhadap pH Medium Sisa Fermantasi Nata de Molases	
12.	Pengaruh Konsentrasi Molases dan Penambahan NPK terhadap Volume Medium Sisa Fermentasi Nata de molases	48

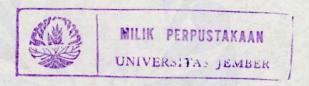
DAFTAR LAMPIRAN

	piran Hasil Pengamatan Tebal Nata dari Molases (cm)	alaman
1.	Trasti i engalitatan Tebai Nata dari Moiases (Cili)	53
2.	Hasil Pengamatan Berat Nata dari Molases (g)	54
3.	Hasil Pengamatan Tekstur Nata dari Molases (mm/10 dtk)	55
4.	Hasil Pengamatan Warna Nata dari Molases (%)	56
5.	Hasil Pengamatan Kadar Air Nata dari Molases	57
6.	Hasil Pengamatan Kadar Abu Nata dari Molases (%)	58
7.	Hasil Pengamatan Kadar Gula Reduksi Nata dari Molases (%)	59
8.	Hasil Pengamatan pH Medium Sisa Fermentasi Nata dari Molases .	60
9.	Hasil Pengamatan Volume Medium Sisa Nata dari Molases	61
10.	Contoh Perhitungan	62
11.	Conoth Perhitungan Uji Statistik Nata dari Molases	64
12.	Gambar Nata dari Molases	67

RINGKASAN

INDRIA BUDI NASTITI (NIM 9515101017) Jurusan Teknologi Hasil Pertanian.

"Pengaruh Konsentrasi Molases dan Jumlah Penambahan NPK Terhadap Sifat Fisiko Kimia Nata de Molases (Saccharum afficinarum L.)". Dosen Pembimbing: Dr. Ir. Sony Suwasono, MAppSc. dan Dr. Ir. Maryanto, MEng.


Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi molases dan jumlah penambahan NPK terhadap sifat fisiko-kimia nata de molases serta mendapatkan kombinasi antara konsentrasi molases dan jumlah penambahan NPK yang tepat sehingga dihasilkan nata dengan sifat fisiko-kimia yang baik dari beberapa kombinasi perlakuan. Parameter yang diamati meliputi berat, tebal, tekstur, warna, kadar air dan kadar abu dari nata de molases. Disamping itu dilakukan pengamatan penunjang pada medium sisa fermentasi yaitu pH, kadar gula reduksi dan volume medium sisa fermentasi.

Penelitian ini dilakukan dengan menggunakan Rancangan Acak Kelompok (RAK) faktorial yang terdiri dari 3 kali ulangan. Faktor pertama (A) adalah konsentrasi molases yang terdiri dari 3 variasi yaitu 2 brix, 4 brix dan 6 brix. Faktor kedua (B) adalah jumlah penambahan NPK yang terdiri dari 3 variasi yaitu 0,03%; 0,06% dan 0,09%.

Berdasarkan hasil penelitian dapat disimpulkan bahwa konsentrasi molases berpengaruh sangat nyata terhadap berat, tebal, tekstur, warna, kadar air, kadar abu nata dan juga kadar gula reduksi, pH dan volume medium sisa fermentasi. Jumlah penambahan NPK berpengaruh sangat nyata terhadap tebal, berat, kadar air nata dan volume medium sisa fermentasi, berpengaruh nyata terhadap tekstur nata dan kadar gula reduksi medium sisa fermentasi. Jumlah penambahan NPK berpengaruh tidak

nyata terhadap warna dan kadar abu. Kombinasi antara konsentrasi molases dan jumlah penambahan NPK berpengaruh sangat nyata terhadap berat nata, berpengaruh nyata terhadap kadar gula reduksi dan volume medium sisa fermentasi dan berpengaruh tidak nyata terhadap tebal, tekstur, warna, pH, kadar air dan kadar abu nata.

Dari beberapa perlakuan A3B3 menghasilkan nata de molases dengan sifat fisiko-kimia terbaik dengan karakteristik tebal 1,807 cm; berat 166,31 gram; tekstur 10,667 mm/dtk; warna 39,9269%; kadar air 95,9681% dan kadar abu 0,0362%.

I. PENDAHULUAN

1.1 Latar Belakang Permasalahan

Penggunaan hasil samping industri merupakan salah satu upaya untuk meningkatkan nilai tambah (added Value) dan daya guna suatu komoditi, sehingga dapat memberikan manfaat yang maksimal. Usaha ini sekaligus akan mendukung pembangunan sektor industri terutama yang mengutamakan basis pertanian.

Hasil samping industri gula sampai saat ini belum dimanfaatkan secara efisien. Dalam tiap ton tebu menghasilkan molases sekitar 2,7% dan sejauh ini pemanfaatan molases di Indonesia, selain digunakan untuk pakan ternak, juga untuk bahan dasar industri alkohol dan monosodium glutamat sebagai penyedap masakan (Paturau, 1982).

Produksi molases di Indonesia mengalami peningkatan dari tahun ke tahun. Hal ini wajar karena kebijakan pemerintah meningkatkan produksi gula untuk memenuhi konsumsi gula dalam negeri akan meningkatkan pula produksi hasil sampingnya termasuk molases. Pada tahun 1992 produksi molases mencapai 1.321.582 ton (Sudajanto,1978). Dengan kandungan total gula sebagai gula invert antara 60-70%, molases merupakan bahan baku potensial bagi produk-produk fermentasi.

Salah satu pemanfaatan molases untuk peningkatan nilai ekonominya dapat dibuat sebagai makanan penyegar dalam bentuk nata. Nata merupakan masa substansi berbentuk gelatin berwarna putih atau krem, biasa dimakan sebagai makanan penyegar, yang dimakan sesudah makanan pokok. Nata de coco pertama kali di buat di Filipina dengan cara memfermentasikan air kelapa atau sari buah. Nata mempunyai rasa yang khas dan enak. Bahan makanan ini berbentuk padat, kokoh, kuat, kenyal dan transparan serta mengandung air lebih kurang 98% dengan rasa yang mirip

kolang kaling. Produk ini banyak digunakan sebagai bahan pencampur es krim, coctail buah, sirup dan makanan ringan lainnya.

Pembentukan nata tergantung dari aktivitas bakteri. Dengan adanya kandungan unsur-unsur kimia yang terdapat dalam molases yang berupa karbohidrat dan mineral, maka molases sangat sesuai untuk pertumbuhan *Acetobacter xylinum* yang berperan dalam pembentukan pelikel nata.

Untuk menghasilkan nata yang mempunyai ketebalan, berat maksimal dan tekstur yang kompak, perlu diperhatikan faktor-faktor yang mempengaruhi pertumbuhan bakteri *Acetobacter xylinum* selama proses fermentasi. Beberapa faktor yang dapat mempengaruhi ketebalan, berat dan tekstur nata yang dihasilkan antara lain konsentrasi media dan penambahan NPK sebagai sumber nitrogen.

