## Workshop Proceedings

## Table of Contents

$\mathrm{L}(2,1)$-labeling of bipartite permutation graphs ..... 1
Toru Araki
Smaller and Faster Lempel-Ziv Indices ..... 11
Diego Arroyuelo, Gonzalo Navarro
A Polynomial Solution for the k-Fixed-endpoint Path Cover Problem on Proper Interval Graphs ..... 21
Katerina Asdre, Stavros Nikolopoulos
Superconnectivity of regular graphs with small diameter ..... 35
Camino Balbuena, jianmin Tang, Kim Marshall, Yuqing Lin
On diregularity of digraphs of defect two ..... 39
Dafik, Mirka Miller, Costas Iliopoulos, Zdenek Ryjacek
Change dectection through clustering and spectral analysis ..... 49
Diane Donovan, Birgit Loch, Bevan Thompson, Jayne Thompson
TCAM representations of intervals of integers encoded by binary trees ..... 59
Wojciech Fraczak, Wojciech Rytter, Mohammadreza Yazdani
Binary Trees, Towers and Colourings (An Extended Abstract) ..... 70
Alan Gibbons, Paul Sant
A Compressed Text Index on Secondary Memory ..... 80
Rodrigo Gonzalez, Gonzalo Navarro
Star-shaped Drawings of Planar Graphs ..... 92
Seok-Hee Hong, Hiroshi Nagamochi
Algorithms for Two Versions of LCS Problem for Indeterminate Strings ..... 107
Costas Iliopoulos, M Sohel Rahman, Wojciech Rytter
Three NP-Complete Optimization Problems in Seidel's Switching ..... 121
Eva Jelinkova
On Superconnectivity of $(4, \mathrm{~g})$-Cages ..... 136
Hongliang Lu, Yunjian Wu, Yuqing Lin, Qinglin Yu
On the nonexistence of odd degree graphs of diameter 2 and defect 2 ..... 143
Minh Nguyen, Mirka Miller, Guillermo Pineda-Villavicencio
An Extremal Combinatorial Problem in Quadruple Loop ComputerNetworks151Emilia Monakhova, Oleg Monakhov

# On diregularity of digraphs of defect two 

Dafik ${ }^{1,2}$, Mirka Miller ${ }^{1,3}$, Costas Iliopoulos ${ }^{4}$ and Zdenek Ryjacek ${ }^{3}$<br>${ }^{1}$ School of Information Technology and Mathematical Sciences<br>University of Ballarat, Australia<br>${ }^{2}$ Department of Mathematics Education<br>Universitas Jember, Indonesia<br>${ }^{3}$ Department of Mathematics University of West Bohemia, Plzeň, Czech Republic<br>${ }^{4}$ Department of Computer Science<br>Kings College, London, UK<br>d.dafik@students.ballarat.edu.au<br>m.miller@ballarat.edu.au<br>csi@dcs.kcl.ac.uk<br>ryjacek@kma.zcu.cz


#### Abstract

Since Moore digraphs do not exist for $k \neq 1$ and $d \neq 1$, the problem of finding the existence of digraph of out-degree $d \geq 2$ and diameter $k \geq 2$ and order close to the Moore bound becomes an interesting problem. To prove the non-existence of such digraphs, we first may wish to establish their diregularity. It is easy to show that any digraph with out-degree at most $d \geq 2$, diameter $k \geq 2$ and order $n=d+d^{2}+\ldots+d^{k}-1$, that is, two less than Moore bound must have all vertices of out-degree $d$. However, establishing the regularity or otherwise of the in-degree of such a digraph is not easy. In this paper we prove that all digraphs of defect two are out-regular and almost in-regular


Key Words: Diregularity, digraph of defect two, degree-diameter problem.

## 1 Introduction

By a directed graph or a digraph we mean a structure $G=(V(G), A(G))$, where $V(G)$ is a finite nonempty set of distinct elements called vertices, and $A(G)$ is a set of ordered pair $(u, v)$ of distinct vertices $u, v \in V(G)$ called arcs.

