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Abstract: This paper proposes hybridization of fuzzy Q-learning and behavior-based control for autonomous mobile 
robot navigation problem in cluttered environment with unknown target position. The fuzzy Q-learning is incorporated 
in behavior-based control structure and it is considered as generation of primitive behavior like obstacle avoidance and
target searching. The simulation result demonstrates that the hybridization enables robot to be able to learn the right 
policy, to avoid obstacle and to find the target. Real implementation of this hybridization shows that the robot was able
to learn the right policy i.e. to avoid obstacle. 
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1. INTRODUCTION 
 
A cluttered environment is challenging environment 

for autonomous mobile robot to operate safely in that 
environment. The learning algorithm is needed for the 
robot to overcome complicated task in cluttered 
environment with unknown target position. For this 
purpose, reinforcement learning methods have been 
receiving increased attention for use in autonomous robot 
systems.  

To implement the reinforcement learning, it is used 
Q-learning. However, since Q-learning deals with 
discrete actions and states, it is not possible to implement 
it directly in learning of autonomous robot because the 
robot deals with continuous action and state. To 
overcome this problem, variations of the Q-learning 
algorithm have been developed. Different authors have 
proposed to use the generalization of statistical method 
(hamming distance, statistical clustering) [1] and to use 
generalization ability of feed-forward Neural Networks 
to store the Q-values [1-3]. The others use fuzzy logic to 
approximate the Q-values [4,5].  

This paper uses Fuzzy Q-learning (FQL) proposed by 
Glorennec to approximate Q-values. FQL has been used 
in various field of research [6,7,8]. However, most of 
them were implemented in single task and simple 
problem.  

For cluttered environment with unknown target 
position, it is necessary to design a control schema that 
involves more than one FQL to conduct the complicated 
tasks simultaneously. This paper focuses on 
hybridization between FQLs and behavior-based control 

for autonomous mobile robot navigation. The rest of the 
paper is organized as follows. Section 2 describes theory 
and design of control schema. Simulation and real 
implementation result is described in section 3 and 
conclusion is described in section 4. 

 
2. THEORY 

 
2.1 Fuzzy Q-learning (FQL) 

Fuzzy Q-learning is extension of Q-learning method 
so that it can hold continuous states and actions. 
Q-learning [9] is a reinforcement learning method. In this 
method, the learner builds incrementally a Q-value 
function which attempts to estimate the discounted future 
rewards for taking action from given states. Q-value 
function can be described by following equation : 

  
 

    (1) 
 

where r is the scalar reinforcement signal,  α is the 
learning rate, γ is a discount factor. 

In order to deal with large continuous state, fuzzy 
inference system can be used to approximate Q-values. 
This approach is based on the fact that the fuzzy 
inference system is universal approximators and good 
candidates to store Q-values [5]. 

Each fuzzy rule R is a local representation over a 
region defined in the input space and it memorizes the 
parameter vector q associated with each of these possible 
discrete actions. These Q-values are then used to select 
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actions so that it can maximize the discounted sum of 
reward obtained while achieving the task. The rules have 
the form [4]: 

If  x is Si then action = a[i,1] with q[i,1]  
or a[i,2] with q[i,2] 
or a[i,3] with q[i,3] 
... 
or a[i,J] with q[i,J] 

 
where the state Si are fuzzy labels and x is input vector 
(x1,…., xn), a[i,J] is possible action and q[i,J] is q-values 
that is corresponding  to action a[i,J], and J is number of 
possible action. The learner robot has to find the best 
conclution for each rule i.e. the action with the best 
value. 

In order to explore the set of possible actions and 
acquire expereince through reinforcement signals, the 
simple  ε-greedy method is used for action selection: a 
greedy action is chosen with probability 1-ε, and a 
random action is chosen with probability ε .  