Konsentrasi media menyangkut kandungan gula dalam molases. Seperti diketahui molases merupakan larutan pekat dengan konsentrasi gula yang tinggi. Oleh karena itu diperlukan pengenceran untuk mendapatkan konsentrasi yang sesuai dengan pertumbuhan Acetobacter xylinum. Penambahan NPK dalam jumlah yang bervariasi dalam media fermentasi mempengaruhi pertumbuhan bakteri Acetobacter xylinum

Dari uraian diatas maka perlu dilakukan penelitian tentang pengaruh konsentrasi molases dan penambahan NPK terhadap sifat fisiko kimia nata de molases.

1.2 Tujuan Penelitian

Penelitian ini bertujuan untuk mengetahui.

- 1. Pengaruh konsentrasi molases terhadap sifat fisiko-kimia nata.
- 2. Pengaruh jumlah penambahan NPK terhadap sifat fisiko-kimia nata.
- Pengaruh kombinasi konsentrasi molases dan jumlah penambahan NPK terhadap sifat fisiko-kimia nata.

1.3 Kegunaan Penelitian

Penelitian ini diharapkan dapat bermanfaat.

- Sebagai upaya pemanfaatan limbah pengolahan gula (molases) menjadi bentuk makanan sehingga dapat menambah nilai ekonomisnya.
- 2. Memberikan informasi pada masyarakat tentang manfaat molases yang dapat digunakan untuk pembuatan nata.

3

II. TINJAUAN PUSTAKA

2.1 Tinjauan Pustaka

2.1.1 Molases

Molases adalah cairan kental yang berwarna kehitaman, yang diperoleh dari sisa kristalisasi gula. Molases merupakan hasil samping dari pabrik gula tebu yang proses pengkristalan gulanya belum sempurna, karena adanya *molasegenic* yang merupakan campuran dari garam anorganik dan kotoran organik selain gula. Kotoran tersebut dapat berupa koloid maupun non koloid. Molases masih mengandung gula 35-45% gula tebu, dan gula reduksi 20-25%, sehingga total gula menjadi 55-70%.

Komposisi molases dipengaruhi oleh keadaan tebu (umur, jenis, dan unsur panen), kesuburan tanah, musim, pemupukan, proses pengolahan tebu dan sebagainya. Karena banyaknya faktor yang mempengaruhi komposisi molases, maka variasi komposisinya juga besar (Sudajanto, 1978). Komposisi molases yang umum dijumpai di beberapa negara penghasil gula dapat dilihat pada **Tabel 1.**

Tabel 1. Komposisi Molases

Komposisi	Kisaran (%)	Rata-rata (%)
Air	17-25	20
Sukrosa	30-40	35
Dextrosa (Glukosa)	4-9	7
Levulosa (Fruktosa)	5-12	9
Bahan pereduksi lain	1-5	3
Karbohidrat lain	2-5	4
Komp. Nitrogen	2-6	4.5
Asam non nitrogenous	2-8	5
Wax, sterol & phospolipid	0.1-1	0.4
Abu	7-15	12
Pigmen		0.005
Vitamin		0.095

Sumber: Paturau, (1982)

Berat jenis molases bervariasi antara 1,34-1,49 dengan rata-rata 1,43. Viskositas juga menunjukkan perubahan terhadap perbedaan suhu dan konsentrasi (brix). Viskositas molases umumnya diberikan dalam centipoise pada 20°C pada kelarutan 50 brix.

2.1.2 Nata

Nata adalah jenis makanan yang banyak dibuat di Filipina, dengan cara memfermentasikan air kelapa atau sari buah. Nata berasal dari bahasa Spanyol yang dalam bahasa Inggris berarti *cream* (Suhardiyono, 1987). Sedangkan menurut Dimaguila (1963) dalam Setyamijaya(1991), nata merupakan bakterial cellulose hasil dari fermentasi gula oleh bakteri pembentuk nata, yaitu *Acetobacter xylinum*.

Nilai gizi makanan ini rendah sekali, kandungan terbesarnya adalah air yang mencapai 98%. Oleh karena itu produk ini dipakai sebagai sumber makanan rendah kalori untuk keperluan diet. Nata de coco juga mengandung serat yang sangat dibutuhkan tubuh dalam proses fisiologis. Konon produk ini dapat membantu penderita diabetes dan membantu memperlancar pencernaan dalam tubuh. Nata de coco berbentuk padat, kokoh, putih, transparan dan kenyal dengan rasa mirip kolang-kaling. Produk ini banyak digunakan sebagai pencampur es krim, coctail buah, sirup dan makanan ringan lainnya. Nata mempunyai rasa yang khas sehingga merupakan makanan ekspor yang cukup mahal di negara-negara Eropa (Astawan, dan Astawan, 1991).

2.1.3 Bakteri Pembentuk Nata

Bakteri pembentuk nata adalah Acetobacter xylinum. Bakteri ini mempunyai ciri-ciri yaitu berbentuk batang, kira-kira panjangnya 5 mikron, non motil gram negatif dan mampu membentuk asam dari glukosa, etil alkohol, propil alkohol dan glikol, mampu melakukan reaksi katalisis dan dapat mengoksidasi asam asetat menjadi karbondioksida dan air. Bakteri Acetobacter xylinum dapat membentuk

kapsula yang terdiri dari polisakarida yang mana strukturnya sama dengan tanaman tingkat tinggi (Breed et al.,1975).

Pada medium cair yang sesuai *Acetobacter xylinum* dapat membentuk lapisan setebal 2-250mm tergantung lingkungannya. Lapisan tumbuh tersebut terdiri dari selulosa yang susunannya sama dengan susunan kimia tanaman tingkat tinggi.

Menurut Thuman (1962) dalam Palungkun (1993), pembentukan nata terjadi karena proses pengambilan glukosa dari larutan gula atau medium yang mengandung glukosa oleh sel-sel *Acetobacter xylinum*. Kemudian glukosa tersebut digabungkan oleh asam lemak membentuk prekusor (penciri nata) pada membran sel. Prekusor ini selanjutnya dikeluarkan dalam bentuk ekskresi dan bersama enzim mempolimerisasikan glukosa dari selulosa diluar sel.

Menurut William dan Cannon (1989) bakteri ini juga mampu tumbuh secara mikroaerofilik dengan masing-masing sel mampu mempolimer 200.000 molekul glukosa per detik menjadi β-1-, 4 glukan polimer atau selulosa. Dari pita selulosa ini, terbentuk pelikel pada permukaan medium cair yang sesuai dengan kultur yang diinkubasikan yaitu bakteri *Acetobacter xylinum*. Adapun rumus bangun molekul dari selulosa dapat dilihat pada **Gambar 1**

Gambar 1. Rumus Bangun Selulosa (Martin et al., 1984)

Dalam fermentasi, glukosa diubah menjadi selulosa secara ekstraseluler. Pada akhir fermentasi, cairan yang mengandung selulosa membentuk jalinan mikrofibril yang panjang. Gelembung-gelembung yang dibentuk merupakan hasil metabolisme berupa gas CO2 dan mempunyai kecenderungan melekat pada jaringan selulosa sehingga struktur permukaan medium menjadi naik (Joseph, 1984).

2.1.4 Aktivitas Pembentukan Nata

Menurut Valla dan Kjosbaken (1981) dalam Muchtadi (1997) bakteri Acetobacter xylinum mempunyai aktivitas dapat memecah gula untuk mensintesa selulosa ekstraseluler. Selulosa yang terbentuk berupa benang-benang yang bersamasama dengan polisakarida berlendir membentuk suatu jalinan yang terus menebal menjadi lapisan nata.