[^0]The order of the digraph $G$ is the number of vertices in $G$. An in-neighbour (respectively, out-neighbour) of a vertex $v$ in $G$ is a vertex $u$ (respectively, $w$ ) such that $(u, v) \in A(G)$ (respectively, $(v, w) \in A(G))$. The set of all in-neighbours (respectively, out-neighbours) of a vertex $v$ is called the in-neighbourhood (respectively, the out-neighbourhood) of $v$ and denoted by $N^{-}(v)$ (respectively, $N^{+}(v)$ ). The indegree (respectively, out-degree) of a vertex $v$ is the number of all its in-neighbours (respectively, out-neighbours). If every vertex of a digraph $G$ has the same in-degree (respectively, out-degree) then $G$ is said to be in-regular (respectively, out-regular). A digraph $G$ is called a diregular digraph of degree $d$ if $G$ is in-regular of in-degree $d$ and out-regular of out-degree $d$.

An alternating sequence $v_{0} a_{1} v_{1} a_{2} \ldots a_{l} v_{l}$ of vertices and arcs in $G$ such that $a_{i}=$ $\left(v_{i-1}, v_{i}\right)$ for each $i$ is called a walk of length $l$ in $G$. A walk is closed if $v_{0}=v_{l}$. If all the vertices of a $v_{0}-v_{l}$ walk are distinct, then such a walk is called a path. A cycle is a closed path. A digon is a cycle of length 2.

The distance from vertex $u$ to vertex $v$, denoted by $\delta(u, v)$, is the length of a shortest path from $u$ to $v$, if any; otherwise, $\delta(u, v)=\infty$. Note that, in general, $\delta(u, v)$ is not necessarily equal to $\delta(v, u)$. The in-eccentricity of $v$, denoted by $e^{-}(v)$, is defined as $e^{-}(v)=\max \{\delta(u, v): u \in V\}$ and out-eccentricity of $v$, denoted by $e^{+}(v)$, is defined as $e^{+}(v)=\max \{\delta(v, u): u \in V\}$. The radius of $G$, denoted by $\operatorname{rad}(G)$, is defined as $\operatorname{rad}(G)=\min \left\{e^{-}(v): v \in V\right\}$. The diameter of $G$, denoted by $\operatorname{diam}(G)$, is defined as $\operatorname{diam}(G)=\max \left\{e^{-}(v): v \in V\right\}$. Note that if $G$ is a strongly connected digraph then, equivalently, we could have defined the radius and the diameter of $G$ in terms of out-eccentricity instead of in-eccentricity. The girth of a digraph $G$ is the length of a shortest cycle in $G$.

The well known degree/diameter problem for digraphs is to determine the largest possible order $n_{d, k}$ of a digraph, given out-degree at most $d \geq 1$ and diameter $k \geq 1$. There is a natural upper bound on the order of digraphs given out-degree at most $d$ and diameter $k$. For any given vertex $v$ of a digraph $G$, we can count the number of vertices at a particular distance from that vertex. Let $n_{i}$, for $0 \leq i \leq k$, be the number of vertices at distance $i$ from $v$. Then $n_{i} \leq d^{i}$, for $0 \leq i \leq k$, and consequently,

$$
\begin{equation*}
n_{d, k}=\sum_{i=0}^{k} n_{i} \leq 1+d+d^{2}+\ldots+d^{k} \tag{1}
\end{equation*}
$$

The right-hand side of (1), denoted by $M_{d, k}$, is called the Moore bound. If the equality sign holds in (1) then the digraph is called a Moore digraph. It is well known that Moore digraphs exist only in the cases when $d=1$ (directed cycles of length $k+1, C_{k+1}$, for any $k \geq 1$ ) or $k=1$ (complete digraphs of order $d+1, K_{d+1}$, for any $d \geq 1$ ) $[2,11]$.

Note that every Moore digraph is diregular (of degree one in the case of $C_{k+1}$ and of degree $d$ in the case of $K_{d+1}$ ). Since for $d>1$ and $k>1$ there are no Moore digraphs, we are next interested in digraphs of order $n$ 'close' to Moore bound.

