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Abstract

The work accomplished in this dissertation is concerned with the numerical solu-
tion of linear elliptic partial differential equations in two dimensions, in particular
modelling diffusion and convection-diffusion. The finite element method applied
to this type of problem gives rise to a linear system of equations of the form
Az = b. It is well known that direct and classical iterative (or relaxation) meth-
ods can be used to solve such systems of equations, but the efficiency deteriorates
in the limit of a highly refined grid. The multigrid methodologies discussed in this
dissertation evolved from attempts to correct the limitations of the conventional
solution methods. The aim of the project is to investigate the performance of
multigrid methods for diffusion problems, and to explore the potential of multi-

grid in cases where convection dominates.
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Chapter 1

Introduction

In this project we consider the numerical solution of linear elliptic partial differen-
tial equations in two dimensions, in particular modelling diffusion and convection-
diffusion. We will use the finite element discretisation method, see Johnson [3],
for details, which generates a system of linear equations of the form Az = b, where
A is a sparse, positive definite matrix (and is symmetric in the diffusion case). It
is well known that such systems of equations can be solved efficiently using direct
and iterative (or relaxation) methods. In the diffusion case the preconditioned
conjugate gradient method is another possibility.

Direct methods, of which Gaussian elimination is the prototype, determine a
solution exactly (up to machine precision and assuming a perfectly conditioned
matrix) in a finite number of arithmetic steps. They are often based on the
fast Fourier transform or the method of cyclic reduction. When applied to PDE
problems discretised on an N x N grid, these methods require O( N*logN) arith-
metic operations. Therefore, since they approach the minimum operation count

of O(N?) operations, these methods are nearly optimal. However, they are also
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rather specialised and can be applied primarily to a system which arises from
separable self-adjoint boundary value problems.

Relaxation methods, as represented by the Jacobi and Gauss-Seidel iterations,
begin with an initial guess at solution. They then proceed to improve the cur-
rent approximation by a succession of simple updating steps or iterations. The
sequence of approximations that is generated (ideally) converges to the exact so-
lution of the linear system. Classical relaxation methods are easy to implement
and may be successfully applied to more general linear systems than the direct
methods.

However, these relaxation schemes also suffer from some disabling limitations.
Multigrid methods evolved from attempts to correct these limitations. These
attempts have been largely successful; used in a multigrid setting, relaxation
methods are competitive with the fast direct methods when applied to the model
problems.

The basic multigrid methods also have immediate extensions to boundary
value problems with more general boundary conditions, operators and geometries.
It is safe to state that these methods can be applied to any self-adjoint (symmetric
positive definite) problem with no significant modification.

There is actually no simple answer to the question of whether direct or it-
erative methods are ultimately superior. Since it depends upon the structure
of the problem and type of computer being used. We should at least consider
the grid size, the number of iterations taken to converge, the approximate work
units, and also the computer CPU times, to assess whether one method is more

effective than the others. These factors are also to be an indicator in determining
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the efficiency of those methods.

The basic multigrid methods are certainly not confined to finite difference
formulations. In fact, finite element discretisation are often more natural, par-
ticularly for analysis of these methods. Herein, we will use the finite element
method to discretise the model diffusion and convection-diffusion problems, and
then solve the resulting discrete system using multigrid methods. The effective-

ness and efficiency will be compared with classical relaxation methods.

1.1 The Convection-Diffusion Problem

The general test problem that we consider is the convection-diffusion problem in

a region §) C IR?
—uViu+w-Vu=/f in Q, (1.1)

where 1 is viscosity parameter, —V?u represents diffusion (defined by —(2273 +
3?u

W)) and w - Vu represents convection (and is given by wxg—; —I—wyg—;‘), see Morton

[1], for details. The conditions on the boundary of ) are defined by

u = 0 on 9N #0D

du
— =0 o5,
on on
where g—;‘ is the normal derivative, and € is the region with the boundary 9€); U

00, = 0 and 9Q; NI, = (. The boundary conditions u = 0 are known as the
Dirichlet boundary conditions, and g—;‘ = 0 as Neumann conditions. We wish to
find an approximation to the solution u of this problem. To do this we will use

the Galerkin method with a specific choice of basis functions.
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1.2 The Galerkin Weak Formulation

The weak formulation of equation (1.1) is to find w € V such that

ar(u,v) + az(u,v) = (f,v) Yv eV,

where
a(u,v) = /Q,Nu-wcm
as(u,v) = /Q(W-Vu)vdﬂ
(foo) = | fode,
and

V={dlp € H'(Q),$ = 00n 0},

where the Sobolev space H'(f2) is the space of functions with square integrable
first derivatives.
To find an approximation to u, we choose an m dimensional subspace V,, of
V' given by
Vie={vlv=> ai¢i, ; eR,; €V} i=1,2,...,m.
=1

The Galerkin approximation u,, from the subspace V,, satisfies
a1 (U, v) + az(tpm,v) = (f,v) Yo e V,. (1.2)
Since u,, € V,, we may write u,, in the form
Uy, = i%ﬁbi, a; € IR, (1.3)
i=1

and thus we need to find the a; € IR for i = 1,2,...,m. Since {¢;}7_, are the

basis functions for V,,, we need only to test over ¢;,7 = 1,2,...,m in equation
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(1.2). Therefore, the equation (1.2) is equivalent to finding w,, € V,, such that
a1(Um, @;) + az(um, d;) = (f,¢;), Vi=12,....m. (1.4)
Substituting (1.3) into (1.4) gives
al(é o;di, ¢5) + Gz(é ai¢i, d;) = (f, ),
and recalling the weak formulation we have
| u(éaiw - w) ac+ [ (w - iaw) 6 d = [ ;0.
We denote

AY = [ Ve Va0
(2) _

Aij = /Q(W-ngi)qudﬂ
b= | fo;do.

where A1, A®) are matrices which arise from the diffusion and convection terms

respectively, and b is called the force vector and

O Ob; D 0,
N o - Vo; = ”(aia%Jran%)

e oo
(W-Vi)o; = w, O ®; + wy dy ®;-

The resulting linear system is of the form
Aa = b,

where A is an m x m matrix defined by A := A 1 A@)
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1.3 The Finite Element Formulation

The basic idea of the finite element method is to use a piecewise polynomial
approximation. The solution process, referring to Johnson [3], can be divided

into steps as follows
1. Split the region of interest into rectangular (or triangular) elements K.

2. Define a local polynomial (for approximating the solution) within each ele-

ment.
3. Define a set of nodes in each element.
4. Define the local polynomials in terms of the nodal values.
5. Satisfy the essential boundary conditions.
6. Solve the resulting discrete set of algebraic equations.

Since a bilinear function, in = and y is of the form

bz, y) =p+qr +ry+ sy (1.5)

we see that there are four unknown parameters which can be uniquely determined
by values at four nodes (x1,y1), (22, y2), (23, y3), (4, ¥4), (no more than two in a

straight line). The bilinear function can then be written in the general form

77/)(1', y) = qbl(xv y)¢1 + qbz(l', y)¢2 + ¢3(x7 y)¢3 + ¢4($, y)¢47

where the ¢;’s are the nodal basis function satisfying

1 ifi=j
b;(wi,yi) =
0 ifij, ij=1,...,m,
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that is ¢;(x,y) = p+ ¢ + 7y + Sxy. These functions are obtained by the solution

of i o i i
Lz oy 2 p
1 29 yo X2y q B €;
L s ys aays r
i L xg ya aya 11 5 | i |

where e; = 0 except (¢;); = 1. This system can be solved provided that not more
than two of the nodes lie in a straight line.
Now, given the simplest rectangular element with just four nodes, one at each

corner, we choose the local coordinate (£,7) as shown in figure 1.1.

Y4 Y3
(11 (€8]
{ n= li(y “Ym)
(Xm’y r’r? 2
E= (x-Xm )
(-1-1) (1-1)
WVq k v,

Figure 1.1: Rectangular Element.