Aktivitas pembentukan nata hanya terjadi pada kisaran pH antara 3.5-7.5. Kualitas nata terbaik dan terbanyak tercapai pada pH 5.0-5.5 dalam media air kelapa dan pada suhu kamar. Menurut Widia (1984) dalam Muchtadi (1997), kualitas dan jumlah nata terbanyak dihasilkan pada media air kelapa yang mempunyai pH 4.5. Kondisi pH optimum untuk pembentukan pelikel nata terjadi pada pH 4.0 pada media air kelapa.

Terbentuknya pelikel (lapisan tipis nata) mulai dapat dilihat di permukaaan media cair setelah 24 jam inkubasi, bersamaan dengan proses penjernihan cairan dibawahnya. Jaringan halus yang transparan yang terbentuk di permukaan membawa sebagian bakteri yang terperangkap didalamnya. Gas karbondioksida yang dihasilkan secara lambat oleh *Acetobacter xylinum* menyebabkan pengapungan nata, sehingga nata terdorong ke permukaan (Muchtadi, 1997).

Mekanisme pembentukan selulosa oleh Acetobacter xylinum terlihat pada Gambar 2 berikut ini.

Gambar 2. Mekanisme Pembentukan Selulosa oleh Bakteri Acetobacter xylinum (Muchtadi, 1997)

2.1.5 Faktor faktor yang Mempengaruhi Terbentuknya Nata

Dalam proses pembuatan "nata" yang diinginkan (tebal) tidak dapat lepas dari kemampuan Acetobacter xylinum untuk tumbuh dan berkembang biak, sehingga untuk memacu terbentuknya "nata" yang tebal harus diperhatikan antara lain kondisi fermentasi, umur bakteri, jumlah starter dan ketelitian perlakuan.

2.1.5.1 Kondisi Fermentasi

Untuk memperoleh hasil nata seperti yang dikehendaki maka kondisi fermentasi harus memenuhi beberapa faktor berikut ini.

1. Nutrien medium

Bakteri pembentuk nata memerlukan gula sebagai sumber energi dan sumber karbon yang penting artinya bagi pertumbuhan bakteri *Acetobacter xylinum*. Macam-macam kadar gula yang ditambahkan dalam medium fermentasi sangat mempengaruhi ketebalan dan berat nata yang terbentuk (Alaban, 1962).

Pada pembuatan nata sebagai sumber karbon biasanya digunakan sukrosa atau gula tebu, mengingat sukrosa harganya murah dan mudah didapat (Soeseno,

1984). Penambahan starter pada air kelapa sebanyak kurang lebih 10% akan menghasilkan partikel nata yang tebal (Herman, 1979).

Menurut Saono et al. (1986), sumber nitrogen yang digunakan dalam pembentukan nata adalah amonium sulfat, ekstrak khamir dan pepton. Amonium sulfat dan diamonium hidrogen pospat tampaknya paling cocok sebagai sumber nitrogen karena mudah didapat dan harganya murah (Prescott dan Dunn, 1959).

NPK adalah pupuk yang digunakan ditanah untuk bercocok-tanam. NPK dibuat dari campuran amonium nitrat, P₂O₅ dan K₂O yang komposisi dalam pupuk ini bervariasi (Rinsema, 1983).

2. Tingkat keasaman medium

Bakteri Acetobacter xylinum tergolong bakteri yang dapat hidup pada kondisi asam atau pH rendah. Keasaman optimum untuk pembuatan nata adalah 4,5. Sedangkan untuk menghasilkan nata yang tebal dan berat maksimum, yang diperlukan kondisi medium dengan kisaran pH 4,0-5,0.

3. Penambahan starter

Jumlah larutan yang ditambahkan ke dalam medium fermentasi berpengaruh terhadap nata yang dihasilkan. Untuk memperoleh nata dengan tebal dan berat maksimum diperlukan penambahan jumlah starter yang sesuai dengan jumlah medium fermentasi (Alaban, 1962).

Menurut Herman., (1979) pada air kelapa setiap liter medium dibutuhkan starter sebanyak 10% (V/V) dari medium.

4. Umur starter

Starter yang dapat dipergunakan adalah setelah 3 – 5 hari diinkubasi. Menurut Jutono, dkk. (1977), pada umur 48 jam dimungkinkan bakteri Acetobacter xylinum dalam keadaan fase log. Pada fase ini jika kultur bakteri dipindahkan dalam medium baru yang sama, maka pertumbuhannya akan sama dengan pertumbuhan fase sebelumnya.

5. Lama fermentasi

Untuk memperoleh nata dengan ketebalan maksimum, pemanenan dilakukan setelah inkubasi selama 12-15 hari (Soeseno, 1984). Hasil nata terbaik adalah setelah pemeraman selama 15 hari (Anonimus, 1989), sedangkan menurut Herman (1979), waktu yang dibutuhkan untuk memperoleh nata yang tebal kurang lebih 14 hari.

2.1.5.2 Umur Bakteri

Dimungkinkan pertumbuhan bakteri Acetobacter xylinum dalam keadaan fase logaritma pada umur kultur 48 jam (Jutono dkk. 1972). Pada fase ini kecepatan pertumbuhan yang paling tinggi, waktu generasinya pendek dan konstan. Jika kultur bakteri dari fase ini dipindahkan ke dalam medium baru yang sama, maka pertumbuhannya akan tetap pada fase sebelumnya, sehingga tidak melalui fase permulaan dan fase pertumbuhan dipercepat (Dwijoseputro, 1977).

2.1.5.3 Jumlah Larutan Starter

Menurut Herman, (1979) pada pembuatan "nata" dari air kelapa dalam penambahan starter yang dibutuhkan untuk setiap liter medium fermentasi sebanyak kurang lebih 1% dari jumlah medium fermentasi.

Menurut Alaban, (1961) jumlah larutan starter yang ditambahkan ke dalam medium fermentasi sangat berpengaruh terhadap nata yang dihasilkan. Jumlah penambahan larutan starter yang optimum untuk pembuatan nata berkisar antara 10-20%. Penambahan sampai 20% dilakukan bila pada medium fermentasi terdapat inhibitor (penghambat) atau penggunaan energi yang kurang maksimal pada sel itu sendiri (Casida, 1968).

Pada media molases yang diatur pada pH 4,5 menggunakan kurang lebih 20% kultur starter yang berumur 48 jam pada kondisi tetap selama 15 hari untuk menghasilkan produk nata (Sanchez, 1989).

2.2 Hipotesis

Hipotesis yang disusun dari penelitian ini sebagai berikut.

- Konsentrasi molases berpengaruh terhadap sifat fisiko-kimia nata de molases yang dihasilkan.
- Jumlah penambahan NPK berpengaruh terhadap sifat fisiko-kimia nata de molases yang dihasilkan.
- Kombinasi antara konsentrasi molases dan jumlah penambahan NPK berpengaruh terhadap sifat fisiko-kimia nata de molases yang di hasilkan.
- Pada kombinasi antara konsentrasi molases dan jumlah penambahan NPK tertentu akan dihasilkan nata dengan sifat fisiko-kimia yang lebih baik dari beberapa kombinasi perlakuan.