It is easy to show that a digraph of order $n, M_{d, k}-M_{d, k-1}+1 \leq n \leq M_{d, k}-1$, with out-degree at most $d \geq 2$ and diameter $k \geq 2$ must have all vertices of out-degree $d$. In other words, the out-degree of such a digraph is constant $(=d)$. This can be easily seen because if there were a vertex in the digraph with out-degree $d_{1}<d$ (i.e., $d_{1} \leq d-1$ ), then the order of the digraph,

$$
\begin{aligned}
n & \leq 1+d_{1}+d_{1} d+\ldots+d_{1} d^{k-1} \\
& =1+d_{1}\left(1+d+\ldots+d^{k-1}\right) \\
& \leq 1+(d-1)\left(1+d+\ldots+d^{k-1}\right) \\
& =\left(1+d+\ldots+d^{k}\right)-\left(1+d+\ldots+d^{k-1}\right) \\
& =M_{d, k}-M_{d, k-1} \\
& <M_{d, k}-M_{d, k-1}+1
\end{aligned}
$$

However, establishing the regularity or otherwise of in-degree for an almost Moore digraph is not easy. It is well known that there exist digraphs of out-degree $d$ and diameter $k$ whose order is just two or three less than the Moore bound and in which not all vertices have the same in-degree. In Fig. 1 we give two examples of digraphs of diameter 2 , out-degree $d=2,3$, respectively, and order $M_{d, 2}-d$, with vertices not all of the same in-degree.

Miller, Gimbert, Širáň and Slamin [7] considered the diregularity of digraphs of defect one, that is, $n=M_{d, k}-1$, and proved that such digraphs are diregular. For defect two, diameter $k=2$ and any out-degree $d \geq 2$, non-diregular digraphs always exist. One such family of digraphs can be generated from Kautz digraphs which contain vertices with identical out-neighbourhoods and so we can apply vertex deletion scheme, see [8], to obtain non-diregular digraphs of defect two, diameter $k=2$, and any out-degree $d \geq 2$. Fig. 2(a) shows an example of Kautz digraph $G$ of order $n=M_{3,2}-1$ which we will use to illustrate the vertex deletion scheme. Note


Fig. 1. Two examples of non-diregular digraphs.
the existence of identical out-neighbourhoods, for example, $N^{+}\left(v_{11}\right)=N^{+}\left(v_{12}\right)$. Deleting vertex $v_{12}$, together with its outgoing arcs, and then reconnecting its incoming arcs to vertex 11 , we obtain a new digraph $G_{1}$ of order $n=M_{3,2}-2$, as shown in Fig. 2(b).


Fig. 2. Digraphs $G$ of order 12 and $G_{1}$ of order 11.

We now introduce the notion of 'almost diregularity'. Throughout this paper, let $S$ be the set of all vertices of $G$ whose in-degree is less than $d$. Let $S^{\prime}$ be the
set of all vertices of $G$ whose in-degree is greater than $d$; and let $\sigma^{-}$be the $i n$ excess, $\sigma^{-}=\sigma^{-}(G)=\sum_{w \in S^{\prime}}\left(d^{-}(w)-d\right)=\sum_{v \in S}\left(d-d^{-}(v)\right)$. Similarly, let $R$ be the set of all vertices of $G$ whose out-degree is less than $d$. Let $R^{\prime}$ be the set of all vertices of $G$ whose out-degree is greater than $d$. We define the out-excess, $\sigma^{+}=\sigma^{+}(G)=\sum_{w \in R^{\prime}}\left(d^{+}(w)-d\right)=\sum_{v \in R}\left(d-d^{+}(v)\right)$. A digraph of average indegree $d$ is called almost in-regular if the in-excess is at most equal to $d$. Similarly, a digraph of average out-degree $d$ is called almost out-regular if the out-excess is at most equal to $d$. A digraph is almost diregular if it is almost in-regular and almost out-regular. Note that if $\sigma^{-}=0$ (respectively, $\sigma^{+}=0$ ) then $G$ is in-regular (respectively, out-regular). In this paper we prove that all digraphs of defect two, diameter $k \geq 3$ and out-degree $d \geq 2$ are out-regular and almost in-regular.

## 2 Results

Let $G$ be a digraph of out-degree $d \geq 2$, diameter $k \geq 3$ and order $M_{d, k}-2$. Since the order of $G$ is $M_{d, k}-2$, using a counting argument, it is easy to show that for each vertex $u$ of $G$ there exist exactly two vertices $r_{1}(u)$ and $r_{2}(u)$ (not necessarily distinct) in $G$ with the property that there are two $u \rightarrow r_{i}(u)$ walks, for $i=1,2$, in $G$ of length not exceeding $k$. The vertex $r_{i}(u)$, for each $i=1,2$, is called the repeat of $u$; this concept was introduced in [5].