Since there are four nodes with one degree of freedom at each node the vari-

ation throughout the element is just the bilinear form given in (1.6) below
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v(z,y) = o
= 0-90-n) Q+O0—n Q+O0+n)
Py
(1—6)(1+n) e (1.6)
s
L 77Z)4 .
We have
0 _20 . 0 _20
g koe ™M 9y T Tog

Now we can obtain the stiffness matrices A, A® and force vector b of the

convection-diffusion system, say for the special case of constant f(x,y) = c. The

calculation can be shown by taking an example;

WU (40608 40606\ k, |
An _/_1/_1’“‘(kz 9c o¢ Yoy oy ) 20530

Substituting ¢; = $(1 — £)(1 — n) and doing the integrating process we get
1
AW = Lutist+ m).

By repeating the above process for all entries and noting symmetry for the

diffusion matrix we obtain

20k/L+ 1K) k/L=20/k —K/l=1/k /k—2k]I
20k/L+ 1K) Uk =2k/l —k/l—1/k
symmetric 20k/L+1/k)  K/1—=2l/k

2kl + 1/k)
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whilst entries for the convection matrix are obtained by integrating

a7 = L (e

leading to the matrix

—lw, — kw, lw, — %kwy
A0 _ l —lw, — %kwy lw, — kw,
6
—%lwl, — %kwy %lwl, — kw,
—%lwx — kw, %lwl, — %kwy

The overall element stiffness matrix is then obtained by the sum of AM), Al

The force vector has entries obtained by

2 Jeb:
T oy

%lww + %kwy
%lww + kw,
lw, + kw,

lw, + %kwy

= [ [ oo

leading to the vector

1
p e !
1
1

Assembling the element contributions yields the overall system of equations.

</5) 95 on,

—%lwx + kw,
—%lwl, + %kwy

—lw, + %kwy

—lw, + kw,

) e,
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Stationary Iterative Methods

2.1 The Jacobi and Gauss-Seidel Methods

The simplest iterative scheme is the Jacobi iteration. 1t is defined for matrices
that have nonzero diagonal elements, in particular diagonally dominant matrices.

This method can be motivated by rewriting the n x n system Az = b as follows:

T = (b1 — a12¥9 — A133 — ... — G1n$n)/a11
Ty = (bz — a21¥1 — aA23¥3 — ... — Clznl'n)/azz
Ty = (bn —Up1ly — Gp2T2 — ... — ann—lxn—l)/ann-

In the Jacobi method, we choose an initial vector z(°) and then solve, iteratively,

to find a new approximation z(t1) using the algorithm

:z;(li+1) = (b1 — a12:1/'(2i) — a13=’1?g) A alnxff))/an
x(2i+1) — (b — aglx(f) _ %ngi) - .= azn:pfj))/azz

10
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(1) (1)

_ (@)
2 = (b, — amay — anary’ — o= Apno12,21) /Ao

We notice here that Jacobi iteration is not updating the most recently available

information when computing :chf—l_l), where k is any entry of z(+Y) after the first
one. For an example, if we look at the :1;(2”1) calculation we observe that x(li) is
used even though we know :1;(1”1). If we use this most recent estimate we form
the Gauss-Seidel iteration

$(12+1) = (bl — CLIQJ}(QZ) — Cllgl’gz) — Cl14$£f) — ... alnng))/au

$(22+1) = (bz — Clzll’(ll-l—l) — Clggl’gz) — a24:1;£f) — ... Clgnl’?(j))/agg

$g+1) = (b3 — a31:1;(12+1) — Cl32$(22+1) — Cl34$£f) — ... Clgnl'?(j))/agg

:1;7(f+1) = (b, — anlx(li-l'l) — ang:zjg—l_l) S am_leﬁll))/am.
We use :1;(1”1) to calculate :1;(2”1), :1;(2”1) to calculate ng“) and hence use :1;7(121_11) to

calculate z{+"), The method which updates the most recently available calcula-

tion tends to converge faster than the method which does not (see later).

We now let L, D, and U be matrices defined as

_ 0 0 0 _
asn 0
L=—1| g5
0 0
| an1 pn-1 0 |
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_au 0o ... ... 0 |
0 ax
D= 33
0
0 0 anp |
_0 a2 an _
0 0
U=- ;
0 ap_1n
0 ... ... 0 0 |

so that A= D — L — U. The Jacobi method is of the form
20D — 0 cy, (2.1)

with H = DL 4+ U) and ¢y = D™'b. The Gauss-Seidel step has the different

form of
20 — G2 cG, (2.2)

with G = (D — L)™*U and ¢ = (D — L)~ 'b.
Both procedures are typical members of a large family of iterations that have

the form
Q:L'(H'l) = Va2 L b, (2.3)

Whether or not (2.3) converges to = A~'b depends upon the eigenvalues of

Q~'V. In particular, if the spectral radius of an n-by-n matrix Z is defined by

p(Z) = max{[A, A € A(2)}
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then it is the size of p(Q~'V) that determines the convergence of (2.3). We now

introduce the definition of a non-negative matrix.

Definition 2.1.1 Let A = (a;;) and B = (b;;) be two n x n matrices. Then,
A > B(> B) if aij > bj(> by) forall 1 < i,5 < n. If O is the null matrix
and A > O(> O), we say that A is a non-negative (positive) matriz. Finally,
if B = (b;) is an arbitrary real or complex n x n matriz, then |B| denotes' the

matriz with entries |b;;|.

A mutually exclusive relation between the Jacobi matrix H and the Gauss-Seidel

matrix G is given in the following theorem developed by Varga [5, pp.70].

Theorem 2.1.1 Let the Jacobi matric H = E + F (where £ = DL and F =
D7*U) be a non-negative n X n matriz with zero diagonal entries, and G =
(I — E)~'F. Then, one and only one of the following mutually exclusive relations

s valid:

4. 1< p(H) < p(G).

Thus, the Jacobi and the Gauss-Seidel iterations are either both convergent, or

both divergent.

IThis is not to be confused with the determinant of a square matrix B
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Definition 2.1.2 An n x n real or complex matriz A = (ai;) is diagonally dom-
inant if
i) > laij|, forall 1<i<n, (2.4)
=1

J#

and is strictly diagonally dominant if strict inequality in (2.4) is valid for all
1 <@ < n. Simiarly, A is irreducibly diagonally dominant if A is irreducible
(see Varga [5, pp.18-19], for definition of the reducible matriz) and diagonally

dominant, with strict inequality in (2.4) for at least one 1.

Theorem 2.1.2 Supposeb € IR" and A = Q—V € IR™™" is nonsingular. If () is
non singular and the spectral radius of Q~'V satisfies the inequality p(Q~'V) < 1,
then the iterates 9 defined by Qz*) = Va4 b converge to x = A='b for any

starting vector 29,

Proof. Let ¢() = ) — 2 denote the error in the ith iterate. Since Qz(*+) =
V@ 4 b it follows that Q2+ —z) = V(2 — ), and thus, the error in 2+
is given by e*) = Q7'Wel) = (Q7'V)De®. We know that (Q~'V)® — 0
iff p(Q~'V) < 1, see Golub [4, pp.508]. So (V) defined by Qz(*1) = Va® 4
converge to & = A~'b for any starting vector z(¥). o

Another fundamental theorem is concerned with the convergence of the strictly

diagonally dominant matrix.

Theorem 2.1.3 Let A = (a;;) be a strictly or irreducibly diagonally dominant
n x n real or complex matriz. Then, both Jacobi and Gauss-Seidel methods are

convergent to x = A~'b for any starting vector 9.

Proof. If Aisanxn strictly diagonally dominant real or complex matrix, then it

is nonsingular, see Varga [5, pp.23], and the diagonal entries of A are necessarily
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nonzero. From (2.1) the Jacobi matrix H derived from the matrix A is such that
0 ifi=7

= if i g

17

hi]‘ =

By Definition 2.1.2 it follows that

Y lhijl <1 forall 1<i<n

i=1

if A strictly diagonally dominant, or
Z|hij| <1 forall 1<i<n
7=1

with strict inequality for at least one 7 if A is irreducibly diagonally dominant.
Recalling Definition 2.1.1 |H| is a non-negative matrix whose entries are |h;;|, and
these row sums tell us that p(|H|) < 1. Applying Theorem 2.8 in [5], we have
that for any n x n matrices A and B with O < |B| < A, then p(B) < p(A). We
can conclude here that p(H) < p(|H|) < 1, so that the Jacobi iterative method

is necessarily convergent. For the Gauss-Seidel matrix G we have

G=(D-L)y'U oo G=(I-E)'F
where F and [ are respectively strictly lower and upper triangular matrices.

