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Abstract 

Generalized AMMI (GAMMI) model has been widely used to model the Genotype × Environment Interaction (GEI) with 
categorical (or in general, non-normal) response variables.  It was developed by introduce the concept of Generalized Linear 
Model (GLM) into Additive Main Effect & Multiplicative Interaction (AMMI) model. GAMMI model will provide two major 
results (i) the stability analysis of some genotypes across environments and (ii) determine some others that have site specific for 
particular environment through Biplot of Singular Value Decomposition (SVD) of the interaction terms. This research will focus 
on major studies on counting data that is to round up the previous work of first author’s on the Row Column Interaction Models 
(RCIMs) for the GEI by VGAM package of an R implementation with an addition on the deviance analysis. A simple illustrative 
comparison of both approaches (RCIM vs. GAMMI) was conducted on Poisson counting data of 4 rows × 5 columns.  The 
defiance analysis was provided by log-likelihood of the model and ones of the residual. Deviance analysis will provide a way to 
determine the complexity of interaction component in the model, named by “rank” of model. The Biplot of both approaches seem 
not quite different. Finally, we did show that RCIMs be relied upon to fit well the GAMMI model and then applied it in an 
illustrative example to a real dataset. In addition, a simple scheme of simulation, adding some outlier on Poisson count data, will 
show an easy way handling the over dispersion problems, but firstly, we will talk about some statistical framework of Reduce 
Rank Regression (RR-VGLMs), the RCIMs, and then the approach of RCIMs for GAMMI models. 
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1. Introduction 

AMMI (Additive Main Effect &Multiplicative Interaction) model for interactions in two-way table provide  the 
major mean for studying stability and adaptability through Genotype × Environment Interaction (GEI), which 
modeled by full interaction model. AMMI model represents observations into a systematic component that consists 
of main effect and interaction effect through multiplication of interactions components, apart from random errors 
component. AMMI model said to be most powerful one to analyze the GEI, by main effects plus multiplicative 
interaction terms. AMMI model basically presents interaction through dimension reduction techniques by using 
singular value decomposition (SVD) of its interaction matrix (Hadi et al., 2010; Hadi et al., 2007; Hadi & Sadiyah, 
2004). 

Multiplicative models (or bilinear models) bridge the gap between the main effect models (in ANOVA or GLM) 
and complete interaction models with interaction parameters for each cell in two way table. This model also gives a 
pattern of the main interaction visually through Biplot. Therefore, developing of GLM theory by accommodate the 
multiplicative component of interaction is very necessary. Van Eeuwijk (1995) proposed the multiplicative model in 
term of GLM as an extension of AMMI model called as Generalized AMMI (GAMMI) model. It is also possible to 
visualize the interaction terms trough Biplot. Nowaday, GAMMI model has been developed to be more general 
including handling Poisson count (Hadi et al., 2010). 

Yee & Hadi (2014) introduce the Row Column Interaction Models (RCIM) for many interaction models 
including Poisson GAMMI Models. In case of Poisson count model, the formula of RCIM looks identical to 
GAMMI log-link. RCIM is an approach of Reduce Rank Regression (RRR) in the GLM class called Reduce Rank 
Vector GLM or   RR-VGLM for short (Yee & Hastie, 2003), while GAMMI using a criss-cross regression 
(Eeuwijk, 1995). In term of parameter estimation and statistical modeling algorithms, both RR-VGLM and criss-
cross GLM uses a similar algorithm called alternating regression (Falgurolous, 1996). Generally, the equivalence of 
both had been mentioned in Turner & Firth (2007) and also Yee & Hadi (2014) as well. Although these two 
approaches was using similar methods of parameter estimation and computational algorithms, but it differ in model 
parameters setting and the constraints were used. These remains possible to give rise to the difference results both. 

 

Fig. 1. Statistical framework of The RCIM with others relevant to these articles 

 
, log 

1
∑

=

+++=
R

k
jkikjiij cαγαμμ

 

Family Name Comments 
poissonff() GRC model 
negbinomial() GRC model with poisson 

overdisperse 



136   Alfi an Futuhul Hadi and Halimatus Sa’diyah  /  Agriculture and Agricultural Science Procedia   9  ( 2016 )  134 – 145 

This paper describes a statistical framework and software for fitting RCIM to two-way table of Poisson count 
then provides the deviance analysis to determine the complexity of rank of multiplicative interaction term of the 
model.  RCIMs apply some link function to the mean of a cell equaling a row effect plus a column effect plus an 
interaction term is modeled as a reduced-rank regression with rank of 2, and then will be visualized by Biplot. These 
comprise to the GAMMI models with the row and column effects plus one or more multiplicative interaction which 
is factored out by singular value decompositions and also often visualized by Biplot for the first two singular vectors.  
Both approaches provide very similar result, only different in numerical computation but not statistically essential. In 
the next early section we will talk about some statistical framework of RR-VGLM, the RCIM, and then the approach 
of RCIM for GAMMI models. 