We will use the following notation throughout. For each vertex $u$ of a digraph $G$ described above, and for $1 \leq s \leq k$, let $T_{s}^{+}(u)$ be the multiset of all endvertices of directed paths in $G$ of length at most $s$ which start at $u$. Similarly, by $T_{s}^{-}(u)$ we denote the multiset of all starting vertices of directed paths of length at most $s$ in $G$ which terminate at $u$. Observe that the vertex $u$ is in both $T_{s}^{+}(u)$ and $T_{s}^{-}(u)$, as it corresponds to a path of zero length. Let $N_{s}^{+}(u)$ be the set of all endvertices of directed paths in $G$ of length exactly $s$ which start at $u$. Similarly, by $N_{s}^{-}(u)$ we denote the set of all starting vertices of directed paths of length exactly $s$ in $G$ which terminate at $u$. If $s=1$, the sets $T_{1}^{+}(u) \backslash\{u\}$ and $T_{1}^{-}(u) \backslash$ $\{u\}$ represent the out- and in-neighbourhoods of the vertex $u$ in the digraph $G$; we denote these neighbourhoods simply by $N^{+}(u)$ and $N^{-}(u)$, respectively. We illustrate the notations $T_{s}^{+}(u)$ and $N_{s}^{+}(u)$ in Fig. 3.


Fig. 3. Multiset $T_{k}^{+}(u)$

We will also use the following notation throughout.

Notation 1 Let $\mathcal{G}(d, k, \delta)$ be the set of all digraphs of maximum out-degree $d$ and diameter $k$ and defect $\delta$. The we refer to any digraph $G \in \mathcal{G}(d, k, \delta)$ as a $(d, k, \delta)$ digraph.

We will present our new results concerning the diregularity of digraphs of order close to Moore bound in the following sections.

### 2.1 Diregularity of $(d, k, 2)$-digraphs

In this section we present a new result concerning the in-regularity of digraphs of defect two for any out-degree $d \geq 2$ and diameter $k \geq 3$. Let $S$ be the set of all vertices of $G$ whose in-degree is less than $d$. Let $S^{\prime}$ be the set of all vertices of $G$ whose in-degree is greater than $d$; and let $\sigma$ be the in-excess, $\sigma^{-}=\sum_{w \in S^{\prime}}\left(d^{-}(w)-\right.$ $d)=\sum_{v \in S}\left(d-d^{-}(v)\right)$.

Lemma 1 Let $G \in \mathcal{G}(d, k, 2)$. Let $S$ be the set of all vertices of $G$ whose in-degree is less than $d$. Then $S \subseteq N^{+}\left(r_{1}(u)\right) \cup N^{+}\left(r_{2}(u)\right)$, for any vertex $u$.

Proof. Let $v \in S$. Consider an arbitrary vertex $u \in V(G), u \neq v$, and let $N^{+}(u)=$ $\left\{u_{1}, u_{2}, \ldots, u_{d}\right\}$. Since the diameter of $G$ is equal to $k$, the vertex $v$ must occur in
each of the sets $T_{k}^{+}\left(u_{i}\right), i=1,2, \ldots, d$. It follows that for each $i$ there exists a vertex $x_{i} \in\{u\} \cup T_{k-1}^{+}\left(u_{i}\right)$ such that $x_{i} v$ is an arc of $G$. Since the in-degree of $v$ is less than $d$ then the in-neighbours $x_{i}$ of $v$ are not all distinct. This implies that there exists some vertex which occurs at least twice in $T_{k}^{+}(u)$. Such a vertex must be a repeat of $u$. As $G$ has defect 2, there are at most two vertices of $G$ which are repeats of $u$, namely, $r_{1}(u)$ and $r_{2}(u)$. Therefore, $S \subseteq N^{+}\left(r_{1}(u)\right) \cup N^{+}\left(r_{2}(u)\right)$.

Combining Lemma 1 with the fact that every vertex in $G$ has out-degree $d$ gives

Corollary $1|S| \leq 2 d$.

In principle, we might expect that the in-degree of $v \in S$ could attain any value between 1 and $d-1$. However, the next lemma asserts that the in-degree cannot be less than $d-1$.

Lemma 2 Let $G \in \mathcal{G}(d, k, 2)$. If $v_{1} \in S$ then $d^{-}\left(v_{1}\right)=d-1$.