III. BAHAN DAN METODE PENELITIAN

3.1 Bahan dan Alat Penelitian

3.1.1 Bahan Penelitian

Bahan yang digunakan adalah molases yang diperoleh dari PG jatiroto. Bahan pembantu meliputi gula dan air.

Sedangkan bahan kimia yang digunakan adalah ZA, NPK, asam asetat glasial 98%, asam sitrat, larutan Pb asetat, reagensia Nelson, reagensia Arsenomolibdat, glukosa anhidrat, dan buffer pH 4.

Starter yang digunakan adalah starter komersial yang didapat dari Laboratorium Pengolahan Hasil Pertanian SMTP Jember.

3.1.2 Alat Penelitian

Peralatan yang digunakan adalah sebagai berikut.

- Wadah fermentasi berupa beaker glass 1000 ml, dengan penutup kertas koran dan diikat dengan karet.
- b. Peralatan pembuatan nata ; panci, pisau, kompor, kapas, thermometer, serta pengaduk.
- c. Peralatan untuk analisis; pH meter, timbangan analitis, beaker glass, pipet volume, jangka sorong, dan peralatan gelas lainnya.

3.2 Tempat dan Waktu Penelitian

3.2.1 Tempat Penelitian

Penelitian ini dilakukan di Laboratorium Pengendalian Mutu Jurusan Teknologi Hasil Pertanian Fakultas Teknologi Pertanian Universitas Jember.

3.2.2 Waktu Penelitian

Penelitian ini meliputi dua tahap yaitu:

- penelitian pendahuluan : bulan Juni Agustus 1999
- penelitian utama : bulan Agustus September 1999

3.3 Metode Penelitian

3.3.1 Rancangan Percobaan

Metode Penelitian yang digunakan dalam penelitian ini menggunakan Rancangan Acak Kelompok yang disusun dengan pola faktorial terdiri dari dua faktor.

Faktor pertama adalah konsentrasi molases (A) yang terdiri dari 3 variabel yaitu:

A₁; Brix 2

A2; Brix 4

A₃; Brix 6

Faktor kedua adalah jumlah penambahan NPK (B) yang terdiri dari 3 variasi yaitu:

B₁; NPK 0,03%

B₂; NPK 0,06%

B₃; NPK 0,09%

Dari kedua faktor perlakuan tersebut diperoleh kombinasi perlakuan sebagai berikut:

A₁B₁ A₂B₁ A₃B₁

A₁B₂ A₂B₂ A₃B₂

 A_1B_3 A_2B_3 A_3B_3

Dari masing-masing kombinasi perlakuan tersebut diulang sebanyak tiga kali ulangan.

Menurut Sudjana (1980) dengan rancangan seperti tersebut diatas berlaku model persamaan umum sebagai berikut:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \xi_k + \delta_{ijk}$$

 $i = 1,2,3; j = 1,2,3; k = 1,2,3$

Keterangan:

Y_{ijk} = nilai pengamatan karena pengaruh taraf ke-i faktor B yang terdapat pada observasi

μ = efek rata-rata sebenarnya

α_i = efek sebenarnya dari taraf ke-i faktor A adalah

 β_i = efek sebenarnya dari taraf ke-j faktor B adalah

 $\alpha \beta_{ij}$ = efek sebenarnya dari interaksi antara taraf ke-i faktor A dengan taraf ke-j faktor B

 ξ_k = efek sebenarnya dari blok ke-k

δ_{ijk} = efek sebenarnya dari unit eksperimen, yang merupakan pengaruh error yang bekerja pada suatu percobaan pad blok ke-k yang mendapatkan perlakuan faktor Adalah ke-i dan faktor B ke-j.

Asumsi yang digunakan dalam sidik ragam ialah aditif dan linier model, normalitas, independen dan homogenitas varian:

- 1. $\Sigma = \kappa = 0$ (pengaruh kelompok bersifat tetap) $\kappa = 1$;
- 2. $\epsilon_{ijk} = DNI(0,8^2);$
- 3. model yang digunakan adalah model tetap.

Hipotesis yang diuji:

1.
$$H_1 = \alpha i = 0$$
 dengan hipotesis tandingan $\alpha \neq 0$

2.
$$H2 = \beta j$$
 = 0 dengan hipotesis tandingan $\beta \neq 0$

3.
$$H3 = \alpha \beta ij = 0$$
 dengan hipotesis tandingan $\alpha \beta \neq 0$

3.3.2 Uji Lanjutan

Uji lanjutan yang digunakan dalam penelitian ini menggunakan uji Tukey. Uji ini menggunakan satu nilai tunggal HSD (Honestly Significant Difference). Jika beda dua nilai tengah perlakuan lebih besar daripada nilai HSD maka perlakuan dinyatakan berbeda. Formula untuk uji HSD ini adalah:

$$W = q \alpha (p,fe) sy$$

Dimana: qa: ditentukan dari tabel

p = t : jumlah perlakuan

fe : derajat bebas galat

sy : galat baku nilai tengah yang dihitung

melalui, sy =
$$(s^2/r)^{1/2}$$
 = $(KTG/r)^{1/2}$

Dimana, sy = KTG: nilai kuadrat tengah yang diperoleh dari analisis ragam

r : jumlah ulangan

3.4 Tahap-tahap Proses

Tahap-tahap pembuatan nata de molases meliputi dua tahap sebagai berikut.

- 1. Pembuatan Starter molases
 - Molases dari PG jatiroto terlebih dahulu diencerkan sampai mencapai brix 4, kemudian dilakukan penyaringan dengan menggunakan kapas.
 - b. Memanaskan molases yang sudah diencerkan dan menambahkan bahan tambahan yaitu NPK, gula pasir, ZA, dan biarkan mendidih

- selama 15 menit, kemudian menambahkan asam sitrat, asam asetat glasial 98% biarkan mendidih hingga 5 menit.
- c. Mengangkat dari nyala api, kemudian menyaring dengan menggunakan kertas saring.
- d. Memasukkan kedalam beaker glass dalam keadaan panas sebanyak
 200 ml medium untuk setiap beaker glass.
- e. Dan setelah dingin, memasukkan bibit starter komersial secara aseptik sebanyak 25 % dari jumlah medium, kemudian diperam selama 48 jam pada suhu kamar.

2. Pembuatan Nata de molases

- a. Molases terlebih dahulu diencerkan dalam tiga variasi yaitu brix 2°, brix 4°, brix 6°, setelah diencerkan kemudian disaring dengan menggunakan kapas.
- b. Memanaskan molases untuk masing-masing brix, dan sebelum mendidih ditambahkan NPK untuk masing-masing brix ada tiga variasi jumlah penambahan NPK yaitu 0.03%, 0.06% dan 0.09% selain itu juga ditambahkan ZA dan biarkan mendidih selama 15 menit, kemudian menambahkan asam sitrat, asam asetat glasial dan biarkan mendidih selama 5 menit
- Kemudian diangkat dari nyala api , dan menyaring dengan menggunakan kertas saring.
- d. Memasukkannya kedalam beaker glass dalam keadaan panas dan tutup dengan menggunakan kertas koran.
- e. Setelah dingin, masukkan bibit starter molases secara aseptik kemudian diperam selama 14 hari pada suhu kamar.
- f. Pemanenan dilakukan setelah medium diinkubasi selama 14 hari.

