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Abstract

The work accomplished in this dissertation is concerned with the numerical solu�

tion of linear elliptic partial di�erential equations in two dimensions� in particular

modelling di�usion and convection�di�usion� The �nite element method applied

to this type of problem gives rise to a linear system of equations of the form

Ax 
 b� It is well known that direct and classical iterative �or relaxation� meth�

ods can be used to solve such systems of equations� but the e�ciency deteriorates

in the limit of a highly re�ned grid� The multigrid methodologies discussed in this

dissertation evolved from attempts to correct the limitations of the conventional

solution methods� The aim of the project is to investigate the performance of

multigrid methods for di�usion problems� and to explore the potential of multi�

grid in cases where convection dominates�
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Chapter �

Introduction

In this project we consider the numerical solution of linear elliptic partial di�eren�

tial equations in two dimensions� in particular modelling di�usion and convection�

di�usion� We will use the �nite element discretisation method� see Johnson ����

for details� which generates a system of linear equations of the formAx 
 b� where

A is a sparse� positive de�nite matrix �and is symmetric in the di�usion case�� It

is well known that such systems of equations can be solved e�ciently using direct

and iterative �or relaxation� methods� In the di�usion case the preconditioned

conjugate gradient method is another possibility�

Direct methods� of which Gaussian elimination is the prototype� determine a

solution exactly �up to machine precision and assuming a perfectly conditioned

matrix� in a �nite number of arithmetic steps� They are often based on the

fast Fourier transform or the method of cyclic reduction� When applied to PDE

problems discretised on an N �N grid� these methods require O�N�logN� arith�

metic operations� Therefore� since they approach the minimum operation count

of O�N�� operations� these methods are nearly optimal� However� they are also

�
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rather specialised and can be applied primarily to a system which arises from

separable self�adjoint boundary value problems�

Relaxation methods� as represented by the Jacobi and Gauss�Seidel iterations�

begin with an initial guess at solution� They then proceed to improve the cur�

rent approximation by a succession of simple updating steps or iterations� The

sequence of approximations that is generated �ideally� converges to the exact so�

lution of the linear system� Classical relaxation methods are easy to implement

and may be successfully applied to more general linear systems than the direct

methods�

However� these relaxation schemes also su�er from some disabling limitations�

Multigrid methods evolved from attempts to correct these limitations� These

attempts have been largely successful� used in a multigrid setting� relaxation

methods are competitive with the fast direct methods when applied to the model

problems�

The basic multigrid methods also have immediate extensions to boundary

value problems with more general boundary conditions� operators and geometries�

It is safe to state that these methods can be applied to any self�adjoint �symmetric

positive de�nite� problem with no signi�cant modi�cation�

There is actually no simple answer to the question of whether direct or it�

erative methods are ultimately superior� Since it depends upon the structure

of the problem and type of computer being used� We should at least consider

the grid size� the number of iterations taken to converge� the approximate work

units� and also the computer CPU times� to assess whether one method is more

e�ective than the others� These factors are also to be an indicator in determining
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the e�ciency of those methods�

The basic multigrid methods are certainly not con�ned to �nite di�erence

formulations� In fact� �nite element discretisation are often more natural� par�

ticularly for analysis of these methods� Herein� we will use the �nite element

method to discretise the model di�usion and convection�di�usion problems� and

then solve the resulting discrete system using multigrid methods� The e�ective�

ness and e�ciency will be compared with classical relaxation methods�

��� The Convection�Di�usion Problem

The general test problem that we consider is the convection�di�usion problem in

a region � � IR�

��r�u�w � ru 
 f in �� �����

where � is viscosity parameter� �r�u represents di�usion �de�ned by ���
�u

�x�
�

��u
�y�

�� and w �ru represents convection �and is given by �x
�u
�x

��y
�u
�y
�� see Morton

���� for details� The conditions on the boundary of � are de�ned by

u 
 
 on ��d �
 �
�u

�n

 
 on ��n�

where �u
�n

is the normal derivative� and � is the region with the boundary ��d �

��n 
 �� and ��d � ��n 
 �� The boundary conditions u 
 
 are known as the

Dirichlet boundary conditions� and �u
�n


 
 as Neumann conditions� We wish to

�nd an approximation to the solution u of this problem� To do this we will use

the Galerkin method with a speci�c choice of basis functions�
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��� The Galerkin Weak Formulation

The weak formulation of equation ����� is to �nd u � V such that

a��u� v� � a��u� v� 
 �f� v� 	v � V�

where

a��u� v� 

Z
�
�ru � rv d�

a��u� v� 

Z
�
�w � ru�v d�

�f� v� 

Z
�
fv d��

and

V 
 f�j� � H����� � 
 
 on ��dg�

where the Sobolev space H���� is the space of functions with square integrable

�rst derivatives�

To �nd an approximation to u� we choose an m dimensional subspace Vm of

V given by

Vm 
 fvjv 

mX
i��

�i�i� �i � IR� �i � V g i 
 �� �� � � � �m�

The Galerkin approximation um from the subspace Vm satis�es

a��um� v� � a��um� v� 
 �f� v� 	v � Vm� �����

Since um � Vm we may write um in the form

um 

mX
i��

�i�i� �i � IR� �����

and thus we need to �nd the �i � IR for i 
 �� �� � � � �m� Since f�jgmj�� are the

basis functions for Vm� we need only to test over �j� j 
 �� �� � � � �m in equation
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������ Therefore� the equation ����� is equivalent to �nding um � Vm such that

a��um� �j� � a��um� �j� 
 �f� �j�� 	j 
 �� �� � � � �m� �����

Substituting ����� into ����� gives

a��
mX
i��

�i�i� �j� � a��
mX
i��

�i�i� �j� 
 �f� �j��

and recalling the weak formulation we have

Z
�
�

�
mX
i��

�ir�i � r�j
�
d� �

Z
�

�
w �

mX
i��

�ir�i
�
�j d� 


Z
�
f�j d��

We denote

A
���
ij 


Z
�
�r�i � r�j d�

A
���
ij 


Z
�
�w � r�i��j d�

bj 

Z
�
f�j d��

where A���� A��� are matrices which arise from the di�usion and convection terms

respectively� and b is called the force vector and

�r�i � r�j 
 �

�
��i
�x

��j
�x

�
��i
�y

��j
�y

�

�w � r�i��j 
 wx
��i
�x

�j � wy
��i
�y

�j �

The resulting linear system is of the form

A� 
 b�

where A is an m�m matrix de�ned by A �
 A��� �A����
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��� The Finite Element Formulation

The basic idea of the �nite element method is to use a piecewise polynomial

approximation� The solution process� referring to Johnson ���� can be divided

into steps as follows

�� Split the region of interest into rectangular �or triangular� elements K�

�� De�ne a local polynomial �for approximating the solution� within each ele�

ment�

�� De�ne a set of nodes in each element�

�� De�ne the local polynomials in terms of the nodal values�

�� Satisfy the essential boundary conditions�

	� Solve the resulting discrete set of algebraic equations�

Since a bilinear function� in x and y is of the form

	�x� y� 
 p� qx� ry � sxy �����

we see that there are four unknown parameters which can be uniquely determined

by values at four nodes �x�� y��� �x�� y��� �x�� y��� �x�� y��� �no more than two in a

straight line�� The bilinear function can then be written in the general form

	�x� y� 
 ���x� y�	� � ���x� y�	� � ���x� y�	� � ���x� y�	��

where the �i�s are the nodal basis function satisfying

�j�xi� yi� 


����
���

� if i 
 j


 if i �
 j� i� j 
 �� � � � �m�
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that is �i�x� y� 
 �p� �qx��ry� �sxy� These functions are obtained by the solution

of �
������������

� x� y� x�y�

� x� y� x�y�

� x� y� x�y�

� x� y� x�y�

	











�

�
������������

�p

�q

�r

�s

	











�



�
������������

ei

	











�

where ei 
 
 except �ei�i 
 �� This system can be solved provided that not more

than two of the nodes lie in a straight line�

Now� given the simplest rectangular element with just four nodes� one at each

corner� we choose the local coordinate �
� �� as shown in �gure ����

(x   ,y   )m m

ψ ψ

ψ ψ

4 3

1 2

(-1,-1) (1,-1)

(1,1)(-1,1)