Proof. Let $v_{1} \in S$. Consider an arbitrary vertex $u \in V(G), u \neq v_{1}$, and let $N^{+}(u)=\left\{u_{1}, u_{2}, \ldots, u_{d}\right\}$. Since the diameter of $G$ is equal to $k$, the vertex $v_{1}$ must occur in each of the sets $T_{k}^{+}\left(u_{i}\right), i=1,2, \ldots, d$. It follows that for each $i$ there exists a vertex $x_{i} \in\{u\} \cup T_{k-1}^{+}\left(u_{i}\right)$ such that $x_{i} v_{1}$ is an arc of $G$. If $d^{-}\left(v_{1}\right) \leq d-3$ then there are at least three repeats of $u$, which is impossible. Suppose that $d^{-}\left(v_{1}\right) \leq d-2$. By Lemma 1, the in-excess must satisfy

$$
\sigma^{-}=\sum_{x \in S^{\prime}}\left(d^{-}(x)-d\right)=\sum_{v_{1} \in S}\left(d-d^{-}\left(v_{1}\right)\right)=|S| \leq 2 d
$$

We now consider the number of vertices in the multiset $T_{k}^{-}\left(v_{1}\right)$. To reach $v_{1}$ from all the other vertices in $G$, the number of distinct vertices in $T_{k}^{-}\left(v_{1}\right)$ must be

$$
\begin{equation*}
\left|T_{k}^{-}\left(v_{1}\right)\right| \leq \sum_{t=0}^{k}\left|N_{t}^{-}(v)\right| \tag{2}
\end{equation*}
$$

To estimate the above sum we can observe the following inequality

$$
\begin{equation*}
\left|N_{t}^{-}(v)\right| \leq \sum_{u \in N_{t-1}^{-}(v)} d^{-}(u)=d\left|N_{t-1}^{-}(v)\right|+\varepsilon_{t}, \tag{3}
\end{equation*}
$$

where $2 \leq t \leq k$ and $\varepsilon_{2}+\varepsilon_{3}+\ldots+\varepsilon_{k} \leq \sigma$. If $d^{-}\left(v_{1}\right)=d-2$ then $\left|N^{-}\left(v_{1}\right)\right|=$ $\left|N_{1}^{-}\left(v_{1}\right)\right|=d-2$. It is not difficult to see that a safe upper bound on the sum
of $\left|T_{k}^{-}\left(v_{1}\right)\right|$ is obtained from inequality (3) by setting $\varepsilon_{2}=2 d$, and $\varepsilon_{t}=0$ for $3 \leq t \leq k$. This gives

$$
\begin{aligned}
\left|T_{k}^{-}\left(v_{1}\right)\right| \leq & 1+\left|N_{1}^{-}\left(v_{1}\right)\right|+\left|N_{2}^{-}\left(v_{1}\right)\right|+\left|N_{3}^{-}\left(v_{1}\right)\right|+\ldots+\left|N_{k}^{-}\left(v_{1}\right)\right| \\
= & 1+(d-2)+\left(d(d-2)+\varepsilon_{2}\right)+\left(d\left(d(d-2)+\varepsilon_{2}\right)+\varepsilon_{3}\right) \\
& \left(1+d+\cdots+d^{k-3}\right) \\
= & 1+(d-2)+(d(d-2)+2 d)+(d(d(d-2)+2 d)+0) \\
& \left(1+d+\cdots+d^{k-3}\right) \\
= & 1+d-2+d^{2}+d^{3}\left(1+d+\cdots+d^{k-3}\right) \\
= & M_{d, k}-2 .
\end{aligned}
$$

Since $\varepsilon_{2}=2 d, \varepsilon_{t}=0$ for $3 \leq t \leq k$, and $G$ contains a vertex of in-degree $d-2$ then $|S|=d$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$. Every $v_{i}$, for $i=2,3, \ldots, d$, has to reach $v_{1}$ at distance at most $k$. Since $v_{1}$ and every $v_{i}$ have exactly the same in-neighbourhood then $v_{1}$ is forced to be selfrepeat. This implies that $v_{1}$ occurs twice in the multiset $T_{k}^{-}\left(v_{1}\right)$. Hence $\left|T^{-}\left(v_{1}\right)\right|<M_{d, k}-2$, which is a contradiction. Therefore $d^{-}\left(v_{1}\right)=$ $d-1$, for any $v_{1} \in S$.