G = (I-E)'F
Gl = [+ E+E*+E>+...+ E"HF]

< I+ |E|+EP+[EP+ .+ |E]"F

= (I—|E)THE
So that p(G) < p{(I — |E|)~'|F|}. But as p(|H|) < 1, we have from Theorem

2.1.1 that p{(I — |E|)"Y|F|} < p(|H]|) < 1. This implies

p(G) < 1;
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thus we conclude that the Gauss-Seidel iterative method is also convergent, which

completes the proof. o

2.2 The Damped Jacobi and Symmetric Gauss-

Seidel Methods

There is a simple but important modification to the Jacobi iteration. This gen-
erates an entire family of iterations called a weighted or damped Jacobi method.

The formula is given by
2t — [(1—w)+ wH]x(i) + wey, (2.5)

where w € IR is a weighting factor which may be chosen. Notice that with w =1
we have the original Jacobi iteration.

We should note in passing that the weighted Jacobi iteration can also be
written in the form

) = 20 4 DO,

This says that the new approximation is obtained from the current one by adding
an appropriate weighting of the residual ) = b — Az®. In further prediction,
this method tends, with a well chosen w, to converge faster than Jacobi method.
In general, we know that the error ¢l = 2() — z satisfies Ael) =), so we have
@ —z = A=, From this expression, an iteration may be performed by taking
) = ¢ 4 Br where B is some approximation to A~'. If B can be chosen
“close” to A™L, then the iteration should be effective.

The weighted Jacobi method waits until all components of the new approxima-

tion have been computed before using them. This requires 2N storage locations
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for the approximation vector. It means that the new approximation can not be
used as soon as it is available. On the contrary, the Gauss-Seidel method incorpo-
rates a simple change: components of the new approximation are used as soon as
they are computed, so that components of the approximation vector x are over-
written as soon as they are updated. Moreover, for the weighted Jacobi method,
the order of updating the components (ascending or descending) is immaterial,
since they are never over-written. However, for the Gauss-Seidel method, the
order is significant.

The Gauss-Seidel method normally generates a nonsymmetric iteration ma-

trix. This can be demonstrated by taking a 2 x 2 system as an example,
a1y O12 21 by
Ga1 22 X9 by

If we perform one iteration of Gauss-Seidel,

(1) (0)

allxl = bl — Cl12$2
a22x(21) = bz — Clzll'(ll),
and if 209 is zero, then :1;(11) = by/ay; and :1;(21) = by /a3 — ag1b1/ariasz; so
L 0 b
l’(l) — a1l 1
__a21 1 by

a0z am
This is equivalent to () = Kb. The matrix K here is not symmetric except
for the trivial case when aq; is zero. However, we also have a symmetric version
of the Gauss-Seidel method. If we perform one iteration of Gauss-Seidel again,

initialising #(®) to zero, this time with a 3 x 3 system.

(0)

) (0)
a1y = 01 — d12%y  — 1373
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(0)

agry = by —agnx] — azses
assry = bs —aszix] — asyas,.
Therefore
] = bi/an
x5y = (by — anbi/air)/az (2.6)
flfg*g = [53 - G31b1/G11 - G32(bz - G2151/G11)/a22]/a33-

If we then compute (") using 2* as an estimate, via

(1)

* *
a33X3 = bg — Clgll'l — Cl32$2
() _ x (1)
U22T9 = bz — A21T1 — UA23T3
(1) (1) (1)
a1y = bl — d125° — A13T3 7,

this gives our new solution value of (1. If we write () = Kb, we can show that

K is symmetric and positive definite. Rearranging, we obtain

(1) (1) (1 _
a112] + a2y " + a1323 = b
(1) (1 _ x
U22T9 + a23%3 = bz — a1
1y _ * *
a33X3 = bg — A31T1 — A32T5.

This shows us that what we have performed here is a lower triangular sweep

followed by an upper triangular sweep. This is the same as writing
(D — U)W =b+ Lo~ (2.7)
From the set of equation (2.6), we have
by = apa]
by = anal+ axn

* * *
bs = asia] + asax) + assxs,
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which can be written as (D — L)a* = b. Hence 2* = (D — L)™'b, and substituting
for a* in equation (2.7) gives (D — U)l'(l) =b+ L(D— L)™'

Therefore
¢ = (D-U)" (I 4+ L(D - L)"')

= (D—U)'(D=L)+L)(D— L)%

— (D-U)"'D(D — L)'
Define K = (D — U)™'D(D — L)™', To show the symmetry,
KT = [(D— L)' DT(D — 0)7],

but (D — L)T = (D — U) (A is a symmetric matrix in the diffusion case) which
implies that KT = (D — U)~"*D(D — L)~. Hence K is symmetric. For positive
definiteness

e’ Ke =2 (D—-U)'D(D — L) a,
and if we let y = (D — L)™'z and y # 0 provided z # 0 then
y' = 2[(D- L)
= N(b-U)"
Therefore
2T Kz =y"Dy > 0.

(Since A is positive definite then D is a diagonal matrix with positive definite
diagonal elements). Thus K is positive definite. For more details about symmetric

Gauss-Seidel, the reader is referred to Golub [4].



Chapter 3

Multigrid Methods

3.1 The Multigrid Idea

We now introduce the standard multigrid idea for the solution of the algebraic
equations arising from finite element discretisation of differential equations. We
thus look to multigrid algorithms to provide an efficient iteration for solving a
large, sparse system of equations. The efficiency of multigrid algorithms arise from
the interaction between the smoothing properties of the relaxation method, such
as Gauss-Seidel iteration, and the idea of coarse grid correction, see McCornick
[12].

Using standard local Fourier analysis it can be seen that relaxation methods,
without convergence acceleration parameters, are very efficient at reducing the
amplitude of high-frequency components of the error, and thus of the algebraic
residual, whilst their ultimately slow convergence is due to the low-frequency
components, typically corresponding to the largest eigenvalues of the iteration

operator. Relaxation methods can thus be viewed as efficient smoothers.

20
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The principle of coarse grid correction can be seen by considering linear finite
element equations. Denoting the grid by Q" we let G(Q") be the space of all
grid functions defined on Q*. Then, assuming that the boundary conditions have

been eliminated, the linear equations can be written in the form
Ahl’h _ bh

where " 6" € G(Q"), A" : G(Q") — G(") and we assume that (A")~! exists.
Let v" be the current approximation to 2" and define the algebraic defect (or

residual) as
= bt — APyl
Then the exact solution z” is given by
2 = + sh
where s” is the solution of the defect equation
Alsh =", (3.1)

If the high-frequency components of the defect are relatively negligible to the low
frequency components, we can represent equation (3.1) on a coarser grid, Q7 (in

practice, we define a sequence consisting of 22" Q%" ...} of the form:

AHGH — 1 (3.2)
where dim(G(Q7)) < dim(G(Q")), A : G(QH) — G(Q) and we assume that
(AT~ exists.

If we solve the equation (3.2) we can interpolate 3 to the finer grid giving

an approximation §" to s” and then take

P =t 4 5P
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as the new approximation to 2. The assumption here is that the approximation
to the solution on the fine grid should be smooth enough to allow the equation
to be represented on a coarse grid. This criterion is satisfied by using a suitable
relaxation method before transferring the defect equation to the coarser grid.

The multigrid method extends this idea to the solution of the coarse grid
equation (3.2) leading to a series of coarser and coarser grids. Thus the complete
multigrid method combines a relaxation method on each grid with correction on
coarser grids. Neither process alone gives a satisfactory method; it is only when
a suitable combination of the two methods is used that good convergence and
efficiency properties can be obtained.

The remaining issues are the computation of the residual on Q" and it’s trans-

fer to 02", and the computation of the error estimate on Q2" and it’s transfer to

:
). These questions suggest that we need some mechanism for transferring infor-
mation between grids. The step in the coarse grid correction scheme that requires
transferring the error approximation €2 from the coarse grid Q%" to the fine grid
0" is generally called interpolation or prolongation. Secondly, the inter-grid trans-

fer function which involves moving the vectors from a fine grid to a coarse grid

is generally called restriction operator.