ξ = 
2

η = 
2

(y - ym )

(x - xm )

 l

k

l

k

Figure ���� Rectangular Element�

Since there are four nodes with one degree of freedom at each node the vari�

ation throughout the element is just the bilinear form given in ���	� below
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	�x� y� 
 �	



�

�
���� 
��� � �� �� � 
��� � �� �� � 
��� � ��

��� 
��� � ���

�
������������

	�

	�

	�

	�

	











�
� ���	�

We have

�

�x



�

k

�

�

and

�

�y



�

l

�

��
�

Now we can obtain the sti�ness matrices A���� A��� and force vector b of the

convection�di�usion system� say for the special case of constant f�x� y� 
 c� The

calculation can be shown by taking an example�

A
���
�� 


Z �

��

Z �

��
�

�
�

k�
���
�


���
�


�
�

l�
���
��

���
��

�
k

�
�


l

�
���

Substituting �� 

�
���� 
��� � �� and doing the integrating process we get

A
���
�� 


�

�
��k�l � l�k��

By repeating the above process for all entries and noting symmetry for the

di�usion matrix we obtain

A��� 

�

	
�

�
������������

��k�l � l�k� k�l � �l�k �k�l� l�k l�k � �k�l

��k�l � l�k� l�k � �k�l �k�l� l�k

symmetric ��k�l � l�k� k�l � �l�k

��k�l � l�k�

	











�
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whilst entries for the convection matrix are obtained by integrating

A
���
ij 


Z �

��

Z �

��

�
wx

�

k

��i
�


�j � wy
�

l

��i
��

�j

�
k

�
�


l

�
���

leading to the matrix

A��� 

�

	

�
������������

�lwx � kwy lwx � �
�
kwy

�
�
lwx �

�
�
kwy ��

�
lwx � kwy

�lwx � �
�
kwy lwx � kwy

�
�
lwx � kwy ��

�
lwx �

�
�
kwy

��
�
lwx � �

�
kwy

�
�
lwx � kwy lwx � kwy �lwx �

�
�
kwy

��
�lwx � kwy

�
�lwx � �

�kwy lwx �
�
�kwy �lwx � kwy

	











�
�

The overall element sti�ness matrix is then obtained by the sum of A���� A��� i�e�

A 
 A��� �A����

The force vector has entries obtained by

bj 

Z �

��

Z �

��
c�j

k

�
�


l

�
���

leading to the vector

b 

klc

�

�
������������

�

�

�

�

	











�
�

Assembling the element contributions yields the overall system of equations�
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Stationary Iterative Methods

��� The Jacobi and Gauss�Seidel Methods

The simplest iterative scheme is the Jacobi iteration� It is de�ned for matrices

that have nonzero diagonal elements� in particular diagonally dominant matrices�

This method can be motivated by rewriting the n� n system Ax 
 b as follows�

x� 
 �b� � a��x� � a��x� � � � �� a�nxn��a��

x� 
 �b� � a��x� � a��x� � � � �� a�nxn��a��

���

xn 
 �bn � an�x� � an�x� � � � �� ann��xn����ann�

In the Jacobi method� we choose an initial vector x��� and then solve� iteratively�

to �nd a new approximation x�i	�� using the algorithm

x
�i	��
� 
 �b� � a��x

�i�
� � a��x

�i�
� � � � �� a�nx

�i�
n ��a��

x
�i	��
� 
 �b� � a��x

�i�
� � a��x

�i�
� � � � �� a�nx

�i�
n ��a��

���

�
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x�i	��n 
 �bn � an�x
�i�
� � an�x

�i�
� � � � �� ann��x

�i�
n����ann�

We notice here that Jacobi iteration is not updating the most recently available

information when computing x
�i	��
k � where k is any entry of x�i	�� after the �rst

one� For an example� if we look at the x�i	��� calculation we observe that x�i�� is

used even though we know x
�i	��
� � If we use this most recent estimate we form

the Gauss�Seidel iteration

x
�i	��
� 
 �b� � a��x

�i�
� � a��x

�i�
� � a��x

�i�
� � � � �� a�nx

�i�
n ��a��

x
�i	��
� 
 �b� � a��x

�i	��
� � a��x

�i�
� � a��x

�i�
� � � � �� a�nx

�i�
n ��a��

x
�i	��
� 
 �b� � a��x

�i	��
� � a��x

�i	��
� � a��x

�i�
� � � � �� a�nx

�i�
n ��a��

���

x�i	��n 
 �bn � an�x
�i	��
� � an�x

�i	��
� � � � �� ann��x

�i	��
n�� ��ann�

We use x�i	��� to calculate x�i	��� � x
�i	��
� to calculate x�i	��� and hence use x�i	��n�� to

calculate x�i	��n � The method which updates the most recently available calcula�

tion tends to converge faster than the method which does not �see later��

We now let L�D� and U be matrices de�ned as

L 
 �

�
����������������


 
 � � � � � � 


a�� 

� � �

���

a��
� � �

� � �
� � �

���

���
� � � 
 


an� � � � � � � ann�� 


	















�
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D 
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so that A 
 D � L� U � The Jacobi method is of the form

x�i	�� 
 Hx�i� � cJ � �����

with H 
 D���L � U� and cJ 
 D��b� The Gauss�Seidel step has the di�erent

form of

x�i	�� 
 Gx�i� � cG� �����

with G 
 �D � L���U and cG 
 �D � L���b�

Both procedures are typical members of a large family of iterations that have

the form

Qx�i	�� 
 V x�i� � b� �����

Whether or not ����� converges to x 
 A��b depends upon the eigenvalues of

Q��V � In particular� if the spectral radius of an n�by�n matrix Z is de�ned by

��Z� 
 maxfj
j� 
 � 
�Z�g
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then it is the size of ��Q��V � that determines the convergence of ������ We now

introduce the de�nition of a non�negative matrix�

De�nition ����� Let A 
 �aij� and B 
 �bij� be two n � n matrices� Then�

A 
 B�� B� if aij 
 bij�� bij� for all � � i� j � n� If O is the null matrix

and A 
 O�� O�� we say that A is a non�negative �positive� matrix� Finally�

if B 
 �bij� is an arbitrary real or complex n � n matrix� then jBj denotes� the

matrix with entries jbijj�

A mutually exclusive relation between the Jacobi matrixH and the Gauss�Seidel

matrix G is given in the following theorem developed by Varga ��� pp��
��

Theorem ����� Let the Jacobi matrix H 
 E � F �where E 
 D��L and F 


D��U� be a non�negative n � n matrix with zero diagonal entries� and G 


�I�E���F � Then� one and only one of the following mutually exclusive relations

is valid�

�� ��H� 
 ��G� 
 
�

�� 
 � ��G� � ��H� � ��

	� � 
 ��H� 
 ��G��


� � � ��H� � ��G��

Thus� the Jacobi and the Gauss�Seidel iterations are either both convergent� or

both divergent�

�This is not to be confused with the determinant of a square matrix B
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De�nition ����� An n� n real or complex matrix A 
 �aij� is diagonally dom�

inant if

jaiij 

nX
j��
j ��i

jaijj� for all � � i � n� �����

and is strictly diagonally dominant if strict inequality in ���
� is valid for all

� � i � n� Similarly� A is irreducibly diagonally dominant if A is irreducible

�see Varga ��� pp��
����� for de�nition of the reducible matrix� and diagonally

dominant� with strict inequality in ���
� for at least one i�

Theorem ����� Suppose b � IRn and A 
 Q�V � IRn�n is nonsingular� If Q is

non singular and the spectral radius of Q��V satis�es the inequality ��Q��V � � ��

then the iterates x�i� de�ned by Qx�i	�� 
 V x�i�� b converge to x 
 A��b for any

starting vector x����

Proof� Let e�i� 
 x�i� � x denote the error in the ith iterate� Since Qx�i	�� 


V x�i� � b it follows that Q�x�i	��� x� 
 V �x�i�� x�� and thus� the error in x�i	��

is given by e�i	�� 
 Q��V e�i� 
 �Q��V ��i�e���� We know that �Q��V ��i� � 


i� ��Q��V � � �� see Golub ��� pp��
��� So x�i� de�ned by Qx�i	�� 
 V x�i� � b

converge to x 
 A��b for any starting vector x����

Another fundamental theorem is concerned with the convergence of the strictly

diagonally dominant matrix�

Theorem ����� Let A 
 �aij� be a strictly or irreducibly diagonally dominant

n � n real or complex matrix� Then� both Jacobi and Gauss�Seidel methods are

convergent to x 
 A��b for any starting vector x����

Proof� If A is a n�n strictly diagonally dominant real or complex matrix� then it

is nonsingular� see Varga ��� pp����� and the diagonal entries of A are necessarily
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nonzero� From ����� the Jacobi matrix H derived from the matrix A is such that

hij 


����
���


 if i 
 j

�aij
aii

if i �
 j�

By De�nition ����� it follows that

nX
j��

jhij j � � for all � � i � n

if A strictly diagonally dominant� or

nX
j��

jhijj � � for all � � i � n

with strict inequality for at least one i if A is irreducibly diagonally dominant�

Recalling De�nition ����� jHj is a non�negative matrix whose entries are jhij j� and

these row sums tell us that ��jHj� � �� Applying Theorem ��� in ���� we have

that for any n� n matrices A and B with O � jBj � A� then ��B� � ��A�� We

can conclude here that ��H� � ��jHj� � �� so that the Jacobi iterative method

is necessarily convergent� For the Gauss�Seidel matrix G we have

G 
 �D � L���U or G 
 �I � E���F

where E and F are respectively strictly lower and upper triangular matrices�

G 
 �I � E���F

jGj 
 j�I � E � E� � E� � � � �� En���F j

� �I � jEj� jEj� � jEj� � � � �� jEjn���jF j


 �I � jEj���jF j�

So that ��G� � �f�I � jEj���jF jg� But as ��jHj� � �� we have from Theorem

����� that �f�I � jEj���jF jg � ��jHj� � �� This implies

��G� � ��
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thus we conclude that the Gauss�Seidel iterative method is also convergent� which

completes the proof�

��� The Damped Jacobi and Symmetric Gauss�

Seidel Methods

There is a simple but important modi�cation to the Jacobi iteration� This gen�

erates an entire family of iterations called a weighted or damped Jacobi method�

The formula is given by

x�i	�� 
 ���� �� � �H�x�i� � �cJ � �����

where � � IR is a weighting factor which may be chosen� Notice that with � 
 �

we have the original Jacobi iteration�

We should note in passing that the weighted Jacobi iteration can also be

written in the form

x�i	�� 
 x�i� � �D��r�i��

This says that the new approximation is obtained from the current one by adding

an appropriate weighting of the residual r�i� 
 b � Ax�i�� In further prediction�

this method tends� with a well chosen �� to converge faster than Jacobi method�

In general� we know that the error e�i� 
 x�i�� x satis�es Ae�i� 
 r�i�� so we have

x�i��x 
 A��r�i�� From this expression� an iteration may be performed by taking

x�i	�� 
 x�i� �Br�i�� where B is some approximation to A��� If B can be chosen

�close� to A��� then the iteration should be e�ective�

The weighted Jacobi method waits until all components of the new approxima�

tion have been computed before using them� This requires �N storage locations
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for the approximation vector� It means that the new approximation can not be

used as soon as it is available� On the contrary� the Gauss�Seidel method incorpo�

rates a simple change� components of the new approximation are used as soon as

they are computed� so that components of the approximation vector x are over�

written as soon as they are updated� Moreover� for the weighted Jacobi method�

the order of updating the components �ascending or descending� is immaterial�

since they are never over�written� However� for the Gauss�Seidel method� the

order is signi�cant�

The Gauss�Seidel method normally generates a nonsymmetric iteration ma�

trix� This can be demonstrated by taking a � � � system as an example�

�
��� a�� a��

a�� a��

	


�
�
��� x�

x�

	


� 


�
��� b�

b�

	


� �

If we perform one iteration of Gauss�Seidel�

a��x
���
� 
 b� � a��x

���
�

a��x
���
� 
 b� � a��x

���
� �

and if x��� is zero� then x
���
� 
 b��a�� and x

���
� 
 b��a�� � a��b��a��a�� so

x��� 


�
���

�
a��




� a��
a��a��

�
a��

	


�
�
��� b�

b�

	


� �

This is equivalent to x��� 
 Kb� The matrix K here is not symmetric except

for the trivial case when a�� is zero� However� we also have a symmetric version

of the Gauss�Seidel method� If we perform one iteration of Gauss�Seidel again�

initialising x��� to zero� this time with a � � � system�

a��x
�

� 
 b� � a��x
���
� � a��x

���
�



CHAPTER �� STATIONARY ITERATIVE METHODS ��

a��x
�

� 
 b� � a��x
�

� � a��x
���
�

a��x
�

� 
 b� � a��x
�

� � a��x
�

��

Therefore

x�� 
 b��a��

x�� 
 �b� � a��b��a����a�� ���	�

x�� 
 �b� � a��b��a�� � a���b� � a��b��a����a����a���

If we then compute x��� using x� as an estimate� via

a��x
���
� 
 b� � a��x

�

� � a��x
�

�

a��x
���
� 
 b� � a��x

�

� � a��x
���
�

a��x
���
� 
 b� � a��x

���
� � a��x

���
� �

this gives our new solution value of x���� If we write x��� 
 Kb� we can show that

K is symmetric and positive de�nite� Rearranging� we obtain

a��x
���
� � a��x

���
� � a��x

���
� 
 b�

a��x
���
� � a��x

���
� 
 b� � a��x

�

�

a��x
���
� 
 b� � a��x

�

� � a��x
�

��

This shows us that what we have performed here is a lower triangular sweep

followed by an upper triangular sweep� This is the same as writing

�D � U�x��� 
 b� Lx�� �����

From the set of equation ���	�� we have

b� 
 a��x
�

�

b� 
 a��x
�

� � a��x
�

�

b� 
 a��x
�

� � a��x
�

� � a��x
�

��
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which can be written as �D�L�x� 
 b� Hence x� 
 �D�L���b� and substituting

for x� in equation ����� gives �D � U�x��� 
 b� L�D � L���b�

Therefore

x��� 
 �D � U����I � L�D � L����b


 �D � U�����D � L� � L��D � L���b


 �D � U���D�D � L���b�

De�ne K 
 �D � U���D�D � L���� To show the symmetry�

KT 
 ��D � L�T ���DT ��D � U�T ����

but �D � L�T 
 �D � U� �A is a symmetric matrix in the di�usion case� which

implies that KT 
 �D � U���D�D � L���� Hence K is symmetric� For positive

de�niteness

xTKx 
 xT �D � U���D�D � L���x�

and if we let y 
 �D � L���x and y �
 
 provided x �
 
 then

yT 
 xT ��D � L�T ���


 xT �D � U����

Therefore

xTKx 
 yTDy � 
�

�Since A is positive de�nite then D is a diagonal matrix with positive de�nite

diagonal elements�� ThusK is positive de�nite� For more details about symmetric

Gauss�Seidel� the reader is referred to Golub ����
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Multigrid Methods

��� The Multigrid Idea

We now introduce the standard multigrid idea for the solution of the algebraic

equations arising from �nite element discretisation of di�erential equations� We

thus look to multigrid algorithms to provide an e�cient iteration for solving a

large� sparse system of equations� The e�ciency of multigrid algorithms arise from

the interaction between the smoothing properties of the relaxation method� such

as Gauss�Seidel iteration� and the idea of coarse grid correction� see McCornick

�����

Using standard local Fourier analysis it can be seen that relaxation methods�

without convergence acceleration parameters� are very e�cient at reducing the

amplitude of high�frequency components of the error� and thus of the algebraic

residual� whilst their ultimately slow convergence is due to the low�frequency

components� typically corresponding to the largest eigenvalues of the iteration

operator� Relaxation methods can thus be viewed as e�cient smoothers�

�
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The principle of coarse grid correction can be seen by considering linear �nite

element equations� Denoting the grid by �h� we let G��h� be the space of all

grid functions de�ned on �h� Then� assuming that the boundary conditions have

been eliminated� the linear equations can be written in the form

Ahxh 
 bh

where xh� bh � G��h�� Ah � G��h�� G��h� and we assume that �Ah��� exists�

Let vh be the current approximation to xh and de�ne the algebraic defect �or

residual� as

rh 
 bh �Ahvh�

Then the exact solution xh is given by

xh 
 vh � sh

where sh is the solution of the defect equation

Ahsh 
 rh� �����

If the high�frequency components of the defect are relatively negligible to the low