2.  RR-VGLM and RCIM 

Yee and Hastie (2003) firstly introduces a class of Reduced - Rank Vector Generalized Linear Models (RR-
VGLMs) which implement a concept of reduced rank regression into multivariate class of VGLM (Yee, 2015). Let 
say our data was in the form of  for  where  is a vector of exploratory variable for i-th 
observation and    is a response variable (or can be a vector). Generally, VGLM similar to GLM, but VGLM 
provide multiple linear predictors. VGLM can handle a number of M linear predictors (M depends on the models to 
be fitted) where the  one is: 

 (1) 

The f VGLM may be applied directly to the distribution parameter rather than just to the mean  = like 
in GLMs. Generally, 

  (2) 

For some parameters of link function and parameter  . A collection of linear predictors here is: 

  (3) 

where is a  matrix ofregression coefficients. In many cases, regression coefficients were related to each 
other.  For example, some of  maybe are equal, or set to be zero, or add up to a certain quantity. These 
situations may be dealt with by use of constraint matrices. In general, VGLMs have 

  (4) 

where are known constraint matrices of full column-rank and  are vector of unknown 
coefficients, possibly containing reduced set of regression coefficients. With none of constraint at all, 

. Then for VGLM 

   (5) 

Equation (5) is an expression of (4) concentrating on columns rather than rows. We need both (3) and (5) because 
sometimes we focus on the  and at other times on the variables . 

Then we partition  into 

  (of dimension of )  
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and B = .  

In general, B is a full rank matrix, i.e., The regression coefficients tobe estimated, means for 
some models and data sets, this is too large and is susceptibleto over fitting. A dimension reduction method is 
warranted.  In case of consist of multiple regression coefficients, then we can reduce it number by reduced-rank 
regression. A simple solution is to replace B2 by a RRR 

  (6) 

where we approximate by its reduced-ranked 

  (7) 

C and A are  and  matrix respectively, and they are "thin" because the rank R is low, i.e. R = 1 or 2 
hence the number of columns is much less than the number of rows. If R is low then the number of regression 
coefficients can be reduced enormously. When R = 2 the estimated  and may be biplotted (Yee and Hastie, 2003). 
The RRR is applied to ,because we want to make provision the variables in to be left alone, e.g., the intercepts. 
Animportant fact is that RR-VGLMs are VGLMs where some of the constraint matrices areestimated. Thus, 

  (8) 

where v = is a vector of  latent variables. To make the parameter unique, it is common to enforce 
corner constraint to A.  By default the top of R × R sub matrix is fixed to be   and the remaider of A is estimated. 

We now will use Goodman’s RC model, GRC for short (Goodman, 1981)to explain what a RCIM is. GRC model 
will fit the data by a framework of VGLM.  Suppose is the  matrix of count. GRC model fits a 
Reduced-rank type model to Y by assume that has Poisson distributed, firstly. And the log scale of its means has 
the form of: 

Where  is the mean of the  cell Model in (9) need identifiable constraint, for the row and column 
effects,  and  a corner constraint  were used. The parameter  and need constraint as well, we 
use  = with .  Then we can write (9) as: 

where the  matrix of interaction terms, isapproximated by the reduced rank quantity 
of . GRC model fits within the VGLMs framework by letting 

where is the mean of the ith  row of . 
RCIM is part of RR-VGLM where the first linear predictor modeled by the sum of the effects of rows, columns, 

and the effect of the interaction, in which the interaction effect is shown as reduced-rank regression. So that the 
model of RCIM is generally defined as RR-VLGM applied on the response variable Y as follows: 

where is a link function, and are rows and columns effects,  are the interaction terms and the 
rank .This means that the first parameter of a statistical model relating to a response matrix, 
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after a suitable transformation, is equal to the sum of the intercept, a row and column effect plus optional interaction 
term of the form . Note that (12) applies to the  first linear/additive predictor; for models with M > 1 one can 
leave  unchanged because these are functions of nuisance parameters (e.g.,scale and shape parameters) 
that are best left alone (probably as intercept-only: .Of course, choosing  for (12) is only for 
convenience. 

3. The RCIM approach to  fit GAMMI Model 

Turner and Firth (2007) defines Generalized Additive Main Effects and Multiplicative Interaction (GAMMI) in a 
row-column model, by adopting the two-way table consisting of the effect of rows, columns and one or more 
components on a multiplicative interaction. Associate with the singular value decomposition of its multiplicative 
components, such as a measure of the strength of the relationship or interaction between the row and column, which 
indicates the importance of the component. Model GAMMI-K is defined as follows: 

where and are rows and columns effects, as well as its  and are row and column values for the kth 

multiplicative component of the interaction terms and is the singular value for the k-th component. K is the rank.  
Based on (13) GAMMI model appear to be identical to RCIMs. Here they apply a SVD to . While our 
interaction term uses corner constraints, their SVD parameterization is quite interpretable and is related to some of 
the other parameterizations described in Yee and Hastie (2003). The advantage of RCIMs is that it should work for 
any VGAM family function, thus the family size is much bigger. It is easy to perform some post-transformations 
such as applying svd() to the VGAM output to obtain the SVD parameterization for GAMMI models (Yee, 
2010;Yee & Hadi, 2014).  