3.1.1 Prolongation or Interpolation

The linear interpolation denoted by I, takes coarse grid vectors and fine grid

vectors according to the rule I},v?" = v*. For one-dimensional problems, they

may be defined as
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US‘] — szh
1 . _N
U§j+1 = 5(1)]% + v?_}f_l), where 0 < 5 < 5 = L.

At even-numbered fine grid points, the values of the vector are transferred directly
from Q%" to Q". At odd-numbered fine grid points, the values of the v" are the
average of the adjacent coarse grid values. As for two-dimensional problems, they
may be defined in a similar way. If we let [ v* = v", then the components of

v" are given by

h o 9h
V2i25 = Vi
h _ l( 2h_|_ 2h )
Vaivr2j T 5\Vii T VgL
h T
Vo241 = 2(%]‘ + ;1)
1 N
h _ oh | 2k 2h 2h .
U9it1,2j41 = Z(Um‘ oy v i), 0<1,5< 5 L.

3.1.2 Restriction

The restriction operator is denoted by [?". The most obvious restriction is injec-

tion defined (in one dimension) by I?"v" = v?" where

2h _ b
Uit = Uy

In other words, the coarse grid vector simply takes its value directly from the
corresponding fine grid point. An alternate restriction operator is called full

weighting and is defined (in one dimension) by I?"v" = v where

1 . N
U?h = Z(U%_l + 27)3]‘ + U§j+1)7 1< J < ? -1 (33)
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In this case, the values of the coarse grid vector are weighted averages of values

at neighbouring fine grid points.

N_q

The full weighting restriction operator is a linear operator from IR ! to IR 2
It has a rank of N/2 — 1 and null space with dimension N/2. One reason for our

choice of full weighting as restriction operator is the important fact that
Ly, = c(1;")", (3.4)

where ¢ = 2. Using the definition (3.3) we can also formulate the restriction

2h

operator in two dimensions. Letting [2"v" = »?"

, we have that

2h h h h h h
Ui, = E[ 2i—1,2j—1 T V21 2541 T V2iq1,2j—1 T V2i41,2j41 T 2(”22',2]‘—1
" b b 4ol ] 1<ii<N 4
TV 9541 T Vo125 T U2i—|—1,2j) + 4vg; o505 ~47> 5

3.2 The Multigrid Algorithm

3.2.1 The Basic Two-Grid Algorithm

A well-defined way to transfer vectors between fine and coarse grids can be rep-

resented in the following coarse grid correction scheme
v C G0, bM).

So that the two-grid algorithm can be written as

Relax s; times on A"2" = b" on Q" with initial guess v".

Compute 7" = Zh(b — Aloh).
Solve A?he2h = y2h on Q2.

Correct fine grid approximation : v « v* + [}, ¢,
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Relax s, times on A"z = b on Q" with initial guess v".

The procedure defined above is simply the original coarse grid correction idea,
which was proposed earlier, now refined by the use of the intergrid transfer oper-
ators. We relax on the fine grid until it ceases to be worthwhile. In practice sy is
often 1,2, or 3. The residual of the current approximation is computed on Q" and
then transferred by a restriction operator to the coarse grid. As it stands, the
procedure calls for the exact solution of the residual equation on %", which may
not be possible. However, if the coarse grid error can at least be approximated,
it is then interpolated up to the fine grid, where it is used to correct the fine grid
approximation. This is followed by sy additional fine grid relaxation sweeps.

We can further expand this algorithm to higher grids level, say n levels. This

idea is fundamental to the understanding of multigrid.

3.2.2 Multigrid

The multigrid algorithm which is formulated in Briggs [10] can be expressed as
Relax on A*z" = b* s, times with initial guess v".
Compute b*" = [,
Relax A*'z?h = p** 5, times with initial guess v2* = 0.
Compute b = [48y2h,
Relax on A%zt = b1 5, times with initial guess v = 0.
Compute b3 = [§hpth,

Solve ALhgplh — plh
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Correct v « vt 4 [4i8h,

Relax on A%zt = b 5, times with initial guess v*.

Correct v2" « p2h 4 ]ﬂ;v‘lh.

Relax A*'z?h = p* 5, times with initial guess v?".
Correct v"  vP 4 I} 02"

Relax on A"z" = b* s, times with initial guess v".

Figure 3.1 illustrates the grid schedule of multigrid method.

4h

16h

Figure 3.1: Grids schedule for a V-CYCLE with five levels.

The algorithm telescopes down to the coarsest grid, which can be a single
interior grid point, and then works its way back to the finest grid. Figure 3.1
shows the schedule for the grids in the order in which they are visited. Because of
the pattern of this diagram, this algorithm is called the V-CYCLE. It is our first
true multigrid method. For more details of the algorithm, including a compact

recursive definition, the reader is referred to Briggs [10].
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3.3 Complexity and Convergence Analysis

3.3.1 Complexity

We now analyse a complexity and convergence of multigrid method. These points
are important to address due to the practical issues of the effectiveness and effi-
ciency of the overall method. The complexity is considered first.

Each grid in the multigrid scheme needs two arrays: one to hold the current
approximation on each grid and one to hold the right-hand side vectors on each
grid, see McCormick [12]. Since boundary values must also be stored, the coarsest
grid involves three grid points in one dimension (one interior and two boundary
points). In general, the kth coarsest grid involves 2¥ + 1 point in one dimension.
Now considering a d—dimensional grid with N points where N = 27, the finest
grid Q" requires 2N? storage locations; Q%" has 27¢ times as many; Q* has 2724
times as many; etc. (by assumption two arrays must be stored on each level).
Adding these and using the sum of the geometric series as an upper bound give

us
2N
1 —2-d4

Storage = 2Nd{1 T Z_nd} <

In particular, for a one-dimensional problem, the storage requirement is less than
twice that of the fine grid problem alone. For two or more dimensions, the
requirement drops to less than 4/3 of the fine grid problem alone. Thus, the
storage costs of the multigrid algorithm decrease relatively as the dimension of
the problem increases. All the experiments which are going to be presented in
chapter 4, are in two dimensions.

The other important thing to measure is the cost in terms of work units (WU).
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Here a work unit is defined to be the cost of performing one relaxation sweep on
the finest grid. Equivalently, it is the cost of expressing the fine grid operator.
It is customary to neglect the cost of intergrid transfer operations which could
amount to 15 — 20% of the cost of the entire cycle. First consider a V-cycle with
one relaxation sweep on each level (sl = s2 =1). Each level is visited twice and

4 work units. Adding these costs and again using the

the grid Q% requires s~
geometric series for an upper bound give

MV computation cost =

142744274 4o < WU

1 —2-

3.3.2 Convergence analysis

We can attempt to give heuristic and qualitative arguments suggesting that stan-
dard multigrid schemes, when applied to well-behaved problems (for example,
symmetric, positive definite systems), not only work, but they work very effi-
ciently.

We begin with the heuristic argument that captures the spirit of rigorous
convergence proofs. Let us denote the original continuous problem (for example,
one of our model boundary value problems) Az = b. The associated discrete
problem on the fine grid Q" will be denoted A"z" = b". As before, we let v* be

an approximation to z" on Q". The global error is defined by

Eh] :w(wi,j)—wﬁj, 1<4,7<N-—-1

and 1is related to the truncation error of the discretisation process. In general,

the global error may be bounded in norm in the form

I|EM| < Kh?, K €IR.
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The quantity that we have been calling the error, e® = 2" — v", will now

:
be called the algebraic error to avoid confusion with the global error. The al-
gebraic error measures how well our approximations (generated by relaxation or
multigrid) agree with the exact discrete solution.