Lemma 3 If $S$ is the set of all vertices of $G$ whose in-degree is $d-1$ then $|S| \leq d$.

Proof. Suppose $|S| \geq d+1$. Then there exist $v_{i} \in S$ such that $d^{-}\left(v_{i}\right)=d-1$, for $i=1,2, \ldots, d+1$. The in-excess $\sigma^{-}=\sum_{v \in S}\left(d-d^{-}(v)\right) \geq d+1$. This implies that $\left|S^{\prime}\right| \geq 1$. However, we cannot have $\left|S^{\prime}\right|=1$. Suppose, for a contradiction, $S^{\prime}=\{x\}$. To reach $v_{1}$ (and $v_{i}, i=2,3, \ldots, d+1$ ) from all the other vertices in $G$, we must have $x \in \bigcap_{i=1}^{d+1} N^{-}\left(v_{i}\right)$, which is impossible as the out-degree of $x$ is $d$. Hence $\left|S^{\prime}\right| \geq 2$.

Let $u \in V(G)$ and $u \neq v_{i}$. To reach $v_{i}$ from $u$, we must have $\bigcup_{i=1}^{d+1} N^{-}\left(v_{i}\right) \subseteq$ $\left\{r_{1}(u), r_{2}(u)\right\}$. Since the out-degree is $d$ then $\left|\bigcup_{i=1}^{d+1} N^{-}\left(v_{i}\right)\right|=d$. Let $r_{1}(u)=x_{1}$ and $r_{2}(u)=x_{2}$. Without loss of generality, we suppose $x_{1} \in \bigcup_{i=1}^{d} N^{-}\left(v_{i}\right)$ and $x_{2} \in$ $N^{-}\left(v_{d+1}\right)$. Now consider the multiset $T_{k}^{+}\left(x_{1}\right)$. Since every $v_{i}$, for $i=1,2, \ldots, d$, respectively, must reach $\left\{v_{j \neq i}\right\}$, for $j=1,2, \ldots, d+1$, within distance at most $k$, then $x_{1}$ occurs three times in $T_{k}^{+}\left(x_{1}\right)$, otherwise $x_{1}$ will have at least three repeats, which is impossible. This implies that $x_{1}$ is a double selfrepeat. Since two of $v_{i}$, say $v_{k}$ and $v_{l}$, for $k, l \in\{1,2, \ldots, d+1\}$, occur in the walk joining two selfrepeats then $v_{k}$ and $v_{l}$ are selfrepeats. Then it is not possible for the $d$ out-neighbours of $x_{1}$ to reach $v_{d+1}$.

Theorem 1 For $d \geq 2$ and $k \geq 3$, every ( $d, k, 2$ )-digraph is out-regular and almost in-regular.

Proof. Out-regularity of $(d, k, 2)$-digraphs was explained in the Introduction. Hence we only need to proof that every $(d, k, 2)$-digraph is almost in-regular. If $S=\emptyset$ then $(d, k, 2)$-digraph is diregular. By Lemma 2 , if $S \neq \emptyset$ then all vertices in $S$ have in-degree $d-1$. This gives

$$
\sigma=\sum_{x \in S^{\prime}}\left(d^{-}(x)-d\right)=\sum_{v \in S}\left(d-d^{-}(v)\right)=|S| \leq 2 d .
$$

Take an arbitrary vertex $v \in S$; then $\left|N^{-}(v)\right|=\left|N_{1}^{-}(v)\right|=d-1$. By the diameter assumption, the union of all the sets $N_{t}^{-}(v)$ for $0 \leq t \leq k$ is the entire vertex set $V(G)$ of $G$, which implies that

$$
\begin{equation*}
|V(G)| \leq \sum_{t=0}^{k}\left|N_{t}^{-}(v)\right| \tag{4}
\end{equation*}
$$