Good explanation about fuzzy Q-learning was 
presented by [5] and let i° be selected action in rule i 
using action selection mechanims that was mentioned 
before and i* such as [ , *] max [ , ]q i i q i jj J= ≤ . The 

infered action a is: 

( ) x ( , )1( )
( )1

N x a i ii ia x
N xi i

α

α

°==
=

   (2) 

 
The actual Q-value of the infered action, a, is : 
 

( ) x ( , )1( , )
( )1

N x q i iiiQ x a N xii

α

α
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  (3) 

 
and the value of the states x : 
 

( ) x ( , *)1( , )
( )1

N x q i iiiV x a N xii

α

α
==

=
  (4) 

 
If x is a state, a is the action applied to the system, y 

the new state and r is the reinforcement signal, then 
Q(x,a) can be updated using equtions (1) and (3). The 
difference between the old and the new Q(x,a) can be 
thought of as an error signal, ( ) ( , )Q r V y Q x aγΔ = + − , 
than can be used to update the action q-values. By 
ordinary gradient descent , we obtain : 

( )
[ , ]  x 

( )1

xiq i i Q N xii

α
ε

α
Δ = Δ

=
  (5) 

where  ε is a learning rate. 
To speed up learning, it is needed to combine 

Q-learning and Temporal Difference (TD(λ)) method[4] 
and is yielded the eligibility e[i,j] of an action y : 

 

( )
[ , ]       if 

[ , ] ( )1
[ , ]                           elsewhere

xie i j j iNe i j xii
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α
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α
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Therefore, the updating  equation (5) become : 
 

[ , ]  x  x [ , ]q i i Q e i jεΔ = Δ    (7) 
 
2.2 Behavior Based Control 

 
In Behavior-Based Control, the control of the robot is 

decomposed into several tasks using task achieving 
behaviors approach. Each task is called by behavior. The 
structure of behavior-based control is showed by fig. 1. 

 

 
Fig. 1. Behavior-based Control Schema 

 
Based on sensory information, each behavior yields 

direct responses to control robot according to certain 
purposes like obstacle avoidance or wall following. 
Behaviors with different goal can yield conflict 
uncompleted. Therefore, it is required effective 
coordination mechanism from the behaviors so that form 
logic and rational behaviors. This paper uses a hybrid 
coordinator as proposed by Carreras [11].  

In Carreras’s hybrid coordinator, the coordination 
system is composed of set of ni nodes. Each node has two 
inputs and one output. The inputs are dominant input and 
non-dominant input. The response connected to 
dominant input has higher priority than the response that 
is connected to non-dominant input. The node output 
consists of expected control action vi and activation level 
ai. The formula of hybrid coordinator is showed by fig. 2.  

 

 
Fig 2. Mathematic formulation of node output [11] 
 
The low-level controller is constructed from 

conventional control i.e. PID controller. The input is 
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derived from output of high-level controller. This 
controller has responsibility to control speed motor so 
that the actual speed motor is same or almost same as the 
velocity setting from high-level controller. 

 
3. CONTROLLER DESIGN 

 
3.1 Robot Design and Environment 

Fig. 3 describes the robot used in the simulation. The 
robot has three range finder sensors, two light sensors 
and two touch sensors (bumpers). It is designed using 
Webots. 
  
 
 
 
 

 
Fig. 3 Robot for simulation  

 
Fig. 4 shows the robot for real implementation from 

Bioloid. The robot has four wheels. Although has four 
wheels, it use differential mechanism for controlling the 
wheels. It is also equipped with three infra red distance 
sensors for detecting obstacles and three light sensors for 
searching light sources as the target.  

 
 
 
 
 
 

Fig. 4 Mobile Robot for real implementation 
 
Environment model which is used in simulation is 

showed by fig. 5. To test the control schema, cluttered 
environment is created as described in it. There are many 
objects with various shape and position. The position of 
the target is hided. The area width of the environment is 2 
m x 2 m. For real implementation, the environment is not 
determined exactly. 