3.5 Pengamatan

3.5.1 Pengamatan Utama

3.5.1.1 Tebal nata

Pengukuran tebal nata dengan cara:

- mengangkat nata yang terbentuk selama fermentasi 15 hari, kemudian membersihkannya dengan air;
- 2. mengukur ketebalan nata dengan menggunakan jangka sorong.

3.5.1.2 Berat nata

Pengukuran berat nata dengan cara:

- 1. nata yang telah terbentuk ditiriskan sampai tidak ada air yang menetes;
- 2. menimbang nata yang telah bersih.

3.5.1.3 Tekstur nata

Pengukuran tekstur nata menggunakan alat penetrometer dengan cara:

- 1. meletakkan nata yang telah ditiriskan tepat dibawah jarum penetrometer, kemudian menempatkan ujung jarum sampai menyentuh lapisan permukaan nata;
- 2. menekan tombol on beberapa detik sampai terdengar bunyi tanda selesai;
- membaca angka yang ditunjukkan jarum penetrometer, dengan satuan (mm/10 detik).

3.5.1.4 Warna nata

Pengukuran warna nata menggunakan alat colorreader dengan cara:

- melapisi permukaan nata yang telah bersih dan ditiriskan dengan selembar plastik;
- menempelkan alat pengukur derajat keputihan dan menekan tombolnya;
- 3. membaca angka yang tertera dengan rumus;

$$W = 100 - \{ (100 - L)^2 - (a^2 + b^2) \}^{0.5}$$

Keterangan:

- W = derajat keputihan (W = 100%, diasumsikan putih sempurna
- L = nilai berkisar 0 100 yang menunjukkan warna hitam hingga putih
- a = nilai berkisar antara (-80) hingga (100) yang menunjukkan warna hijau hingga merah
- b = nilai berkisar antara (-80) hingga (100) yang menunjukkan warna biru hingga kuning.

3.5.2 Pengamatan Penunjang

3.5.2.1 Kadar Gula Reduksi

Setelah diinkubasi medium fermentasi diukur kadar gula reduksinya dengan menggunakan metode spektrofotometri, Metode Nelson-Somogyi (Sudarmadji, dkk, 1984).

Penyiapan kurva standar dengan cara:

- 1. membuat larutan glukosa standar (10 mg glukosa anhidrat/100 ml);
- dari larutan glukosa standar tersebut dilakukan 6 pengenceran sehingga diperoleh larutan glukosa dengan konsentrasi; 2, 4, 6, 8 dan 10 mg/100 ml;
- 3. menyiapkan 7 tabung reaksi yang bersih, masing-masing diisi dengan 1 ml larutan glukosa standar tersebut di atas. Satu tabung diisi 1 ml air suling sebagai blanko;
- 4. menambahkan ke dalam masing-masing tabung di atas 1 ml reagensia Nelson, dan panaskan semua tabung pada penangas air mendidih selama 20 menit;
- 5. mengambil semua tabung dan segera didinginkan bersama-sama dalam gelas piala yang berisi air dingin sehingga suhu tabung mencapai 25 °C;
- setelah dingin tambahkan 1 ml reagensia Arsenomolybdat, gojog sampai semua endapan Cu₂O larutan sempurna, ditambah 7 ml air suling, gojoglah sampai homogen;

- setelah semua endapan Cu₂O larutan sempurna, tambahkan 7 ml air suling, digojog sampai homogen;
- 8. menera "optical density" (OD) masing-masing larutan tersebut pada panjang gelombang 540 nm;
- membuat kurva standar yang menunjukkan hubungan antara konsentrasi glukosa dan OD.

Penentuan gula reduksi pada contoh dengan cara:

- a. menyiapkan larutan contoh yang mempunyai kadar gula reduksi sekitar 2 8
 mg/100 ml. Larutan contoh harus jernih dengan menggunakan Pb-asetat;
- b. pipet 1 ml larutan contoh ke dalam tabung reaksi yang bersih;
- c. menambahkan 1 ml reagensia Nelson, dan selanjutnya diperlakukan seperti pada penyiapan kurva standar di atas;
- d. jumlah gula reduksi dapat ditentukan berdasarkan OD larutan contoh dan kurva standar larutan glukosa.

3.5.2.2 Kadar abu

Mengukur kadar abu Nata de molases dengan menggunakan cara langsung. Cara Kerja :

- menyiapkan cawan pengabuan atau krus, kemudian dipanaskan dalam oven selama 30 menit, didinginkan dalam eksikator dan timbang (a gram);
- menimbang sampel nata de molases yang telah dihaluskan sebanyak 1.5 2 gram dalam cawan tersebut (b gram);
- 3. karena nata de molases mempunyai kadar air yang tinggi maka diperlukan pengeringan terlebih dahulu dalam oven;
- setelah kering, kemudian dipijarkan dalam tanur pengabuan sampai diperoleh abu berwarna putih keabu-abuan. Pengabuan dilakukan dua tahap. Tahap I pada suhu 400 °C dan tahap selanjutnya pada suhu 700°C;

 mendinginkan dengan membiarkan cawan dan abu tinggal di tanur sampai suhu tanur mencapai 100°C. Kemudian memindahkan ke dalam eksikator, dan ditimbang (c gram).

Perhitungan:

$$\% Abu = \underbrace{(c-a)}_{(b-a)}$$

3.5.2.3 pH medium sisa fermentasi

Mengukur pH medium sisa fermentasi dengan menggunakan alat pH meter dengan cara:

- melakukan kalibrasi alat terlebih dahulu sebelum alat digunakan, dengan cara menekan power dan membiarkannya selama 15 menit, mengeringkan elektroda dengan kertas tissue;
- 2. memasukkan elektrode ke dalam buffer 4.00 dan membacanya di layar;
- mengeluarkan elektroda kedalam buffer, kemudian mencuci dengan aquadest dan mengeringkan dengan kertas tissue;
- 4. memasukkan elektroda pada sampel yang akan diukur pH-nya kemudian membaca angka pada layar.

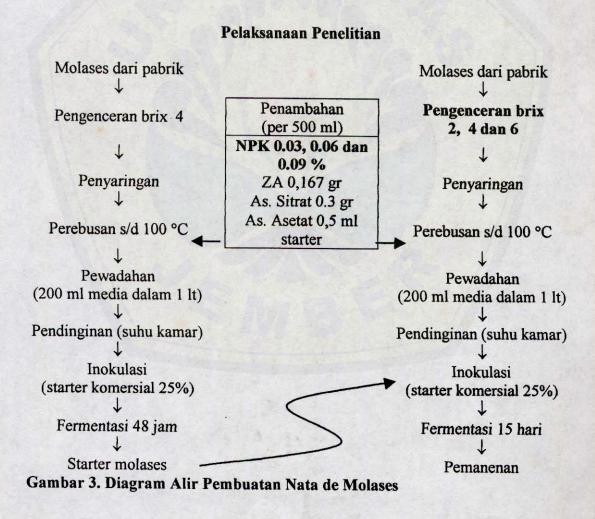
3.5.2.4 Kadar air

Mengukur kadar air Nata de molases dengan metode oven.