To estimate the above sum we can observe the following inequality

$$
\begin{equation*}
\left|N_{t}^{-}(v)\right| \leq \sum_{u \in N_{t-1}^{-}(v)} d^{-}(u)=d\left|N_{t-1}^{-}(v)\right|+\varepsilon_{t} \tag{5}
\end{equation*}
$$

where $2 \leq t \leq k$ and $\varepsilon_{2}+\varepsilon_{3}+\ldots+\varepsilon_{k} \leq \sigma$.
It is not difficult to see that a safe upper bound on the sum of $|V(G)|$ is obtained from inequality (5) by setting $\varepsilon_{2}=\sigma=|S|$, and $\varepsilon_{t}=0$, for $3 \leq t \leq k$; note that the latter is equivalent to assuming that all vertices from $S \backslash\{v\}$ are contained in $N_{k}^{-}(v)$ and that all vertices of $S^{\prime}$ belong to $N_{1}^{-}(v)$. This way we successively obtain:

$$
\begin{aligned}
|V(G)| & \leq 1+\left|N_{1}^{-}(v)\right|+\left|N_{2}^{-}(v)\right|+\left|N_{3}^{-}(v)\right|+\ldots+\left|N_{k}^{-}(v)\right| \\
& \leq 1+(d-1)+(d(d-1)+|S|)\left(1+d+\cdots+d^{k-2}\right) \\
& =d+d^{2}+\cdots+d^{k}+(|S|-d)\left(1+d+\cdots+d^{k-2}\right) \\
& =M_{d, k}-2+(|S|-d)\left(1+d+\cdots+d^{k-2}\right)+1 .
\end{aligned}
$$

But $G$ is a digraph of order $M_{d, k}-2$; this implies that

$$
\begin{aligned}
(|S|-d)\left(1+d+\cdots+d^{k-2}\right)+1 & \geq 0 \\
(|S|-d) \frac{d^{k-1}-1}{d-1}+1 & \geq 0 \\
|S| & \geq d-\frac{d-1}{d^{k-1}-1}
\end{aligned}
$$

As $0<\frac{d-1}{d^{k-1}-1}<1$, whenever $k \geq 3$ and $d \geq 2$, it follows that $|S| \geq d$. Since $1 \leq|S| \leq d$. This implies $|S|=d$.

We conclude with a conjecture.

Conjecture 1 All digraphs of defect 2 are diregular for maximum out-degree $d \geq 2$ and diameter $k \geq 3$.

## References

1. E.T. Baskoro, M. Miller, J. Plesník, On the structure of digraphs with order close to the Moore bound, Graphs and Combinatorics, 14(2) (1998) 109-119.
2. W.G. Bridges, S. Toueg, On the impossibility of directed Moore graphs, J. Combin. Theory Series B, 29 (1980) 339-341.
3. Dafik, M. Miller and Slamin, Diregularity of digraphs of defect two of out-degree three and diameter $k \geq 3$, preprint.
4. B.D. McKay, M. Miller, J. Širáň, A note on large graphs of diameter two and given maximum degree, J. Combin. Theory (B), 74 (1998) 110-118.
5. M. Miller, I. Fris, Maximum order digraphs for diameter 2 or degree 2, Pullman volume of Graphs and Matrices, Lecture Notes in Pure and Applied Mathematics, 139 (1992) 269-278.
6. M. Miller, J. Širáň, Digraphs of degree two which miss the Moore bound by two, Discrete Math., 226 (2001) 269-280.
7. M. Miller, J. Gimbert, J. Širáň, Slamin, Almost Moore digraphs are diregular, Discrete Math., 216 (2000) 265-270.
8. M. Miller, Slamin, On the monotonocity of minimum diameter with respect to order and maximum out-degree, Proceeding of COCOON 2000, Lecture Notes in Computer Science 1558 (D.-Z Du, P. Eades, V.Estivill-Castro, X.Lin (eds.)) (2000) 193-201.
9. M. Miller, I. Fris, Minimum diameter of diregular digraphs of degree 2, Computer Journal, 31 (1988) 71-75.
10. M. Miller, J. Širáň, Moore graphs and beyond: A survey of the degree/diameter problem, Electronic J. Combin., 11 (2004).
11. J. Plesník, Š. Znám, Strongly geodetic directed graphs, Acta F. R. N. Univ. Comen. - Mathematica XXIX, (1974)
12. Slamin, M. Miller, Diregularity of digraphs close to Moore bound, Prosiding Konferensi Nasional X Matematika, ITB Bandung, MIHMI, 6, No. 5 (2000) 185-192.

[^0]:    ${ }^{1}$ This research was supported by the Australian Research Council (ARC) Discovery Project grant DP04502994.