The purpose of a typical calculation is to produce an approximation v* which

agrees with the exact solution of the continuous problem. Let us specify a toler-

ance ¢ with a condition such as
||z — vh|| <e

where z = (z(z11),...,2(xn_1n_1))T is the vector of exact solution values. This

condition can be satisfied if we guarantee that
NE" |1+ [le"|l < ¢

(since [lo — v"[] < |lz = 2"[] + []2" = v"|| = [[E"|| + [|e"]] < €).
One way to ensure that ||[E"|| + ||e"]| < ¢ is to require |[|E*]| < ¢/2 and
||e"|] < ¢/2 independently. The first condition determines the grid spacing on the

finest grid. It says that we must choose

‘ 1/p
h<h*=
< (2[{)
R

The second condition is determined by how quickly our approximations v* con-

verge to z”. If relaxation or multigrid cycles have been performed until condition
||e"]] < ¢/2 is met on grid ", where h < h*, then we have converged to the level
of truncation. In summary, the global error determines the critical grid spac-
ing h*. The only computational requirement is that we converge to the level of

truncation error on a grid with h < h*.
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We now consider the V-cycle scheme applied to a d-dimensional problem with
N? unknowns and h = 1/N. We have to assume (and can generally show rigor-
ously) that with fixed cycling parameters s; and s, the V-cycle scheme has a con-
vergence rate, v, which is independent of 2. This V-cycle scheme must reduce the
algebraic error from O(1) (the error in arbitrary initial guess) to O(h?) = O(N~P)
( the order of the global error). Therefore, the number of V-cycles required, v,
must satisfy v¥ = O(N?) or v = O(logN). This is comparable to the computa-
tional cost of the best fast direct solvers when applied to the model problems as

mentioned in chapter 1.

3.4 The Effectiveness of the Relaxation Meth-

ods

The main concern of this project is to show the robustness of multigrid methods
numerically, and also to assess whether one relaxation method is more effective
and efficient than another if it is used within multigrid. In this section we would
like to compare the smoothing potential of the damped Jacobi and the Gauss-
Seidel methods using a local mode analysis, see Chan [15].

This local mode analysis (originally devised by Brandt, see [14]), is a general
and effective tool for analysing and predicting the performance of a smoother.
The approach is based on the fact that relaxation is typically a local process
in which information propagates by a few mesh-sizes per sweep. Therefore, one
can assume the problem to be in an unbounded domain, with constant (frozen)

coefficients, in which case the algebraic error can be expanded in terms of a
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Fourier series. To do this, let us first recall the discrete Fourier theorem.

Theorem 3.4.1 Fuvery discrete function v : I, — IR, I, = {(,j) : 0 < 4,5 <

n}, can be written as

uig = 3 cothij(0), i(0) =T i= /21 0= (01,0,),

0e®y,
where
1
o ="——5 > uptri(—0),
(n+1) (kl)eln
and
0, = {2 (k1) <kl<m+p)
n n —I— 1 2 2 m — 2 — m p 2

where p=1,m = (n+1)/2 for oddn and p=0,m =n/2+ 1 for even n.

Consider the pure-diffusion of the form —uV?u = f with homogeneous Dirich-
let condition on a unit square discretised using standard second order difference

approximations with uniform grids. The discretised equation can be expressed as

2
duij = (Wigry + w1y + Wi+ o) + Efm 1<4,7<n-1(35)

2

k
duijo o= Auij— w(du;; — (Efm Uit ;A wis; A wi g+ uijo1)). (3.6)

The damped Jacobi iteration corresponding to the equation can be expressed as

2

Adi ;= 4 — w(dui; — (;fm F Uity + Uior + Ui + Uij1)),  (3.7)

where @; ; denotes the new value of u while u; ; denotes the old value of w. The
Gauss-Seidel iteration (with lexigraphical order on nodal points, from left to right

and bottom to top) is presented of the form

X _ X _ X k?
A j = (Uigrj + Wiy + Wi + Wijo1) + Efm‘- (3.8)
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We use the discrete Fourier transform to analyse the damped Jacobi method.

Let the global error of the method be defined as ¢; ; = w; ;—; j and €; ; = w; j—u; ;.

Subtracting the equation (3.6) and (3.7) we obtain
N _ W _ _ _ _
€y = €y — (46 = (Grrg + 61 + Gger + 1)), (3.9)
We write
éi,j = Z 6977/)2'7]‘((9) and Ei,j == Z 6977/)2'7]‘( ) (310)
0e®y, 0e@p
Substituting the equation (3.10) into (3.9) we have
A _ Wi _
D ovig(0) = D] (Ce%/%,j(e) - Z(‘lce%/ﬂi,j(@) — (Cotiy1,;(0)
0e®y, 0e@p
i (0) + et () + i (0)), (B01)
. _ w
Cohij(0) = G (%/Jm‘(@) - Z(‘Wm(@) — (Yi1,5(0)
1 (0) + i () + i (9))) ). (3.12)
and comparing the coefficient of each 1; ;(#), we obtain that
f_@ = 11— —(4 — (eiel 4Tl g G0 g e_w?)). (3.13)
Cg 4
Applying the expression of the form e*i% = cos(f) & isin(fy) into (3.13) gives
cosb| + cosb, ) (3.14)

AO)=1—w(l —
(0) =1 - .
= % is called the amplification factor of the local mode 1; ;().

where A(6) = =
The smoothing factor introduced by Brandt is the following quantity

ﬁ:sup{|)\(9)|,7r/2§ |0k|§7r7 k:172}

Roughly speaking, the smoothing factor p is the maximal amplification factor
corresponding to those high frequency local modes that oscillate within a 2h

range (and hence can not be resolved by the coarse grid of size 2h).
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For damped Jacobi method, it is easy to see that
p =max{|l —2w|, |l —w|,|1 —3w/2|}.
The optimal w that minimises the smoothing factor is
w=4/5 p=3/5

(this value of w is used in the numerical experiments presented in chapter 4). For
w = 1 we have p = 1. This means that the undamped Jacobi method for this
model problem, although convergent as an iterative method by itself, should not
be used as smoother.

We next examine the smoothing potential of the Gauss-Seidel iteration. Un-
like the Jacobi method, Gauss-Seidel method depends on the ordering of the
unknown. The most natural ordering is perhaps the lexicographic order. Hence,
we also express the Gauss-Seidel method in terms of the global error definition

by subtracting the equation (3.5) and (3.8). Thus, the method reads

1 _
€ij = (€1 + 1+ € +éja)
4

Again using the Fourier transform (3.10), we obtain that

D Gahig(0) = Y i(cwm(@) + éotpiz1,j(0)
0e®y, 0e®y,
Haabigna(0) + et (0) ), (3.15)
a0 = 3 (Bersl0)+ Zis(0) + 05 0)
Co \ &7
L0 (0)), (3.16)
¢ _ Yir1,i(0) + ¥ij41(0) (3.17)

co A; (0) — i1 j(0) — i -1 (0)



CHAPTER 3. MULTIGRID METHODS 34

Employing the expression 1; ;(0) = ¢l(%1+7%) we have

i((41)014762) i(i61+(j+1)02)
¢ te (3.18)

Co
cr Aei(i014+i02) _ pi((i—1)01+402) _ i(i01+(j—1)02) "

Cy

Finally, reducing the exponential term we obtain the local amplification factor as

follows:

i6y 65
€t (3.19)

)\(0) = 4 _ e—ié’l _ €_i€2 .

It is elementary to determine that
p = IA(x/2,cos™ (4/5))] = 1/2.

We can see that the smoothing factor of the Gauss-Seidel is less than the damped

Jacobi, this means the Gauss-Seidel is slightly better smoother than the damped

Jacobi method.



Chapter 4

Numerical Results

We are now in a position to test the relaxation and multigrid methods in a
practical application. Numerical results based on the theory discussed in chapters
1-3 are presented here.

The discretisation process for some model diffusion and convection-diffusion
problems will be accomplished using some freely available Matlab software for
solving such problems, written by D.J. Silvester (available from http://www.ma.
umist.ac.uk/djs/index.htm). The relaxation and multigrid methods were also
written as Matlab programs and these are given in appendix A.

We use the V-CYCLE algorithm as a representative multigrid method, and
perform one relaxation sweep on each level (s1=s2=1). We will discuss the nu-
merical results separately for diffusion and convection-diffusion, and give some

discussion of the V-CYCLE method robustness in each case.

35
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4.1 Numerical Solution of the Diffusion Prob-

lem

The general test problem in chapter two is —uV?u +w - Vu = f. If we set w=0
the problem is —uV2u = f, and it is then referred to as the diffusion problem.
With the available software we can generate the linear system of equations using
uniform grids of square elements with p = 1, f = 0. The solution satisfies the
condition u = 1 on part of the bottom boundary and the right-hand wall, and
u = 0 on the remainder of the boundary.

Applying the V-CYCLE method, the solution of our test problem in the square

domain (0 <2 <1;0 <y < 1) is presented in figure 4.1.