frequency components� we can represent equation ����� on a coarser grid� �H �in

practice� we de�ne a sequence consisting of ��h���h� � � �� of the form�

AH�sH 
 rH �����

where dim�G��H�� 
 dim�G��h��� AH � G��H� � G��H� and we assume that

�AH��� exists�

If we solve the equation ����� we can interpolate �sH to the �ner grid giving

an approximation �sh to sh and then take

�vh 
 vh � �sh
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as the new approximation to xh� The assumption here is that the approximation

to the solution on the �ne grid should be smooth enough to allow the equation

to be represented on a coarse grid� This criterion is satis�ed by using a suitable

relaxation method before transferring the defect equation to the coarser grid�

The multigrid method extends this idea to the solution of the coarse grid

equation ����� leading to a series of coarser and coarser grids� Thus the complete

multigrid method combines a relaxation method on each grid with correction on

coarser grids� Neither process alone gives a satisfactory method� it is only when

a suitable combination of the two methods is used that good convergence and

e�ciency properties can be obtained�

The remaining issues are the computation of the residual on �h and it�s trans�

fer to ��h� and the computation of the error estimate on ��h and it�s transfer to

�h� These questions suggest that we need some mechanism for transferring infor�

mation between grids� The step in the coarse grid correction scheme that requires

transferring the error approximation e�h from the coarse grid ��h to the �ne grid

�h is generally called interpolation or prolongation� Secondly� the inter�grid trans�

fer function which involves moving the vectors from a �ne grid to a coarse grid

is generally called restriction operator�

����� Prolongation or Interpolation

The linear interpolation denoted by Ih�h takes coarse grid vectors and �ne grid

vectors according to the rule Ih�hv
�h 
 vh� For one�dimensional problems� they

may be de�ned as
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vh�j 
 v�hj

vh�j	� 

�

�
�v�hj � v�hj	��� where 
 � j � N

�
� ��

At even�numbered �ne grid points� the values of the vector are transferred directly

from ��h to �h� At odd�numbered �ne grid points� the values of the vh are the

average of the adjacent coarse grid values� As for two�dimensional problems� they

may be de�ned in a similar way� If we let Ih�hv
�h 
 vh� then the components of

vh are given by

vh�i��j 
 v�hi�j

vh�i	���j 

�

�
�v�hi�j � v�hi	��j�

vh�i��j	� 

�

�
�v�hi�j � v�hi�j	��

vh�i	���j	� 

�

�
�v�hi�j � v�hi	��j � v�hi�j	� � v�hi	��j	��� 
 � i� j � N

�
� ��

����� Restriction

The restriction operator is denoted by I�hh � The most obvious restriction is injec�

tion de�ned �in one dimension� by I�hh vh 
 v�h� where

v�hj 
 vh�j�

In other words� the coarse grid vector simply takes its value directly from the

corresponding �ne grid point� An alternate restriction operator is called full

weighting and is de�ned �in one dimension� by I�hh vh 
 v�h� where

v�hj 

�

�
�vh�j�� � �vh�j � vh�j	��� � � j � N

�
� �� �����
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In this case� the values of the coarse grid vector are weighted averages of values

at neighbouring �ne grid points�

The full weighting restriction operator is a linear operator from IRN�� to IR
N
�
���

It has a rank of N��� � and null space with dimension N��� One reason for our

choice of full weighting as restriction operator is the important fact that

Ih�h 
 c�I�hh �T � �����

where c 
 �� Using the de�nition ����� we can also formulate the restriction

operator in two dimensions� Letting I�hh vh 
 v�h� we have that

v�hi�j 

�

�	
�vh�i����j�� � vh�i����j	� � vh�i	���j�� � vh�i	���j	� � ��vh�i��j��

�vh�i��j	� � vh�i����j � vh�i	���j� � �vh�i��j�� � � i� j � N

�
� ��

��� The Multigrid Algorithm

����� The Basic Two�Grid Algorithm

A well�de�ned way to transfer vectors between �ne and coarse grids can be rep�

resented in the following coarse grid correction scheme

vh � CG�vh� bh��

So that the two�grid algorithm can be written as

Relax s� times on Ahxh 
 bh on �h with initial guess vh�

Compute r�h 
 I�hh �bh �Ahvh��

Solve A�he�h 
 r�h on ��h�

Correct �ne grid approximation � vh � vh � Ih�he
�h�
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Relax s� times on Ahxh 
 bh on �h with initial guess vh�

The procedure de�ned above is simply the original coarse grid correction idea�

which was proposed earlier� now re�ned by the use of the intergrid transfer oper�

ators� We relax on the �ne grid until it ceases to be worthwhile� In practice s� is

often ���� or �� The residual of the current approximation is computed on �h and

then transferred by a restriction operator to the coarse grid� As it stands� the

procedure calls for the exact solution of the residual equation on ��h� which may

not be possible� However� if the coarse grid error can at least be approximated�

it is then interpolated up to the �ne grid� where it is used to correct the �ne grid

approximation� This is followed by s� additional �ne grid relaxation sweeps�

We can further expand this algorithm to higher grids level� say n levels� This

idea is fundamental to the understanding of multigrid�

����� Multigrid

The multigrid algorithm which is formulated in Briggs ��
� can be expressed as

Relax on Ahxh 
 bh s� times with initial guess vh�

Compute b�h 
 I�hh rh�

Relax A�hx�h 
 b�h s� times with initial guess v�h 
 
�

Compute b�h 
 I�h�hr
�h�

Relax on A�hx�h 
 b�h s� times with initial guess v�h 
 
�

Compute b
h 
 I
h�hr
�h�

���

Solve ALhxLh 
 bLh�

���
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Correct v�h � v�h � I�h
hv

h�

Relax on A�hx�h 
 b�h s� times with initial guess v�h�

Correct v�h � v�h � I�h�hv
�h�

Relax A�hx�h 
 b�h s� times with initial guess v�h�

Correct vh � vh � Ih�hv
�h�

Relax on Ahxh 
 bh s� times with initial guess vh�

Figure ��� illustrates the grid schedule of multigrid method�

o

o

o

o

o

o

o

o

o h

2h

4h

8h

16h

Figure ���� Grids schedule for a V�Cycle with �ve levels�

The algorithm telescopes down to the coarsest grid� which can be a single

interior grid point� and then works its way back to the �nest grid� Figure ���

shows the schedule for the grids in the order in which they are visited� Because of

the pattern of this diagram� this algorithm is called the V�cycle� It is our �rst

true multigrid method� For more details of the algorithm� including a compact

recursive de�nition� the reader is referred to Briggs ��
��
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��� Complexity and Convergence Analysis

����� Complexity

We now analyse a complexity and convergence of multigrid method� These points

are important to address due to the practical issues of the e�ectiveness and e��

ciency of the overall method� The complexity is considered �rst�

Each grid in the multigrid scheme needs two arrays� one to hold the current

approximation on each grid and one to hold the right�hand side vectors on each

grid� see McCormick ����� Since boundary values must also be stored� the coarsest

grid involves three grid points in one dimension �one interior and two boundary

points�� In general� the kth coarsest grid involves �k � � point in one dimension�

Now considering a d�dimensional grid with Nd points where N 
 �n� the �nest

grid �h requires �Nd storage locations� ��h has ��d times as many� ��h has ���d

times as many� etc� �by assumption two arrays must be stored on each level��

Adding these and using the sum of the geometric series as an upper bound give

us

Storage 
 �Ndf� � ��d � ���d � � � �� ��ndg � �Nd

�� ��d
�

In particular� for a one�dimensional problem� the storage requirement is less than

twice that of the �ne grid problem alone� For two or more dimensions� the

requirement drops to less than ��� of the �ne grid problem alone� Thus� the

storage costs of the multigrid algorithm decrease relatively as the dimension of

the problem increases� All the experiments which are going to be presented in

chapter �� are in two dimensions�

The other important thing to measure is the cost in terms of work units �WU��



CHAPTER �� MULTIGRID METHODS ��

Here a work unit is de�ned to be the cost of performing one relaxation sweep on

the �nest grid� Equivalently� it is the cost of expressing the �ne grid operator�

It is customary to neglect the cost of intergrid transfer operations which could

amount to ��� �
� of the cost of the entire cycle� First consider a V�cycle with

one relaxation sweep on each level �s� 
 s� 
 ��� Each level is visited twice and

the grid �sh requires s�d work units� Adding these costs and again using the

geometric series for an upper bound give

MV computation cost 


�f� � ��d � ���d � � � �� ��ndg � �

�� ��d
WU

����� Convergence analysis

We can attempt to give heuristic and qualitative arguments suggesting that stan�

dard multigrid schemes� when applied to well�behaved problems �for example�

symmetric� positive de�nite systems�� not only work� but they work very e��

ciently�

We begin with the heuristic argument that captures the spirit of rigorous

convergence proofs� Let us denote the original continuous problem �for example�

one of our model boundary value problems� Ax 
 b� The associated discrete

problem on the �ne grid �h will be denoted Ahxh 
 bh� As before� we let vh be

an approximation to xh on �h� The global error is de�ned by

Eh
i�j 
 x�xi�j�� xhi�j� � � i� j � N � �

and is related to the truncation error of the discretisation process� In general�

the global error may be bounded in norm in the form

jjEhjj � Khp� K � IR�
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The quantity that we have been calling the error� eh 
 xh � vh� will now

be called the algebraic error to avoid confusion with the global error� The al�

gebraic error measures how well our approximations �generated by relaxation or

multigrid� agree with the exact discrete solution�

The purpose of a typical calculation is to produce an approximation vh which

agrees with the exact solution of the continuous problem� Let us specify a toler�

ance � with a condition such as

jjx� vhjj � �

where x 
 �x�x����� � � � � x�xN���N����T is the vector of exact solution values� This

condition can be satis�ed if we guarantee that

jjEhjj� jjehjj � �

�since jjx� vhjj � jjx� xhjj� jjxh � vhjj 
 jjEhjj� jjehjj � ���

One way to ensure that jjEhjj � jjehjj � � is to require jjEhjj � ��� and

jjehjj � ��� independently� The �rst condition determines the grid spacing on the

�nest grid� It says that we must choose

h � h� 


�
�

�K

���p

The second condition is determined by how quickly our approximations vh con�

verge to xh� If relaxation or multigrid cycles have been performed until condition

jjehjj � ��� is met on grid �h� where h � h�� then we have converged to the level

of truncation� In summary� the global error determines the critical grid spac�

ing h�� The only computational requirement is that we converge to the level of

truncation error on a grid with h � h��
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We now consider the V�cycle scheme applied to a d�dimensional problem with

Nd unknowns and h 
 ��N � We have to assume �and can generally show rigor�

ously� that with �xed cycling parameters s� and s�� the V�cycle scheme has a con�

vergence rate� �� which is independent of h� This V�cycle scheme must reduce the

algebraic error from O��� �the error in arbitrary initial guess� to O�hp� 
 O�N�p�

� the order of the global error�� Therefore� the number of V�cycles required� v�

must satisfy �v 
 O�Np� or v 
 O�logN�� This is comparable to the computa�

tional cost of the best fast direct solvers when applied to the model problems as

mentioned in chapter ��

��� The E�ectiveness of the Relaxation Meth�

ods

The main concern of this project is to show the robustness of multigrid methods

numerically� and also to assess whether one relaxation method is more e�ective

and e�cient than another if it is used within multigrid� In this section we would

like to compare the smoothing potential of the damped Jacobi and the Gauss�

Seidel methods using a local mode analysis� see Chan �����

This local mode analysis �originally devised by Brandt� see ������ is a general

and e�ective tool for analysing and predicting the performance of a smoother�

The approach is based on the fact that relaxation is typically a local process

in which information propagates by a few mesh�sizes per sweep� Therefore� one

can assume the problem to be in an unbounded domain� with constant �frozen�

coe�cients� in which case the algebraic error can be expanded in terms of a
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Fourier series� To do this� let us �rst recall the discrete Fourier theorem�

Theorem ����� Every discrete function u � In � IR� In 
 f�i� j� � 
 � i� j �

ng� can be written as

ui�j 

X
���n

c�	i�j���� 	i�j��� 
 ei�i��	j���� i 

p��� � 
 ���� ����

where

c� 

�

�n� ���
X

�k�l��In

uk�l	k�l�����

and

�n 
 f ��

n� �
�k� l�� �m � k� l � m� pg�

where p 
 ��m 
 �n� ���� for odd n and p 
 
�m 
 n�� � � for even n�

Consider the pure�di�usion of the form��r�u 
 f with homogeneous Dirich�

let condition on a unit square discretised using standard second order di�erence

approximations with uniform grids� The discretised equation can be expressed as

�ui�j 
 �ui	��j � ui���j � ui�j	� � ui�j��� �
k�

�
fi�j� � � i� j � n� � �����

�ui�j 
 �ui�j � ���ui�j � �
k�

�
fi�j � ui	��j � ui���j � ui�j	� � ui�j����� ���	�

The damped Jacobi iteration corresponding to the equation can be expressed as

��ui�j 
 � ui�j � ��� ui�j � �
k�

�
fi�j �  ui	��j �  ui���j �  ui�j	� �  ui�j����� �����

where �ui�j denotes the new value of u while  ui�j denotes the old value of u� The

Gauss�Seidel iteration �with lexigraphical order on nodal points� from left to right

and bottom to top� is presented of the form

��ui�j 
 � ui	��j � �ui���j �  ui�j	� � �ui�j��� �
k�

�
fi�j� �����
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We use the discrete Fourier transform to analyse the damped Jacobi method�

Let the global error of the method be de�ned as ��i�j 
 ui�j��ui�j and  �i�j 
 ui�j� ui�j�

Subtracting the equation ���	� and ����� we obtain

��i�j 
  �i�j � �

�
�� �i�j � � �i	��j �  �i���j �  �i�j	� �  �i�j����� �����

We write

��i�j 

X
���n

�c�	i�j��� and  �i�j 

X
���n

 c�	i�j���� ����
�

Substituting the equation ����
� into ����� we have

X
���n

�c�	i�j��� 

X
���n

�
 c�	i�j���� �

�

�
� c�	i�j���� � c�	i	��j���

� c�	i���j��� �  c�	i�j	���� �  c�	i�j������




� ������

�c�	i�j��� 
  c�

�
	i�j���� �

�

�
�	i�j���� �	i	��j���

�	i���j��� � 	i�j	���� � 	i�j������




� ������

and comparing the coe�cient of each 	i�j���� we obtain that

�c�
 c�


 �� �

�

�
�� �ei�� � e�i�� � ei�� � e�i���



� ������

Applying the expression of the form e�i�k 
 cos��k�� isin��k� into ������ gives


��� 
 � � ���� cos�� � cos��
�

�� ������

where 
��� � �c�

c�

is called the ampli�cation factor of the local mode 	i�j����

The smoothing factor introduced by Brandt is the following quantity

 � 
 supfj
���j� ��� � j�kj � �� k 
 �� �g�

Roughly speaking� the smoothing factor  � is the maximal ampli�cation factor

corresponding to those high frequency local modes that oscillate within a �h

range �and hence can not be resolved by the coarse grid of size �h��
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For damped Jacobi method� it is easy to see that

 � 
 maxfj� � ��j� j�� �j� j�� ����jg�

The optimal � that minimises the smoothing factor is

� 
 ����  � 
 ���

�this value of � is used in the numerical experiments presented in chapter ��� For

� 
 � we have  � 
 �� This means that the undamped Jacobi method for this

model problem� although convergent as an iterative method by itself� should not

be used as smoother�

We next examine the smoothing potential of the Gauss�Seidel iteration� Un�

like the Jacobi method� Gauss�Seidel method depends on the ordering of the

unknown� The most natural ordering is perhaps the lexicographic order� Hence�

we also express the Gauss�Seidel method in terms of the global error de�nition

by subtracting the equation ����� and ������ Thus� the method reads

��i�j 

�

�
� �i	��j � ��i���j �  �i�j	� � ��i�j����

Again using the Fourier transform ����
�� we obtain that

X
���n

�c�	i�j��� 

X
���n

�

�

�
 c�	i	��j��� � �c�	i���j���

� c�	i�j	���� � �c�	i�j�����


� ������

�c�
 c�
	i�j��� 


�

�

�
	i	��j��� �

�c�
 c�
	i���j��� � 	i�j	����

�
�c�
 c�
	i�j�����



� ����	�

�c�
 c�



	i	��j��� � 	i�j	����

�	i�j���� 	i���j���� 	i�j�����
� ������
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Employing the expression 	i�j��� 
 ei�i��	j��� we have