Cara kerja:

- 1. mengeringkan krus porselin dalam oven selama 15 menit dan mendinginkannya dalam eksikator, kemudian ditimbang (a gram);
- timbang dengan segera dan cepat antara 1.5 2 gram sampel nata de molases yang telah dicincang halus dalam krus porselin (b gram);
- krus beserta isinya dimasukkan dalam oven selama 4 6 jam dalam keadaan terbuka;
- 4. memindahkan krus kedalam eksikator, setelah dingin ditimbang;

 mengeringkan kembali dalam oven selama 30 menit, setelah didinginkan dalam eksikator ditimbang kembali. Pekerjaan ini dilakukan berulang kali sampai diperoleh berat yang konstan (c gram).


Perhitungan:

Kadar air % (wb) =
$$(b-c)$$

(b-a)

3.5.2.5 Volume Medium Sisa

Pengukuran volume medium sisa dengan cara:

- 1. mengambil nata yang telah terbentuk;
- 2. mengukur sisa medium fermentasi dengan menggunakan gelas ukur.

Digital Repository Universitas Jember

DAFTAR PUSTAKA

- Alaban, 1962, Studies on Optimum Conditions for "Nata De Coco" Bacterium or "Nata" Formation in Coconut Water, The Philipine Agriculturist.
- Anonim, 1989, "Pembuatan Nata de Coco" di dalam Hasil Penelitian dan Pengembangan Hasil Pertanian, Balai Penelitian dan Pengembangan Hasil Pertanian, Departemen Pertanian dan Perindustrian, Bogor
- Astawan, M. dan M.W. Astawan, 1991, Teknologi Pengolahan Bahan Pangan Nabati Tepat Guna, Akademika Pressindo, Jakarta.
- Breed, R.S., E.G.D. Murray and N.R. Smith. 1957, Bergey's Manual of Determinative Bacteriology, the William and Wilkins Company, Baltimore London
- Casida, L.E., 1968, Industrial Microbiology, John Urley and Sons, Inc. New York, London, Sydney.
- Dimaguilla, L., 1967, The "Nata de Coco" I. Characterization and Identity Casual Organism, The Phillipina Agriculturist.
- Dwijoseputro, 1977, Dasar-Dasar Mikrobiologi, Djambatan, Jakarta; 53
- Gasper, V., 1991, Metode Perancangan Percobaan, Armico, Bandung
- Herman, A. S., 1979, Pengolahan Air Kelapa, Buletin Perhimpunan Ahli Teknologi Pangan Indonesia.
- Herman. A. S., A.B. Ernie dan M.S. Pardijanto, 1975, Pengolahan Air Kelapa IV, Fermentasi Air Kelapa Menjadi "Nata de Coco", Balai Penelitian Kimia Bogor: 286-292.
- Joseph, G.H., 1984, Tingkat Keasaman Tumbuh Acetobacter xylinum pada Fermetasi Nata de Coco, Buletin Balitka.
- Jutono, Judoro S., S. Hartadi, S Kabirun, Suhadi D., dan Susanto, 1972, **Pedoman Praktikum Mikrobiologi Umum (Untuk Perguruan Tinggi)**, Departemen Mikro, Fakultas Pertanian, Universitas Gajah Mada, Yogyakarta.

- Muchtadi, Tien, 1997, Nata de Pina, Majalah Pangan, Jakarta.
- Palungkun, R., 1993, Aneka Produk Olahan Kelapa, Penebar Swadaya, Jakarta.
- Paturau, J.M, 1982, By Product of The Cane Sugar Industry, Elsevier Scientic Publishing Co, Amsterdam, Oxford, New York.
- Prescott, S.C. and J. Dunn, 1984, Industrial Microbiology, Mc Graw Hill Book Co, New York.
- Rinsema, W.T., 1983, Pupuk dan Cara Pemupukan, Bharatara Karya Aksara, Jakarta.
- Sanchez. P.C. and Y. Toshiomi, 1989, Microbial Cellulose Production and Utilization, in Asean Network on Microbial Researches, Gajah Mada University The Institute of Phisical and Chemical Research. Science and Tecnology Agency, Japan.
- Saono, S., R.R. Hull and B. Dhamcharee, 1986, Fermented Food in the ASCA Countries, LIPI, Jakarta.
- Setyamijaya, D., 1991, Bertanam Kelapa Budidaya dan Pengolahannya, Kanisius, Jakarta.
- Soeseno. S., 1984, Sari Kelapa, Hasil Kerja Bakteri Serat Kasar, Intisari, Jakarta.
- Sudarmadji, S., B. Hariono dan Suhardi, 1984, Prosedur Analisis untuk Bahan Makanan dan Hasil Pertanian, liberty, Yogyakarta.
- Sudajanto, 1978, **Diversifikasi Penggunaan Tebu**, Majalah Perusahaan Gula, XIV, Balai Penelitian Dan Pengembangan Perusahaan Gula, Pasuruan.
- Suhardiyono, L., 1987, **Tanaman Kelapa**, **Budidaya dan Pemanfaatannya**, Penerbit Kanisius, Jakarta.
- William, W.S. and R.M. Cannon, 1989, Alternative Environmental Roles for Cellulose Produced by Acetobacter xylinum. Appl. Envn. Microbiol.

Lampiran 1. Hasil Pengamatan Berat Nata de Molases

Perlakuan	(1)	(2)	(3)	Jumlah	Rata-rata
A1B1	92.898	94.299	93.928	281.125	93.708
A1B2	96.937	103.098	103.458	303,493	101.164
A1B3	97.755	90.692	113.100	301.548	100.516
A2B1	118.751	98.623	96.823	314.197	104.732
A2B2	120.265	120.355	119.570	360.189	120.063
A2B3	132.252	126.081	125.182	383.515	127.838
A3B1	131.230	129.470	113.994	374.693	124.898
A3B2	134.230	133.470	113.994	381.693	127.231
A3B3	159.800	170.352	168.794	498.945	166.315
Jumlah	1084.116	1066.439	1048.842	3199.398	1066,466
Rata-rata	120.457	118.493	116.538	355.489	118.496

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	281.125	303.493	301.548	886.166	98.463
A2	314.197	360.189	383.515	1057.900	117.544
A3	374.693	381.693	498.945	1255.332	139.481
Jumlah	970.015	1045.375	1184.007	3199.398	355.489
Rata-rata	107.779	116.153	131.556	1066.466	118.496

Lampiran 2. Hasil Pengamtan Tebal Nata de Molases

Perlakuan	(1)	(2)	(3)	Jumlah	Rata-rata
A1B1	0.445	0.999	1.088	2.533	0.844
A1B2	1.105	1.118	1.137	3.360	1.120
A1B3	1.298	1.372	1.418	4.088	1.363
A2B1	1.143	1.147	1.150	3.440	1.147
A2B2	1.167	1.185	1.290	3.642	1.214
A2B3	1.552	1.552	1.642	4.745	1.582
A3B1	1.502	1.513	1.547	4.562	1.521
A3B2	1.330	1.527	1.588	4.445	1.482
A3B3	1.697	1.770	1.957	5.423	1.808
Jumlah	11.238	12.183	12.817	36.238	12.079
Rata-rata	1.249	1.354	1.424	4.026	1.342