0.8

0.6

0.4

0.2

0

0 0.5 1 01
Figure 4.1: The diffusion problem solution for a (64 x 64) uniform grid with
tolerance € =1e-6.
The software generates the stiffness matrices and right hand side force vectors
and then assembles into a system of linear equations. We solve this system with
relaxation and V-CYCLE methods. As mentioned in chapter one, the relaxation

methods used are the Gauss-Seidel, damped Jacobi, and symmetric Gauss-Seidel
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methods. We also use these relaxation methods as smoothers in the V-CYCLE

method.

4.1.1 Convergence Rate of Simple Relaxation Methods

The following tables describe the number of iterations to converge, work units
and CPU times (in seconds) required in solving the different sized linear systems
(which are all sparse, symmetric, and positive-definite) arising from employing
an INTEL P150 processor PC.

The numerical results using the Gauss-Seidel, damped Jacobi and symmetric
Gauss-Seidel methods are summarised in tables 4.1, 4.2 and 4.3, respectively. The

methods are applied on grids N=4, 8, 16, 32, 64, with tolerances ¢ =1e-2 and

€ =1le-6.
Gauss-Seidel
applied to the diffusion problem
Grids e =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 5 0.002 1.10 14 0.004 1.87
(8 x 8) 11 0.020 1.36 51 0.091 2.03
(16 x 16) 21 0.181 1.94 178 1.499 4.11
(32 x 32) 27 1.007 2.27 614 22.529 20.97
(64 x 64) 28 4.345 4.32 2069 316.816 238.05

Table 4.1: General convergence for Gauss-Seidel method.

These results suggest that the Gauss-Seidel method is similar to symmetric
Gauss-Seidel, and both are better methods than the damped Jacobi method. It
is also clear that the rate of convergence of all three relaxation methods is not

remarkable; in general we need a large number of iterations and work units to
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solve the problem, and also every increment of matrix dimension of the stiffness

matrix is followed by a rigorous increase in the number of iterations.

damped Jacobi method
applied to the diffusion problem
Grids € =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 10 0.005 1.35 34 0.016 2.05
(8 x 8) 26 0.069 1.87 125 0.329 2.85
(16 x 16) 51 0.640 2.95 443 5.547 5.77
(32 x 32) 68 3.703 3.98 1534 83.707 50.78
(64 x 64) 72 16.231 8.24 5173 1178.100 643.05

Table 4.2: General convergence for damped Jacobi method when w = 4/5.

Symmetric Gauss-Seidel method
applied to the diffusion problem
Grids € =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 3 0.002 1.08 10 0.006 1.24
(8 x 8) 10 0.031 1.30 31 0.093 1.32
(16 x 16) 28 0.393 2.03 110 1.528 2.13
(32 x 32) 85 5.104 4.14 406 24.292 17.15
(64 x 64) 242 60.213 39.18 1518 377.192 209.18

Table 4.3: General convergence for symmetric Gauss-Seidel method.

These schemes work very well only for the first few iterations, see figure 4.2.
Inevitably, however, the convergence slows and the entire scheme appears to stall.
We have a simple explanation for this phenomenon earlier; i.e. the rapid decrease
in the error during the early iteration is due to the efficient elimination of the
Once the oscillatory modes have been

highly oscillatory modes of that error.

removed, the iteration is much less effective in reducing the remaining smooth
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components of the error. All three relaxation schemes above possess this property
of eliminating the oscillatory modes and leaving the smooth modes. (This is called

the smoothing property.)

4.1.2 Convergence Rate of a Representative Multigrid Met-

hod

We now present the numerical results of V-CYCLE method applied to the diffu-
sion problem using Gauss-Seidel, damped Jacobi and symmetric Gauss-Seidel as
smoothers.

As described in the previous chapter we need to define inter-grid transfer
functions of prolongation and restriction to move vectors from a coarse grid to
a fine grid, and vice-versa. Here, we set the restriction coefficient (see (3.4)) to
different values. For the V-CYCLE method with the Gauss-Seidel and damped
Jacobi method as smoothers we set it at 1.5, but for the symmetric Gauss-Seidel
at 1.75. Our experience indicates that the convergence rate is strongly sensitive
to the value of this coefficient, and the above values are the “optimal” choices.

The numerical results by applying the V-CYCLE method with the Gauss-
Seidel, damped Jacobi, and symmetric Gauss-Seidel method, are given in tables
4.4, 4.5 and 4.6, respectively. The tables display the V-CYCLE convergence with
one pre-relaxation and post-relaxation sweep done on each level. These show
the type of behavior that we aim for in using a multigrid algorithm. If N is
the number of points in the finest grid then the work units required to obtain
convergence is not far from 0(NN). Recall from chapter 3 that the work units for

each grid are based on the number of operations per grid point. As an example,
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using the (64 x 64) grid, there are 3969 grid-points, hence the work units for a

tolerance of € =1e-6 is 4354560/3969 = 1097 WU.

V-CYCLE method
applied to the diffusion problem

Grids € —=le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) count (seconds)
(4 x 4) 3 0.004 2.46 9 0.012 3.86
(8 x 8) 3 0.022 3.01 10 0.070 4.98
(16 x 16) 4 0.131 5.59 13 0.417 9.09
(32 x 32) 4 0.560 11.58 12 1.648 33.08
(64 x 64) 4 2.321 30.80 13 7.397 112.80

Table 4.4: General convergence for V-CYCLE method with Gauss-Seidel as

smoother.

Table 4.6 then gives the best performance of the method (for the case where

the relaxation coefficient equals 1.75). The computation keeps the same number

of iterations as the grid size changes i.e. two iterations to achieve the tolerance

€ =1e-2 and six iterations to achieve the tolerance ¢ =1e-6.

V-CYCLE method
applied to the diffusion problem
Grids e =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 4 0.006 3.35 13 0.019 4.73
(8 x 8) 4 0.033 3.95 14 0.115 5.05
(16 x 16) 5 0.193 6.16 15 0.572 11.16
(32 x 32) 5 0.836 12.55 15 2.478 33.55
(64 x 64) 5 3.483 37.17 15 10.331 120.17

Table 4.5: General convergence for V-CYCLE method with damped Jacobi as
smoother when w = 4/5.
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V-CYCLE method
applied to the diffusion problem
Grids e =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 2 0.003 1.03 6 0.009 3.02
(8 x 8) 2 0.017 2.95 6 0.051 3.95
(16 x 16) 2 0.082 3.87 6 0.239 6.27
(32 x 32) 2 0.358 8.12 6 1.041 15.82
(64 x 64) 2 1.495 20.69 6 4.355 53.83

Table 4.6: General convergence for V-CYCLE method with symmetric Gauss-
Seidel as smoother.

The convergence histories of the relaxation and V-CYCLE methods at the fine

grid level (64 x 64) are plotted in figures 4.2 and 4.3.
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Figure 4.2: The convergence history of the relaxation methods when the tolerance
€ —=le-6.
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Figure 4.3: The convergence history of V-CYCLE method with Gauss-Seidel,
damped Jacobi, and symmetric Gauss-Seidel as smoothers when the tolerance
€ =le-6.

These figures show the number of iterations against the infinity norm of the
residual error for each solution method. The graph progresses from left to right
in the direction of an increasing number of iterations. It can be observed that the
convergence histories are completely different. The graph of relaxation methods
decreases rapidly for the first few iterations and then curves upwards to give
slower and slower convergence as the iteration proceeds. Unlike the relaxation

methods there is not a “deflection” in the convergence history of the V-CYCLE

method and the error reduction is close to linear in this case.

4.2 Numerical Solution of the Convection-Diffusion

Problem

We apply some of these methods to a convection-diffusion problem. In this case

we set the viscosity parameter of the equation —uVZ?u + w - Vu = [ to three



CHAPTER 4. NUMERICAL RESULTS 43

different values p = 1/10,1/100,1/1000, and the vector w to a constant vector
(—v/2/2,v/2/2). The convecting-wind is defined within the available software by
setting = 7 /4, and f is set to zero.

Using the available software we can generate the linear system of equations
whose solution satisfies the condition « = 1 on part of the bottom boundary and
the right-hand wall, and © = 0 on the remainder of the domain. The iteration
methods used to solve this problem are the symmetric Gauss-Seidel iteration, and
the V-CYCLE method with the symmetric Gauss-Seidel as smoother.