 

 
Fig.5 Model Environment for robot simulation 

 
3.2 FQL and BBC for robot control 

This paper presents collaboration between Fuzzy 
Q-Learning and behavior-based control. For complex 
environment, it is necessary to incorporate FQL in 
behavior-based schema. Therefore, this paper presents 

behavior based schema that uses hybrid coordination 
node [11] to coordinate some behaviors iether from FQl 
generation or from behavior designed in design step. 
Presented schema is adapted from [11] and described in 
figure 6. 
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Fig. 6 Fuzzy Q-learning in Behavior based Control 

 
In fig. 6, high-level controller consists of four 

behaviors and one HHCN. The four behaviors are stop, 
obstacle avoidance-FQL, searching target-FQL, and 
wandering. Stop behavior has highest priority and 
wandering behavior has lowest priority. Each behavior is 
developed separately and there is no relation between 
behaviors.  The output of high-level controller is speed 
setting to low level controller and robot heading. 

The wandering behavior has task to explore the robot 
environment to detect the existence of target. The stop 
Behavior will be fully active when the any of light sensor 
value more than 1000.  

The obstacle avoidance-FQL behavior is one of 
behavior generated by Fuzzy Q-learning. This behavior 
has task to avoid every object which is encountered and 
detected by the ranging finding sensors. The input is 
distance data between robot and the object from three IR 
range finder sensors. Output of the range finder sensors is 
integer value from 0 to 1024.  

Reinforcement signal r penalizes the robot whenever 
it collides with or approaches an obstacle. If the robot 
collides or the bumper is active or the distance more than 
1000, it is penalized by a fixed value, i.e. -1. if the 
distance between the robot and obstacles is more than a 
certain threshold, dk = 300, the penalty value is 0. 
Otherwise, the robot is rewarded by 1. The component of 
the reinforcement that teaches the robot keep away from 
obstacles is:  

 
1            ,  1000

0              

1              

s

s k

if collision d

r if d d

otherwise

− >

= >   (8) 

 
where ds is the shortest distance provided by any of IR 
sensor while performing the action. The value of 
activation parameter, is proportional to the distance 
between the sensors and the obstacle. 

IR distance 
sensor left 

IR distance 
sensor right 

IR distance 
sensor center 
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The searching target behavior has task to find and go 
to target. The goal is to follow a moving light source, 
which is displaced manually. The two light sensors are 
used to measure the ambient light on different sides of 
the robot. The sensors value is from 0 to 1024..  The 
action set consists of five actions: {turn-right, little 
turn-right, move-forward, little turn-left, turn-left}. The 
robot is rewarded when it is faced toward the light 
source, and receives punishment in the other cases. 

1                                   300

0                                     800

1                                    

s

s

if d

r if d

otherwise

− <

= <   (9) 

where ds is the largest value provided by any of light 
sensor while performing the action. 

For real implementation, this paper uses control 
schema described by fig.7. The input of obstacle 
avoidance-FQL behavior is distance data between robot 
and the object from three IR range finder sensors. Output 
of the range finder sensors is integer value from 0 to 255. 
The zero value means that the object is far from the robot. 
On the contrary, the 255 value means that the robot has 
collided the object. The action set consists of five 
actions: {turn-right, little turn-right, move-forward, little 
turn-left, turn-left}. 
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Fig. 7 Control Structure for real implementation 
 

The reinforcement function for real implementation is   
different from simulation one. If the distance of the robot 
from objects more than 252, it is penalized by a fixed 
value, i.e. -1. if the distance between the robot and 
obstacles is more than a certain threshold, dk = 200, the 
penalty value is 0. Otherwise, the robot is rewarded by 1. 
The component of the reinforcement that teaches the 
robot keep away from obstacles is:  

1           252

0              

1              

s

s k

d

r if d d

otherwise

− >

= >    (10) 

where ds is the shortest distance provided by any of IR 
sensor while performing the action.  

Go forward behavior has task to move the robot in 
forward direction. Activation parameter is 1 over time. 
The output is speed setting for the low level controller. 

 
 

4. RESULT 
 
4.1 Simulation Result 

To test performance of the control schema, five trials 
have been conducted. The main goal is to teach the robot 
so that it can find and get the target without any collision 
with the object that was encountered in a cluttered 
environment with unknown target position. The learning 
parameters value used in this paper are: α = 0.0001, γ= 
0.9, and  λ =0.3. 