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	2.533	3.360	4.088	9.981	1.109
A2	3.440	3.642	4.745	11.827	1.314
A3	4.562	4.445	5.423	14.430	1.603
Jumlah	10.534	11.447	14.257	36.238	4.026
Rata-rata	1.170	1.272	1.584	12.079	1.342

Lampiran 3. Hasil Pengamatan Tekstur Nata de Molases

Perlakuan	(1)	(2)	(3)	Jumlah	Rata-rata
A1B1	46.000	40.000	36.667	122.667	40.889
A1B2	31.333	34.667	43.333	109.333	36.444
A1B3	37.667	34.000	37.333	109.000	36.333
A2B1	37.000	31.000	30.300	98.300	32.767
A2B2	30.300	24.300	26.000	80.600	26.867
A2B3	36.667	26.000	17.333	80.000	26.667
A3B1	23.667	25.333	29.667	78.667	26.222
A3B2	29.333	34.333	11.333	75.000	25.000
A3B3	10.000	12.000	10.000	32.000	10.667
Jumlah	281.967	261.633	241.967	785.567	261.856
Rata-rata	31.330	29.070	26.885	87.285	29.095

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	122.667	109.333	109.000	341.000	37.889
A2	98.300	80.600	80.000	258.900	28.767
A3	78.667	75.000	32.000	185.667	20.630
Jumlah	299.633	264.933	221.000	785.567	87.285
Rata-rata	33.293	29.437	24.556	261.856	29.095

Lampiran 4. Hasil Pengamatan Warna Nata de Molases

Perlakuan	(1)	(2)	(3)	Jumlah	Rata-rata
A1B1	43.860	40.768	44.052	128.680	42.893
A1B2	42.774	42.294	42.567	127.635	42,545
A1B3	42.551	42.485	38.890	123.926	41.309
A2B1	40.952	43.155	39.560	123.667	41.222
A2B2	40.567	41.064	41.052	122.682	40.894
A2B3	39.294	41.552	40.421	121.267	40.422
A3B1	39.818	40.510	40.096	120.424	40.141
A3B2	40.547	41.174	38.396	120.117	40.039
A3B3	40.427	40.326	39.028	119.781	39.927
Jumlah	370.790	373.329	364.062	1108.181	369.394
Rata-rata	41.199	41.481	40.451	123.131	41.044

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	128.680	127.635	123.926	380.242	42.249
A2	123.667	122.682	121.267	367.617	40.846
A3	120.424	120.117	119.781	360.322	40.036
Jumlah	372.772	370.435	364.974	1108.181	123.131
Rata-rata	41.419	41.159	40.553	369.394	41.044

Lampiran 5. Hasil Pengamatan Kadar Air Nata de Molases

Perlakuan	(1)	(2)	(3)	Jumlah	Rata-rata
A1B1	98.659	97.895	98.435	294.989	98.330
A1B2	97.871	97.279	97.827	292.977	97.659
A1B3	97.422	97.887	97.659	292.967	97.656
A2B1	97.187	97.039	97.583	291.809	97.270
A2B2	97.300	97.386	97.675	292.361	97.454
A2B3	96.740	96.784	97.478	291.002	97.001
A3B1	97.458	96.249	97.201	290.907	96.969
A3B2	96.533	96.262	96.250	289.044	96.348
A3B3	95.897	95.909	96.098	287.904	95.968
Jumlah	875.068	872.689	876.204	2623.961	874.654
Rata-rata	97.230	96.965	97.356	291.551	97.184

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	294.989	292.977	292.967	880.933	97.881
A2	291.809	292.361	291.002	875.172	97.241
A3	290.907	289.044	287.904	867.856	96.428
Jumlah	877.704	874.382	871.874	2623.961	291.551
Rata-rata	97.523	97.154	96.875	874.654	97.184

Lampiran 6. Hasil Pengamatan Kadar Abu Nata de Molases

Perlakuan	(1)	(2)	(3)	Jumlah	Rata-rata
A1B1	0.416	0.777	0.167	1.360	0.453
A1B2	0.269	0.293	0.350	0.912	0.304
A1B3	0.230	0.248	0.335	0.813	0.271
A2B1	0.188	0.195	0.222	0.605	0.202
A2B2	0.266	0.189	0.216	0.671	0.224
A2B3	0.145	0.145	0.159	0.448	0.149
A3B1	0.140	0.142	0.226	0.508	0.169
A3B2	0.066	0.089	0.094	0.248	0.083
A3B3	0.020	0.032	0.056	0.109	0.036
Jumlah	1.740	2.110	1.824	5.674	1.891
Rata-rata	0.193	0.234	0.203	0.630	0.210

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	1.360	0.912	0.813	3.086	0.343
A2	0.605	0.671	0.448	1.724	0.192
A3	0.508	0.248	0.109	0.865	0.096
Jumlah	2.473	1.831	1.370	5.674	0.630
Rata-rata	0.275	0.203	0.152	1.891	0.210

Lampiran 7. Hasil Pengamatan Gula Reduksi Medium Sisa Nata de Molases

Perlakuan (1)	(2)	(3)	Jum	ılah 1	Rata-rata
A1B1	1.845	1.975	2.105	5.925	1.975
A1B2	1.227	1.317	1.428	3.972	1.324
A1B3	1.063	1.137	1.170	3.370	1.123
A2B1	1.331	2.014	2.036	5.381	1.794
A2B2	1.995	1.534	1.645	5.173	1.724
A2B3	1.441	1.500	1.963	4.904	1.635
A3B1	2.817	3.064	3.221	9.102	3.034
A3B2	3.029	3.210	2.789	9.028	3.009
A3B3	3.287	3.046	2.547	8.880	2.960
Jumlah	18.035	18.796	18.905	55.736	18.579
Rata-rata	2.004	2.088	2.101	6.193	2.064

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	5.925	3.972	3.370	13.267	1.474
A2	5.381	5.173	4.904	15.458	1.718
A3	9.102	9.028	8.880	27.011	3.001
Jumlah	20.408	18.174	17.154	55.736	6.193
Rata-rata	2.268	2.019	1.906	18.579	2.064

Lampiran 8. Hasil Pengamatan pH Medium Sisa Nata de Molases

Perlakuan	(1)	(2)	(3)	Jumlah	Rata-rata
A1B1	4.460	3.930	3.800	12.190	4.063
A1B2	3.770	3.660	3.690	11.120	3.707
A1B3	3.620	3.550	3.640	10.810	3.603
A2B1	3.550	3.630	3.520	10.700	3.567
A2B2	3.780	3.580	3.480	10.840	3.613
A2B3	3.450	3.500	3.450	10.400	3.467
A3B1	3.490	3.350	3.340	10.180	3.393
A3B2	3.350	3.360	3.310	10.020	3.340
A3B3	3.230	3.260	3.310	9.800	3.267
Jumlah	32.700	31.820	31.540	96.060	32.020
Rata-rata	3.633	3.536	3.504	10.673	3.558