Graphs of the solutions that result from applying the V-CYCLE method to
this problem with viscosity parameters 1/10, 1/100 and 1/1000 are presented
in figures 4.4, 4.5 and 4.6, respectively. All the solutions are obtained using a

(64 x 64) uniform grid, and the error tolerance equals ¢ =1e-6.
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Figure 4.4: The solution for the viscosity parameter 1/10.
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Figure 4.5: The solution for the viscosity parameter 1/100.
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Figure 4.6: The solution for the viscosity parameter 1/1000.

It can be seen that reducing the viscosity parameter u increases the relative
strength of the wind, and that if x4 is “small” there is an internal layer generated
by the discontinuity on the inflow boundary and a boundary layer at the left hand

wall and along the top (which are illustrated in figures 4.5 and 4.6).
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These layers are difficult to resolve and are common-place in computational
fluid mechanics. Methods which combine a high accuracy with good stability
properties in cases where convection dominates diffusion are needed. In partic-
ular, the same problem comes up in the vanishing viscosity limit (¢ = 0) where
the mathematical models for compressible flow take the form of a hyperbolic sys-
tem of conservation laws and solutions may present discontinuities (shocks) which
cannot be fully resolved on any mesh of finite size.

With (small) diffusion g > 0, discontinuities are replaced by layers with rapid
but continuous variations of the flow variables, and we may then either seek
to resolve the layers by choosing & sufficiently small, or essentially stay in the
vanishing viscosity limit without accurately resolving layers.

The simplest finite difference and standard Galerkin methods fail to resolve
this difficulty. They lack stability and may produce approximate solutions with
spurious oscillations which do not converge to physically correct solutions, and
satisfy only first order accurate (also in regions where the exact solution is
smooth) and smear discontinuities (in particular contact discontinuities) over
many mesh points.

A special method which eliminates most of the spurious oscillations in the
Galerkin method and improves the quality of the numerical solution at disconti-
nuities, giving almost monotone discrete shock profiles is the streamline diffusion
method, see [3, pp.258-269], for details. This method gives us the possibility of

improved accuracy with good stability.
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A further feature of this method is the use of space-time finite elements for
time-dependent problems with the basis functions being continuous in space and
discontinuous in time, which leads to implicit time stepping methods. The dis-
cretisation in the available software also uses a streamline diffusion formulation

in cases with a small viscosity parameter compared to the mesh size.

4.2.1 Convergence Rate of Relaxation Methods

Tables 4.7, 4.8 and 4.9 present the numerical results arising from using the sym-
metric Gauss-Seidel method for three different viscosity parameters. It can be
observed that the smaller the viscosity parameter, the more effective the solver.
We see that the minimum number of iterations, work unit and time elapsing (for
the 64 x 64 grid) occur with the viscosity parameter 1/1000. This suggests that
the standard relaxation method is increasingly effective as the viscosity parameter

tends to zero.

Symmetric Gauss-Seidel method
applied to the Convection-Diffusion problem
Grids € =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 2 0.001 1.08 5 0.003 1.28
(8 x 8) 6 0.019 1.71 15 0.046 1.98
(16 x 16) 17 0.241 4.89 54 0.753 3.85
(32 x 32) 50 3.012 8.14 198 11.859 9.10
(64 x 64) 131 32.639 22.64 743 184.669 121.22

Table 4.7: Convergence rate of symmetric Gauss-Seidel method applied to the
problem with viscosity parameter 1/10.
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Symmetric Gauss-Seidel method
applied to the Convection-Diffusion problem
Grids € =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 3 0.002 1.10 8 0.005 1.58
(8 x 8) 3 0.010 1.33 8 0.025 1.62
(16 x 16) 5 0.075 2.63 10 0.144 2.53
(32 x 32) 11 0.681 3.86 19 1.159 3.87
(64 x 64) 30 7.549 12.08 55 13.759 11.44

Table 4.8: Convergence rate of the symmetric Gauss-Seidel method applied to

the problem with viscosity parameter 1/100.

Symmetric Gauss-Seidel method
applied to the Convection-Diffusion Problem
Grids € =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)

(4 x 4) 3 0.002 1.11 8 0.005 1.58

(8 x 8) 3 0.010 1.10 9 0.028 1.69
(16 x 16) 5 0.075 2.73 11 0.158 2.80
(32 x 32) 7 0.442 3.07 16 0.979 3.14
(64 x 64) 13 3.326 4.45 23 5.810 7.18

Table 4.9: Convergence rate of symmetric Gauss-Seidel method applied to the

problem with viscosity parameter 1/1000.

However, the convergence history, see figure 4.8, again shows that the relax-

ation method works best for the first few iterations and then the convergence
rate decreases in the following iterations. The standard relaxation method, fur-
thermore, is not effective in the absence of upwinding. In particular, for a small
viscosity parameter the iteration does not converge. Figure 4.7 describes the

convergence history using a (16 x 16) uniform grid for a viscosity parameter of

1/100.
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Figure 4.7: The convergence history of symmetric Gauss-Seidel applied in the
convection-diffusion problem without upwinding.

4.2.2 Convergence Rate of Multigrid Methods

We now present the numerical results of the V-CYCLE method applied to the
convection-diffusion problem with the symmetric Gauss Seidel as smoother. We
set the restriction coefficient at 1.65 for all viscosity parameters 1/10, 1/100 and
1/1000. This “optimal” coefficient was generated by observing the number of
iterations required over the interval (0.25 < ¢ < 2), where ¢ is the restriction

coeflicient.
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The tables summarising the result of using the V-CYCLE scheme applied
to this problem are presented in 4.10, 4.11 and 4.12, respectively. These show
that there is a small increase in the iteration counts as the viscosity parameter
decreases. For the tolerance ¢ =1e-6 the maximum number of iterations, work

unit and time elapsing occur when the viscosity parameter is set to 1/1000.

V-CYCLE method
applied to the Convection-Diffusion problem
Grids e =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 2 0.003 1.03 6 0.009 2.02
(8 x 8) 2 0.017 2.05 6 0.051 3.25
(16 x 16) 2 0.082 3.87 6 0.239 6.15
(32 x 32) 2 0.358 6.12 6 1.041 15.92
(64 x 64) 2 1.495 18.69 6 4.355 50.83

Table 4.10: Convergence rate of V-CYCLE method applied to the convection-
diffusion problem with viscosity parameter 1/10.

V-CYCLE method
applied to the Convection-Diffusion problem
Grids e =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 2 0.003 1.13 8 0.012 2.12
(8 x 8) 3 0.026 2.95 8 0.067 3.79
(16 x 16) 2 0.082 3.67 9 0.356 8.27
(32 x 32) 2 0.358 6.18 9 1.553 18.82
(64 x 64) 1 0.781 9.69 7 5.069 57.73

Table 4.11: Convergence rate of V-CYCLE method applied to the convection-
diffusion problem with viscosity parameter 1/100.
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V-CYCLE method
applied to the Convection-Diffusion problem
Grids e =1le-2 € =le-6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) | count (seconds)
(4 x 4) 3 0.005 2.24 8 0.012 2.80
(8 x 8) 3 0.026 3.35 10 0.084 3.84
(16 x 16) 3 0.121 4.17 11 0.435 8.29
(32 x 32) 2 0.358 7.12 16 2.749 34.21
(64 x 64) 2 1.495 18.69 23 16.506 177.65

Table 4.12: Convergence rate of V-CYCLE method applied to the convection-
diffusion problem with viscosity parameter 1/1000.

In this case, the multigrid method is less efficient than the relaxation method.
This method gives improved efficiency for large values of the viscosity parameter
because the infinity norm of the residual error decreases abruptly in every V-
cycle, but this does not hold at the small values. The convergence histories at

the fine grid level (64 x 64) are illustrated in figures 4.8 and 4.9.
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Figure 4.8: The convergence history of symmetric Gauss-Seidel (¢ =1e-6) applied
in the convection-diffusion problem.
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Figure 4.9: The convergence history of V-CYCLE method with symmetric Gauss-
Seidel as smoother (e =1e-6) applied in the convection-diffusion problem.