Fig. 8 shows the simulation result of reward 
accumulation of FQL-obstacle avoidance for five trials. 
For all of trials, robot has succeeded to reach the target. 
However, the time spent to reach the target is different. 
One trial spent more time than the others did. In that trial, 
the robot have collided more obstacles than the others 
have. 

 
Fig 8. Reward accumulation of FQL-obstacle avoidance 
 

The local reward in fig. 9 gives more information 
about the performance of FQL-obstacle avoidance. 
Robot got many positive rewards and few negative 
rewards. 

 
Fig 9. Local reward of FQL-obstacle avoidance 

 
The performance of FQL-target searching can be 

analyzed from figure 10 and 11. The reward 
accumulation tends to go -1. In this condition, robot was 
trying to find target and the target was still outside scope 
of the robots. Therefore, in this step, robot was penalized 
by -1. After exploring the environment, the robot 
succeeds to detect the existence of the target. 
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Fig 10. Reward accumulation of FQL-target searching 

 
The performance of FQL-target searching can be 

analyzed from figure 10 and 11. The reward 
accumulation tends to go -1. In this condition, robot was 
trying to find target and the target was still outside scope 
of the robots. Therefore, in this step, robot was penalized 
by -1. After exploring the environment, the robot 
succeeds to detect the existence of the target. 

 
Figure 11. Local reward of FQL-target searching 

Another simulation conducted to measure the 
performance of the FQL is simulation of learning ability 
of the robot to get the target from different starting point. 
There are three different starting points. Fig.12 shows the 
simulation result. 

 
Fig 12. Robot trajectory for different starting point 

simulation 
 

The trajectory result of fig. 12 gives information that 
robot was able to reach and get the target although it 
started from different point and it was able to avoid 
almost all of obstacles encountered.  

Fig. 13 is test of FQL-target searching. There is only 
one target but the target position was moved to another 
place after the robot got the target. In the first effort, the 
robot must get the first target position. After getting the 
target, the robot must find and go to the target again 
because it was moved to second position. Finally, robot 
could find the third target position after it reaches the 
second target position target. The trajectory result gives 
information that the robot was able to track the target 
wherever target is. 

 
Fig. 13 Robot trajectory for different target position 

simulation 
  
4.2 Real Implementation 

This paper presents real implementation of 
hybridization fuzzy Q-learning and behavior-based 
control and the result is embedded robot with learning 
ability. The main goal of the learning for embedded robot 
is difference from the simulation one. The goal is to teach 
the robot so that it can avoid any object encountered in a 
cluttered environment. The learning parameters value 
used in this paper are α = 0.0001, γ= 0.9, and  λ =0.3. 

Fig. 14 shows the simulation result of reward 
accumulation of FQL-obstacle avoidance for embedded 
robot. For the figure, it is known that the robot needs 
more learning to improve its performance. However, it 
also shows that the embedded robot has succeeded to 
learn the policy. 

 
Fig 14. Reward Accumulation of FQL-Obstacle 

Avoidance for Embedded Robot 
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The local reward in fig. 15 gives more information 
about the performance of FQL-obstacle avoidance. 
Robot got positive rewards and negative rewards. But 
negative rewards are more often than positive rewards. 
Therefore the robot needs more experiment. 

  
Fig 15. Local reward of FQL-obstacle avoidance for 

embedded robot 
 

Figure 16 and 17 shows the experimental result of 
embedded robot in avoiding object, spin left and right 
respectively. This results show that the embedded robot 
can learn the given policy, i.e. to avoid obstacle 
encountered.  
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6. CONCLUSION 
 

This paper presents hybridization of fuzzy Q-learning 
and behavior-based control for autonomous mobile robot 
navigation problem in cluttered environment. Simulation 
results demonstrate that the robot with this schema was 
able to learn the right policy, to avoid obstacle and to find 
the target. Experimental result with bioloid robot showed 
that the robot can learn the policy. However, its 
performance is not so good and needs more experiments.  
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Fig . 16 Learning process of Fuzzy Q-learning for obstacle 

avoidance (spin left)  

     

    
Fig . 17 Learning process of Fuzzy Q-learning for obstacle 

avoidance (spin right) 