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	12.190	11.120	10.810	34.120	3.791
A2	10.700	10.840	10.400	31.940	3.549
A3	10.180	10.020	9.800	30.000	3.333
Jumlah	33.070	31.980	31.010	96.060	10.673
Rata-rata	3.674	3.553	3.446	32.020	3.558

Lampiran 9. Hasil Pengamatan Volume Sisa Nata de Molases

Perlakuan	(1)	(2)	(3)	Jumlah	Rata-rata
A1B1	135.000	132.000	126.000	393.000	131.000
A1B2	160.000	123.000	84.000	367.000	122.333
A1B3	111.000	123.000	119.000	353.000	117.667
A2B1	111.000	94.000	94.000	299.000	99.667
A2B2	103.000	90.000	93.000	286.000	95.333
A2B3	95.000	84.000	90.000	269.000	89.667
A3B1	93.000	90.000	87.000	270.000	90.000
A3B2	79.000	84.000	69.000	232.000	77.333
A3B3	31.000	32.000	42.000	105.000	35.000
Jumlah	918.000	852.000	804.000	2574.000	858.000
Rata-rata	102.000	94.667	89.333	286.000	95.333

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	393.000	367.000	353.000	1113.000	123.667
A2	299.000	286.000	269.000	854.000	94.889
A3	270.000	232.000	105.000	607.000	67.444
Jumlah	962.000	885.000	727.000	2574.000	286,000
Rata-rata	106.889	98.333	80.778	858.000	95.333

Lampiran 10. Contoh Perhitungan.

1. Warna Nata (%)

Pelakuan A1B1

L (warna hitam hingga putih) = 45,435 (%) a (warna hijau hingga merah) = 0,2667 (%) b (Warna bru hingga kuning) = 13,2 (%)

 $W = 100 - [(100 - L)^{2} + (a^{2} + b^{2})]^{0.5\%}$ $W = 100 - [(100 - 45,435)^{2} + (0,2667^{2} + 13,2^{2})]^{0.5\%}$ W = 100 - 56,1398% W = 43,8602%

2. Kadar Air Nata (%)

Perlakuan A1B1

a (berat cawan kosong) = 12,2156 gram b (berat bahan + cawan) = 13,8694 gram c (berat konstan) = 12,2378 gram

Kadar Air (%) = $\begin{array}{c} b - c \\ ---- x & 100\% \\ b - a \end{array}$

Kadar Air (%) = $\frac{(13,8694 - 12,2378)}{(13,8694 - 12,2156)} \times 100\%$

Kadar Air (%) = 98,658%

3. Kadar Abu Nata (%)

Perlakuan A1B1

a (berat cawan kosong) = 8,5638 gram b (berat cawan dan bahan) = 10,1963 gram c (berat konstan) = 8,5704 gram

Kadar Abu (%) = $\frac{c - a}{b - a} \times 100\%$

Kadar Abu (%) =
$$\frac{(8,5704 - 8,5636)}{(10,1963 - 8,5636)} \times 100\%$$

Kadar Abu (%) =
$$0,41649\%$$

4. Kadar Gula Reduksi Medium Sisa Fermentasi (%)

Perlakuan A1B1

Persamaan kurva standart: Y = 0,003616 + 0,73945 X

Absorban sampel (A) = 0,1546

Berat bahan = 1,1024 gram

Faktor pengenceran = 100/1

X = 0,2034 mg/ml

% Gula Reduksi =
$$\frac{X \text{ mg/ml x FP}}{\text{berat sampel (g) x 1000}} \times 100\%$$

% Gula Reduksi = 1,8448 %

Lampiran 11. Contoh Perhitungan Uji Statistik Nata de Molases.

Uji Stastitik terhadap berat nata de molases

Jumlah Kuadrat = 392004,863

Faktor Koreksi = $3147,9597^2/(3x3x3) = 379116,50529$

JK Blok = $[(1015,3278^2 ++ 1075,0006^2)/(3x3)] - 379116,50529$

= 69,12579

JK Perlakuan = $[(281,1253^2 + + 488,9451^2)/3] - 379116,50519$

= 11763,64703

JK Faktor A = $(886,1658^2 + + 1157,1517^2)/(3x3) - 379116,50529$

= 7583,52319

JK Faktor B = $(888,8353^2 + + 1197,4234^2)/(3x3) - 379116,50529$

= 2618,17541

JK Faktor AxB = 11763,64703 - 7583,52319 - 2618,17541

= 561,94844

JK Total = 392004,863 - 379116,50529

= 12888,35794

Kesalahan = 12888,35794-7583,52319-2618,17541-1561,94844-69,12579

= 1055,58511

Perhitungan uji kecenderungan pengaruh perlakuan terhadap berat nata de molases dengan metode Tukey

Faktor	B1	B2	B3	Jumlah	Rata-rata
A1	281.12530	303.49300	301.54750	886.16580	98.46287
A2	314.19660	360.18900	383.51480	1057.90040	117.54449
A3	374.69320	381.69320	498.94510	1255.33150	139.48128
Jumlah	970.01510	1045.37520	1184.00740	3199.39770	355.48863
Rata-rata	107.77946	116.15280	131.55638	1066.46590	118.49621

r = 9
Q (5%) = 5,03
Sy =
$$\frac{KTG^{1/2}}{r}$$

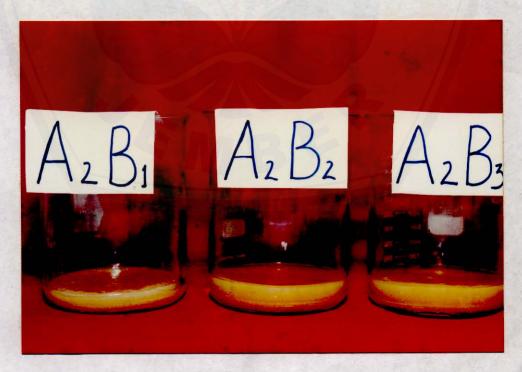
Sy = $\frac{(65,97407)^{1/2}}{9}$
Sy = 0,903
BNJ = W = Sy x Q
= 5,03 x 0,903
= 4,542

Faktor A

Perlakuan	Rata-rata	Rata-rata + BNJ	Notasi
A1	98,4268	102,9688	a
A2	117,5444	122,0864	b
A3	139,4812	144,0232	С

Faktor B

Perlakuan	Rata-rata	Rata-rata + BNJ	Notasi
A1	107,7794	112,3214	a
A2	116,1528	120,6948	a
A3	131,5563	136,0983	b


Faktor AxB

Perlakuan	Rata-rata	Rata-rata + BNJ	Notasi
AIB1	93,7084	98,2504	a
A1B2	101,1643	105,7063	а
A1B3	100,5158	105,0578	a
A2B1	104,7322	109,2742	a
A2B2	120,0630	124,6050	b
A2B3	127,8383	132,3803	b
A3B1	124,8977	129,4397	ь
A3B2	127,2310	131,7730	b
A3B3	166,3150	170,8570	С

Lampiran 12. Gambar nata de molases

Digital Repository Universitas Jember