In addition, if we set the restriction coefficient at 0.95 for the viscosity pa-

rameter 1/1000, using multigrid can significantly reduce the number of iterations

at the finest level (64 x 64), see table 4.13.

V-CYCLE method
applied to the Convection-Diffusion problem

Grids e=1le—2 e=1le—6
Iteration | # Mflops | Times | Iteration | # Mflops | Times
count (seconds) count (seconds)
(4 x 4) 3 0.005 1.73 8 0.012 2.58
(8 x 8) 3 0.026 2.65 9 0.076 4.07
(16 x 16) 2 0.082 3.87 11 0.435 9.27
(32 x 32) 1 0.187 4.12 15 2.578 24.31
(64 x 64) 1 0.781 10.68 13 9.358 101.95

Table 4.13: Convergence rate of V-CYCLE method applied to the convection-
diffusion problem with “optimal” restriction coefficient.
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4.3 Conclusions

The relaxation and V-CYCLE methods have been implemented to solve diffusion
and convection-diffusion problems, with a few modifications involving the restric-
tion coefficient and it’s dependence on the viscosity parameter. The numerical
results show that the V-CYCLE method has given large gains in efficiency in com-
parison with simple relaxation methods. This scheme worked efficiently for all
grid sizes, but the relaxation schemes worked well only for coarse discretisations.
Inevitably, however, the relaxation convergence slowed and the entire scheme ap-
peared to stall. It could be deduced that the multigrid method succeeded due to
its ability to selectively eliminate the high frequency components of the error.

In particular, the largest gains in efficiency of the multigrid method were in
solving the diffusion problem discretised using (64 x 64) grid size. For different
smoothers the minimum and maximum numbers of iterations were respectively 6
and 15 iterations, while the analogous relaxation methods required 1518 and 5173
iterations to reach the same tolerance. However, the performance of multigrid
method steadily decreased in solving the convection-diffusion when the viscosity
parameter tends to zero. With the viscosity set to 1/1000 the multigrid method
did not dramatically speed up the convergence. The relaxation method, on the
contrary, gave a more efficient method than the multigrid method.

Finally, it should be noted that without upwinding (the parameter value set
to zero), neither the standard relaxation or multigrid methods converged to the

given tolerance. The solutions were becoming highly oscillatory in this case.



Appendix A

hh%%%VDRIVERA .M
AV-CYCLE multigrid method driver
#This code calls the function vcyclea.m

t0=clock;flops(0)

fine_level=input(’The finest matrix level R K
itr =input (’number of levels (usually as above): ’);
if itr > fine_level, error(’respecify ...too many levels’), end
Ww_pre =input (’number of pre-smoothing sweeps 20D
w_post =input (’number of post-smoothing sweeps 20D

load systeml,load system2,load system3;
r=fine_level;

W% initialisation

zi=zeros(size(eval([’g’ num2str(r)])));

init_error=norm(eval ([’g’ num2str(r)])-eval([’A’ num2str(r)])*zi,inf);
error=init_error;

errvec=[init_error];

1=0;
fprintf(’\n itn error )
fprintf (’\n-----  ------- )

%%% iteration loop

while error > le-6*init_error

fprintf(’\n %3.0f %9.3e’,1,error)
[zz]=vcyclea(zi,A1,A2,A3,A4,A5,A6,A7,g1,82,83,84,85,86,87, ...

fine_level,itr,w_pre,w_post,r);

z1=22Z;

error=norm(eval ([’g’ num2str(r)])-eval([’A’ num2str(r)])*zi,inf);
errvec=[errvec,error];

1=1+1;
end
Number_of_iteration =1
semilogy(0:1,errvec)

33
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xlabel(’Iterations’);

ylabel(’Log error’);

n =eval([’n’ num2str(r)]);
sx=eval([’sx’ num2str(r)]);
sy=eval([’sy’ num2str(r)]);
figure
plotadx(zz,n,inf,sx,sy);

calculations = flops %Count of floating point operations

time etime(clock,t0) % Time elapsing

%hhhhVCYCLEA . M
%#The main program of V-CYCLE method.
#This code calls restr.m, prolo.m

function [zz]=vcyclea(zi,A1,A2,A3,A4,A5,A6,A7,g1,82,83,84,85,86,87,...
fine_level,itr,w_pre,w_post,r);

Wh% restriction
g_fine=eval([’g’ num2str(fine_level)]);
for grd=fine_level:-1:fine_level-itr+2
%%% Gauss-Seidel Relaxation
A_fine = eval([’A’ num2str(grd)]);
L=-tril(A_fine,-1);
U=-triu(A_fine,1);
D=diag(diag(A_fine));
M=D-L;
for s=1:w_pre
z_fine= M\ (U*zi + g_fine);
zi= z_fine;
end
%%% store residual and current iterate
eval([’g’ num2str(grd) °’ g_fine;’]);
eval([’Z’ num2str(grd) °’ z_fine;’]);
Wk restrict to coarser grid
res_fine = g_fine - A_fine*z_fine;
r_fine = reshape(res_fine,sqrt(length(res_fine)),...

sqrt (length(res_fine)));
[r_coarse]=restr(r_fine);
r_new=reshape(r_coarse,length(eval ([’A’ num2str(grd-1)1)),1);
g_fine = r_new;
zi=zeros(size(g_fine));
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end

W% exact solve on coarsest grid
g_coarse = r_new;
A_coarse = eval([’A’ num2str(fine_level-itr+1)]);
u_coarse = A_coarse\g_coarse;

Wkl projection and correction
for grd= fine_level-itr+l: fine_level-2

u_crsr = reshape(u_coarse,sqrt(length(u_coarse)),...

sqrt(length(u_coarse))) ;
[u_crsri]=prolo(u_crsr);

u_crsr2=reshape(u_crsrl,length(eval ([’A’ num2str(grd+1)])),1);

zi= eval([’Z’ num2str(grd+1)]) + u_crsr2;
%%% Gauss-Seidel relaxation

g_fine=eval([’g’ num2str(grd+1)]);

A_fine=eval([’A’ num2str(grd+1)]);

L=-tril(A_fine,-1);

U=-triu(A_fine,1);

D=diag(diag(A_fine));

M=D-L;

for s=1:w_post

v_latest = M\ (U*zi + g_fine);
zi= v_latest;
end
u_coarse=v_latest;
end

Wh% final correction
u_crsr2= u_coarse;
u_crsr3 = reshape(u_crsr2,sqrt(length(u_crsr2)),...

sqrt (length(u_crsr2)));

[u_crsrd]=prolo(u_crsr3);
u_crsrb=reshape(u_crsr4,length(eval ([’A’ num2str(fine_level)])),1);
zz= eval([’Z’ num2str(fine_level)]) + u_crsrb5;

return

hhhhARESTR .M
%#The restriction code using full weighting function
function [r_coarsel]=restr2b(r_fine);

S=[1 00 0;1/2 1/200;0 10 0;...
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1/2 0 1/2 0;1/4 1/4 1/4 1/4;0 1/2 0 1/2; ...
0010;001/21/2;00 0 1];
T=(1.75)*S’;

s=length(r_fine);
n=0.5*(s-1);
k=n;
for g=1:k
for r=1:k
B=r_fine(2%q-1:2%q+1,2%r-1:2%r+1);
X=reshape(B,9,1);
Y=Tx*X;
C=reshape(Y,2,2);
r_coarse(q:q+l,r:r+1)=C;
end
end
m=length(r_coarse) ;
B=r_coarse(2:(m-1),2: (m-1));
Zer=zeros(m,m) ;
Zer(2:(m-1),2:(m-1))=B;
r_coarse=Zer;

%A% LPROLO . M
%#The interpolation (prolongation) code

function [u_crsri]=prolo(u_crsr);

S=[1 00 0;1/2 1/200;0 10 0;...
1/2 0 1/2 0;1/4 1/4 1/4 1/4;0 1/2 0 1/2; ...
0010;001/21/2;00 0 1];

n=length(u_crsr);

k=n-1;

for g=1:k

for r=1:k
B=u_crsr(q:q+l,r:r+l);
X=reshape(B,4,1);
Y=S*X;
C=reshape(Y,3,3);
u_crsrl(2*q-1:2%q+1,2*%r-1:2*r+1)=C;
end

end
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