�c�
 c�



ei��i	����	j��� � ei�i��	�j	�����

�ei�i��	j��� � ei��i�����	j��� � ei�i��	�j������
� ������

Finally� reducing the exponential term we obtain the local ampli�cation factor as

follows�


��� 

ei�� � ei��

� � e�i�� � e�i��
� ������

It is elementary to determine that

 � 
 j
����� cos��������j 
 ����

We can see that the smoothing factor of the Gauss�Seidel is less than the damped

Jacobi� this means the Gauss�Seidel is slightly better smoother than the damped

Jacobi method�
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Numerical Results

We are now in a position to test the relaxation and multigrid methods in a

practical application� Numerical results based on the theory discussed in chapters

�!� are presented here�

The discretisation process for some model di�usion and convection�di�usion

problems will be accomplished using some freely available Matlab software for

solving such problems� written by D�J� Silvester �available from http���www�ma�

umist�ac�uk�djs�index�htm�� The relaxation and multigrid methods were also

written as Matlab programs and these are given in appendix A�

We use the V�Cycle algorithm as a representative multigrid method� and

perform one relaxation sweep on each level �s�
s�
��� We will discuss the nu�

merical results separately for di�usion and convection�di�usion� and give some

discussion of the V�Cycle method robustness in each case�

��
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��� Numerical Solution of the Di�usion Prob�

lem

The general test problem in chapter two is ��r�u�w � ru 
 f � If we set w
�

the problem is ��r�u 
 f � and it is then referred to as the di�usion problem�

With the available software we can generate the linear system of equations using

uniform grids of square elements with � 
 �� f 
 
� The solution satis�es the

condition u 
 � on part of the bottom boundary and the right�hand wall� and

u 
 
 on the remainder of the boundary�

Applying theV�Cyclemethod� the solution of our test problem in the square

domain �
 � x � �� 
 � y � �� is presented in �gure ����
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Figure ���� The di�usion problem solution for a �	� � 	�� uniform grid with
tolerance � 
�e���

The software generates the sti�ness matrices and right hand side force vectors

and then assembles into a system of linear equations� We solve this system with

relaxation and V�Cycle methods� As mentioned in chapter one� the relaxation

methods used are the Gauss�Seidel� damped Jacobi� and symmetric Gauss�Seidel
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methods� We also use these relaxation methods as smoothers in the V�Cycle

method�

����� Convergence Rate of Simple Relaxation Methods

The following tables describe the number of iterations to converge� work units

and CPU times �in seconds� required in solving the di�erent sized linear systems

�which are all sparse� symmetric� and positive�de�nite� arising from employing

an INTEL P��
 processor PC�

The numerical results using the Gauss�Seidel� damped Jacobi and symmetric

Gauss�Seidel methods are summarised in tables ���� ��� and ���� respectively� The

methods are applied on grids N
�� �� �	� ��� 	�� with tolerances � 
�e�� and

� 
�e���

Gauss�Seidel
applied to the di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ���
 �� 
�

� ����
�� � �� �� 
�
�
 ���	 �� 
�
�� ��
�

��	 � �	� �� 
���� ���� ��� ����� ����
��� � ��� �� ��

� ���� 	�� ������ �
���
�	� � 	�� �� ����� ���� �
	� ��	���	 ����
�

Table ���� General convergence for Gauss�Seidel method�

These results suggest that the Gauss�Seidel method is similar to symmetric

Gauss�Seidel� and both are better methods than the damped Jacobi method� It

is also clear that the rate of convergence of all three relaxation methods is not

remarkable� in general we need a large number of iterations and work units to
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solve the problem� and also every increment of matrix dimension of the sti�ness

matrix is followed by a rigorous increase in the number of iterations�

damped Jacobi method
applied to the di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� �
 
�

� ���� �� 
�
�	 ��
�
�� � �� �	 
�
	� ���� ��� 
���� ����

��	 � �	� �� 
�	�
 ���� ��� ����� ����
��� � ��� 	� ���
� ���� ���� ����
� �
���
�	� � 	�� �� �	���� ���� ���� ������

 	���
�

Table ���� General convergence for damped Jacobi method when � 
 ����

Symmetric Gauss�Seidel method
applied to the di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ��
� �
 
�

	 ����
�� � �� �
 
�
�� ���
 �� 
�
�� ����

��	 � �	� �� 
���� ��
� ��
 ����� ����
��� � ��� �� ���
� ���� �
	 ������ �����
�	� � 	�� ��� 	
���� ����� ���� ������� �
����

Table ���� General convergence for symmetric Gauss�Seidel method�

These schemes work very well only for the �rst few iterations� see �gure ����

Inevitably� however� the convergence slows and the entire scheme appears to stall�

We have a simple explanation for this phenomenon earlier� i�e� the rapid decrease

in the error during the early iteration is due to the e�cient elimination of the

highly oscillatory modes of that error� Once the oscillatory modes have been

removed� the iteration is much less e�ective in reducing the remaining smooth
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components of the error� All three relaxation schemes above possess this property

of eliminating the oscillatory modes and leaving the smooth modes� �This is called

the smoothing property��

����� Convergence Rate of a Representative Multigrid Met�

hod

We now present the numerical results of V�Cycle method applied to the di�u�

sion problem using Gauss�Seidel� damped Jacobi and symmetric Gauss�Seidel as

smoothers�

As described in the previous chapter we need to de�ne inter�grid transfer

functions of prolongation and restriction to move vectors from a coarse grid to

a �ne grid� and vice�versa� Here� we set the restriction coe�cient �see ������ to

di�erent values� For the V�Cycle method with the Gauss�Seidel and damped

Jacobi method as smoothers we set it at ���� but for the symmetric Gauss�Seidel

at ����� Our experience indicates that the convergence rate is strongly sensitive

to the value of this coe�cient� and the above values are the �optimal� choices�

The numerical results by applying the V�Cycle method with the Gauss�

Seidel� damped Jacobi� and symmetric Gauss�Seidel method� are given in tables

���� ��� and ��	� respectively� The tables display the V�cycle convergence with

one pre�relaxation and post�relaxation sweep done on each level� These show

the type of behavior that we aim for in using a multigrid algorithm� If N is

the number of points in the �nest grid then the work units required to obtain

convergence is not far from 
�N�� Recall from chapter � that the work units for

each grid are based on the number of operations per grid point� As an example�
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using the �	� � 	�� grid� there are ��	� grid�points� hence the work units for a

tolerance of � 
�e�� is �����	
���	� �
 �
�� WU�

V�Cycle method
applied to the di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ���	 � 
�
�� ���	
�� � �� � 
�
�� ��
� �
 
�
�
 ����

��	 � �	� � 
���� ���� �� 
���� ��
�
��� � ��� � 
��	
 ����� �� ��	�� ���
�
�	� � 	�� � ����� �
��
 �� ����� �����


Table ���� General convergence for V�Cycle method with Gauss�Seidel as
smoother�

Table ��	 then gives the best performance of the method �for the case where

the relaxation coe�cient equals ������ The computation keeps the same number

of iterations as the grid size changes i�e� two iterations to achieve the tolerance

� 
�e�� and six iterations to achieve the tolerance � 
�e���

V�Cycle method
applied to the di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

	 ���� �� 
�
�� ����
�� � �� � 
�
�� ���� �� 
���� ��
�

��	 � �	� � 
���� 	��	 �� 
���� ����	
��� � ��� � 
���	 ����� �� ����� �����
�	� � 	�� � ����� ����� �� �
���� ��
���

Table ���� General convergence for V�Cycle method with damped Jacobi as
smoother when � 
 ����
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V�Cycle method
applied to the di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ��
� 	 
�

� ��
�
�� � �� � 
�
�� ���� 	 
�
�� ����

��	 � �	� � 
�
�� ���� 	 
���� 	���
��� � ��� � 
���� ���� 	 ��
�� �����
�	� � 	�� � ����� �
�	� 	 ����� �����

Table ��	� General convergence for V�Cycle method with symmetric Gauss�
Seidel as smoother�

The convergence histories of the relaxation and V�cycle methods at the �ne

grid level �	� � 	�� are plotted in �gures ��� and ����
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Figure ���� The convergence history of V�Cycle method with Gauss�Seidel�
damped Jacobi� and symmetric Gauss�Seidel as smoothers when the tolerance
� 
�e���

These �gures show the number of iterations against the in�nity norm of the

residual error for each solution method� The graph progresses from left to right

in the direction of an increasing number of iterations� It can be observed that the

convergence histories are completely di�erent� The graph of relaxation methods

decreases rapidly for the �rst few iterations and then curves upwards to give

slower and slower convergence as the iteration proceeds� Unlike the relaxation

methods there is not a �de#ection� in the convergence history of the V�Cycle

method and the error reduction is close to linear in this case�

��� Numerical Solution of the Convection�Di�usion

Problem

We apply some of these methods to a convection�di�usion problem� In this case

we set the viscosity parameter of the equation ��r�u � w � ru 
 f to three
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di�erent values � 
 ���
� ���

� ���


� and the vector w to a constant vector

��p����
p
����� The convecting�wind is de�ned within the available software by

setting � 
 ���� and f is set to zero�

Using the available software we can generate the linear system of equations

whose solution satis�es the condition u 
 � on part of the bottom boundary and

the right�hand wall� and u 
 
 on the remainder of the domain� The iteration

methods used to solve this problem are the symmetric Gauss�Seidel iteration� and

the V�Cycle method with the symmetric Gauss�Seidel as smoother�

Graphs of the solutions that result from applying the V�Cycle method to

this problem with viscosity parameters ���
� ���

 and ���


 are presented

in �gures ���� ��� and ��	� respectively� All the solutions are obtained using a

�	� � 	�� uniform grid� and the error tolerance equals � 
�e���
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Figure ���� The solution for the viscosity parameter ���
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�

It can be seen that reducing the viscosity parameter � increases the relative

strength of the wind� and that if � is �small� there is an internal layer generated

by the discontinuity on the in#ow boundary and a boundary layer at the left hand

wall and along the top �which are illustrated in �gures ��� and ��	��
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These layers are di�cult to resolve and are common�place in computational

#uid mechanics� Methods which combine a high accuracy with good stability

properties in cases where convection dominates di�usion are needed� In partic�

ular� the same problem comes up in the vanishing viscosity limit �� 
 
� where

the mathematical models for compressible #ow take the form of a hyperbolic sys�

tem of conservation laws and solutions may present discontinuities �shocks� which

cannot be fully resolved on any mesh of �nite size�

With �small� di�usion � � 
� discontinuities are replaced by layers with rapid

but continuous variations of the #ow variables� and we may then either seek

to resolve the layers by choosing h su�ciently small� or essentially stay in the

vanishing viscosity limit without accurately resolving layers�

The simplest �nite di�erence and standard Galerkin methods fail to resolve

this di�culty� They lack stability and may produce approximate solutions with

spurious oscillations which do not converge to physically correct solutions� and

satisfy only �rst order accurate �also in regions where the exact solution is

smooth� and smear discontinuities �in particular contact discontinuities� over

many mesh points�

A special method which eliminates most of the spurious oscillations in the

Galerkin method and improves the quality of the numerical solution at disconti�

nuities� giving almost monotone discrete shock pro�les is the streamline di�usion

method� see ��� pp������	��� for details� This method gives us the possibility of

improved accuracy with good stability�
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A further feature of this method is the use of space�time �nite elements for

time�dependent problems with the basis functions being continuous in space and

discontinuous in time� which leads to implicit time stepping methods� The dis�

cretisation in the available software also uses a streamline di�usion formulation

in cases with a small viscosity parameter compared to the mesh size�

����� Convergence Rate of Relaxation Methods

Tables ���� ��� and ��� present the numerical results arising from using the sym�

metric Gauss�Seidel method for three di�erent viscosity parameters� It can be

observed that the smaller the viscosity parameter� the more e�ective the solver�

We see that the minimum number of iterations� work unit and time elapsing �for

the 	� � 	� grid� occur with the viscosity parameter ���


� This suggests that

the standard relaxation method is increasingly e�ective as the viscosity parameter

tends to zero�

Symmetric Gauss�Seidel method
applied to the Convection�Di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ��
� � 
�

� ����
�� � �� 	 
�
�� ���� �� 
�
�	 ����

��	 � �	� �� 
���� ���� �� 
���� ����
��� � ��� �
 ��
�� ���� ��� ������ ���

�	� � 	�� ��� ���	�� ���	� ��� ����		� ������

Table ���� Convergence rate of symmetric Gauss�Seidel method applied to the
problem with viscosity parameter ���
�



CHAPTER �� NUMERICAL RESULTS ��

Symmetric Gauss�Seidel method
applied to the Convection�Di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ���
 � 
�

� ����
�� � �� � 
�
�
 ���� � 
�
�� ��	�

��	 � �	� � 
�
�� ��	� �
 
���� ����
��� � ��� �� 
�	�� ���	 �� ����� ����
�	� � 	�� �
 ����� ���
� �� ������ �����

Table ���� Convergence rate of the symmetric Gauss�Seidel method applied to
the problem with viscosity parameter ���

�

Symmetric Gauss�Seidel method
applied to the Convection�Di�usion Problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ���� � 
�

� ����
�� � �� � 
�
�
 ���
 � 
�
�� ��	�

��	 � �	� � 
�
�� ���� �� 
���� ���

��� � ��� � 
���� ��
� �	 
���� ����
�	� � 	�� �� ����	 ���� �� ����
 ����

Table ���� Convergence rate of symmetric Gauss�Seidel method applied to the
problem with viscosity parameter ���


�

However� the convergence history� see �gure ���� again shows that the relax�

ation method works best for the �rst few iterations and then the convergence

rate decreases in the following iterations� The standard relaxation method� fur�

thermore� is not e�ective in the absence of upwinding� In particular� for a small

viscosity parameter the iteration does not converge� Figure ��� describes the

convergence history using a ��	 � �	� uniform grid for a viscosity parameter of

���

�
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Figure ���� The convergence history of symmetric Gauss�Seidel applied in the
convection�di�usion problem without upwinding�

����� Convergence Rate of Multigrid Methods

We now present the numerical results of the V�Cycle method applied to the

convection�di�usion problem with the symmetric Gauss Seidel as smoother� We

set the restriction coe�cient at ��	� for all viscosity parameters ���
� ���

 and

���


� This �optimal� coe�cient was generated by observing the number of

iterations required over the interval �
��� � c � ��� where c is the restriction

coe�cient�
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The tables summarising the result of using the V�Cycle scheme applied

to this problem are presented in ���
� ���� and ����� respectively� These show

that there is a small increase in the iteration counts as the viscosity parameter

decreases� For the tolerance � 
�e�� the maximum number of iterations� work

unit and time elapsing occur when the viscosity parameter is set to ���


�

V�Cycle method
applied to the Convection�Di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ��
� 	 
�

� ��
�
�� � �� � 
�
�� ��
� 	 
�
�� ����

��	 � �	� � 
�
�� ���� 	 
���� 	���
��� � ��� � 
���� 	��� 	 ��
�� �����
�	� � 	�� � ����� ���	� 	 ����� �
���

Table ���
� Convergence rate of V�Cycle method applied to the convection�
di�usion problem with viscosity parameter ���
�

V�Cycle method
applied to the Convection�Di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ���� � 
�
�� ����
�� � �� � 
�
�	 ���� � 
�
	� ����

��	 � �	� � 
�
�� ��	� � 
���	 ����
��� � ��� � 
���� 	��� � ����� �����
�	� � 	�� � 
���� ��	� � ��
	� �����

Table ����� Convergence rate of V�Cycle method applied to the convection�
di�usion problem with viscosity parameter ���

�
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V�Cycle method
applied to the Convection�Di�usion problem

Grids � 
�e�� � 
�e��
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ���� � 
�
�� ���

�� � �� � 
�
�	 ���� �
 
�
�� ����

��	 � �	� � 
���� ���� �� 
���� ����
��� � ��� � 
���� ���� �	 ����� �����
�	� � 	�� � ����� ���	� �� �	��
	 ����	�

Table ����� Convergence rate of V�Cycle method applied to the convection�
di�usion problem with viscosity parameter ���


�

In this case� the multigrid method is less e�cient than the relaxation method�

This method gives improved e�ciency for large values of the viscosity parameter

because the in�nity norm of the residual error decreases abruptly in every V �

cycle� but this does not hold at the small values� The convergence histories at

the �ne grid level �	� � 	�� are illustrated in �gures ��� and ����
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Figure ���� The convergence history of symmetric Gauss�Seidel �� 
�e��� applied
in the convection�di�usion problem�
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Figure ���� The convergence history of V�Cyclemethod with symmetric Gauss�
Seidel as smoother �� 
�e��� applied in the convection�di�usion problem�

In addition� if we set the restriction coe�cient at 
��� for the viscosity pa�

rameter ���


� using multigrid can signi�cantly reduce the number of iterations

at the �nest level �	� � 	��� see table �����

V�Cycle method
applied to the Convection�Di�usion problem

Grids � 
 �e� � � 
 �e� 	
Iteration " M#ops Times Iteration " M#ops Times
count �seconds� count �seconds�

�� � �� � 
�

� ���� � 
�
�� ����
�� � �� � 
�
�	 ��	� � 
�
�	 ��
�

��	 � �	� � 
�
�� ���� �� 
���� ����
��� � ��� � 
���� ���� �� ����� �����
�	� � 	�� � 
���� �
�	� �� ����� �
����

Table ����� Convergence rate of V�Cycle method applied to the convection�
di�usion problem with �optimal� restriction coe�cient�
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��� Conclusions

The relaxation and V�Cycle methods have been implemented to solve di�usion

and convection�di�usion problems� with a few modi�cations involving the restric�

tion coe�cient and it�s dependence on the viscosity parameter� The numerical

results show that theV�Cyclemethod has given large gains in e�ciency in com�

parison with simple relaxation methods� This scheme worked e�ciently for all

grid sizes� but the relaxation schemes worked well only for coarse discretisations�

Inevitably� however� the relaxation convergence slowed and the entire scheme ap�

peared to stall� It could be deduced that the multigrid method succeeded due to

its ability to selectively eliminate the high frequency components of the error�

In particular� the largest gains in e�ciency of the multigrid method were in

solving the di�usion problem discretised using �	� � 	�� grid size� For di�erent

smoothers the minimum and maximum numbers of iterations were respectively 	

and �� iterations� while the analogous relaxation methods required ���� and ����

iterations to reach the same tolerance� However� the performance of multigrid

method steadily decreased in solving the convection�di�usion when the viscosity

parameter tends to zero� With the viscosity set to ���


 the multigrid method

did not dramatically speed up the convergence� The relaxation method� on the

contrary� gave a more e�cient method than the multigrid method�

Finally� it should be noted that without upwinding �the parameter value set

to zero�� neither the standard relaxation or multigrid methods converged to the

given tolerance� The solutions were becoming highly oscillatory in this case�



Appendix A

�����VDRIVERA�M

�V�CYCLE multigrid method driver

�This code calls the function vcyclea�m

t�	clock
flops���

fine
level	input��The finest matrix level � ��


itr 	input��number of levels �usually as above�� ��


if itr � fine
level� error��respecify ���too many levels��� end

w
pre 	input��number of pre�smoothing sweeps � ��


w
post 	input��number of post�smoothing sweeps � ��


load system��load system��load system�


r	fine
level


��� initialisation

zi	zeros�size�eval���g� num�str�r�����


init
error	norm�eval���g� num�str�r����eval���A� num�str�r����zi�inf�


error	init
error


errvec	�init
error�


l	�


fprintf���n itn error ��

fprintf���n����� ���������

��� iteration loop

while error � �e���init
error

fprintf���n ����f ����e��l�error�

�zz�	vcyclea�zi�A��A��A��A��A��A��A��g��g��g��g��g��g��g�����

fine
level�itr�w
pre�w
post�r�


zi	zz


error	norm�eval���g� num�str�r����eval���A� num�str�r����zi�inf�


errvec	�errvec�error�


l	l��


end

Number
of
iteration 	 l

semilogy���l�errvec�

��
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xlabel��Iterations��


ylabel��Log error��


n 	eval���n� num�str�r���


sx	eval���sx� num�str�r���


sy	eval���sy� num�str�r���


figure

plotadx�zz�n�inf�sx�sy�


calculations 	 flops �Count of floating point operations

time 	 etime�clock�t�� � Time elapsing

�����VCYCLEA�M

�The main program of V�CYCLE method�

�This code calls restr�m� prolo�m

function �zz�	vcyclea�zi�A��A��A��A��A��A��A��g��g��g��g��g��g��g�����

fine
level�itr�w
pre�w
post�r�


��� restriction

g
fine	eval���g� num�str�fine
level���


for grd	fine
level����fine
level�itr��

��� Gauss�Seidel Relaxation

A
fine 	 eval���A� num�str�grd���


L	�tril�A
fine����


U	�triu�A
fine���


D	diag�diag�A
fine��


M	D�L


for s	��w
pre

z
fine	 M��U�zi � g
fine�


zi	 z
fine


end

��� store residual and current iterate

eval���g� num�str�grd� � 	 g
fine
���


eval���Z� num�str�grd� � 	 z
fine
���


��� restrict to coarser grid

res
fine 	 g
fine � A
fine�z
fine


r
fine 	 reshape�res
fine�sqrt�length�res
fine������

sqrt�length�res
fine���


�r
coarse�	restr�r
fine�


r
new	reshape�r
coarse�length�eval���A� num�str�grd���������


g
fine 	 r
new


zi	zeros�size�g
fine��
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end

��� exact solve on coarsest grid

g
coarse 	 r
new


A
coarse 	 eval���A� num�str�fine
level�itr�����


u
coarse 	 A
coarse�g
coarse


��� projection and correction

for grd	 fine
level�itr��� fine
level��

u
crsr 	 reshape�u
coarse�sqrt�length�u
coarse������

sqrt�length�u
coarse���


�u
crsr��	prolo�u
crsr�


u
crsr�	reshape�u
crsr��length�eval���A� num�str�grd���������


zi	 eval���Z� num�str�grd����� � u
crsr�


��� Gauss�Seidel relaxation

g
fine	eval���g� num�str�grd�����


A
fine	eval���A� num�str�grd�����


L	�tril�A
fine����


U	�triu�A
fine���


D	diag�diag�A
fine��


M	D�L


for s	��w
post

v
latest 	 M��U�zi � g
fine�


zi	 v
latest


end

u
coarse	v
latest


end

��� final correction

u
crsr�	 u
coarse


u
crsr� 	 reshape�u
crsr��sqrt�length�u
crsr�������

sqrt�length�u
crsr����


�u
crsr��	prolo�u
crsr��


u
crsr�	reshape�u
crsr��length�eval���A� num�str�fine
level�������


zz	 eval���Z� num�str�fine
level��� � u
crsr�


return

�����RESTR�M

�The restriction code using full weighting function

function �r
coarse�	restr�b�r
fine�


S	�� � � �
��� ��� � �
� � � �
���
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��� � ��� �
��� ��� ��� ���
� ��� � ���
���

� � � �
� � ��� ���
� � � ��


T	�������S�


s	length�r
fine�


n	�����s���


k	n


for q	��k

for r	��k

B	r
fine���q�����q�����r�����r���


X	reshape�B�����


Y	T�X


C	reshape�Y�����


r
coarse�q�q���r�r���	C


end

end

m	length�r
coarse�


B	r
coarse����m�������m����


Zer	zeros�m�m�


Zer����m�������m����	B


r
coarse	Zer


�����PROLO�M

�The interpolation �prolongation� code

function �u
crsr��	prolo�u
crsr�


S	�� � � �
��� ��� � �
� � � �
���

��� � ��� �
��� ��� ��� ���
� ��� � ���
���

� � � �
� � ��� ���
� � � ��


n	length�u
crsr�


k	n��


for q	��k

for r	��k

B	u
crsr�q�q���r�r���


X	reshape�B�����


Y	S�X


C	reshape�Y�����


u
crsr����q�����q�����r�����r���	C


end

end
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