 

4. Material and Methods 

This research uses two datasets, originally obtained from experimental trial conducted by Indonesian Legumes 
and Tuber Crops Research Institute (ILETRI), Malang, Indonesia. The first dataset contain a population count of 5 
types of leaves pest(Bemissia tabacci, Emproasca sp., Agromyza phaseoli, Lamprosema indicata and also 
Longitarsus suturellinus) on four soybean genotypes (Wilis, IAC-100, IAC-80-596-2 and W/80-2-4-20). The second 
data was also obtained from a multi-environment trial of ILETRI Malang.  It involves 15 genotypes of soybean, 
grown at 8 locations. The observation interest is the count of filled pods.  

A simple scheme of simulation was conducted by adding some outlier to make an ill condition of over dispersion 
on the 2nd dataset. Technically, the 2nd data set of Poisson distributed will be modified by imposing an outlier 
observation in it, one by one.  Outlier observations we redefined as a value observation that at least equal to 
maximum value of each row (column)plus four times its standard deviation of row (or column).  So that 
mathematically we can write as outlier >= max(yi) + 4*stdev. 

Data will be modeled into the GAMMI model through RCIM approach on a VGAM package with Rank = 0, 1, 2, 
..., n. The function of rcim(data, poissonff, Svd.arg = TRUE, Alpha = 0.5, Rank = k, trace = 
TRUE) (Yee, 2010).RCIM approach will be carried out by using rank = 0 to the maximum rank of 7. Rank = 0 stand 
for additive model, rank = 1 stand for one component interaction, rank = 2 for the Biplot model or 2 components of 
interactions and so on. Maximum rank or we can say it as the complexity of interaction terms will be determined 
from ratio of the log-likelihood of Poisson regression model and it of residuals. An analysis of deviance then 
obtained from its ratio of log-likelihood.   An illness condition of over dispersion on the data will be handled by 
Negative Binomial Regression (NB model for short) in RCIM approach.  We will then evaluate the effectiveness of 
the Negative Binomial model to Poisson model in handling over dispersed data by its log-likelihood ratio or/and by 
its MSE. 
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5. Result and Discussion 

5.1. The Deviance Analysis & Biplot Model of RCIM 

The first data was analyzed by Hadi et al. (2010), it contain a population of five types of pests leaf on four 
soybean genotypes (Wilis, IAC-100, IAC-80-596-2 dan W/80-2-4-20).  The count data of four replicates shown in 
Table 1 

Table 1. Population of Leaf Pests on some Soybean Genotype: a study of its endurance 

 
The deviance for a model of μ is defined as the Likelihood ratio of saturated model with the full model as follows 

(Pawitan, 2001): 

where  is the likelihood of the full model, and  is the Likelihood of the saturated models. Equation 
(14) means that from subtraction of the two log-likelihood value can be obtained deviance value of the model. Log-
Likelihood value on the null model would be subtracted by each model according to equation 14. Thus, we can 
obtain the deviance value of each model as follows: 

Table 2 Residual deviance of RCIM model 

 
The deviance of the model without interaction (leaf pests and genes) can be obtained by subtracting the residual 

deviance of Null Model by residual deviance in each model. Model’s deviance of GAMMI1 obtained from a 
subtracting the residual deviance of Rank = 0 model by it’s of Rank = 1 model, that is 18.58113 - 3.89752 = 
14.68361 with 12-6 = 6 degree of freedom. We can obtain it for GAMMI2model as well. Finally, from the whole 
RCIM model, either for GAMMI2 and GAMMI1 models, the deviance analysis presented in Table 3 or4 show that 
the GAMMI2 model meets the eligibility due to the ratio of the average deviance on GAMMI2 is significant at p-
value less than 0.06. This means that the GAMMI2 model is the best model, so the GAMMI2 model with the 
Poisson distribution can be fitting the data well. This result identical to that obtained by Hadi et al. (2010) using 
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GAMMI Van Eeuwijk, which was run by GENSTAT.  The Biplot models was carried out based on rank = 2 RCIM 
model, it performed by SVD reparameterization (fig. 2). It was statistically verified that there is clearly no difference 
to Hadi et al. (2010).  

Table 3 Analysis Deviance of The RCIM Models for testing Rank = 2 (or GAMMI 2) 

Table 4 Analysis Deviance of The RCIM Models for testing Rank = 1 (or GAMMI 1) 

The Biplot shows that genotypes W / 80 and IAC-80 were more likely to be susceptible to Bemissia rather than to 
Agromyza, and also with genotype IAC-100.  Genotype W/80 seems had endurance to all types of leaf pests unless 
to Emproasca, it is contrary to IAC-100 that specifically susceptible to Agromyza.  Biplot of interaction in log-
bilinear model may lead us to find a pair(s) of soybean genotypes and a pair(s) of pest type’s population which has 
odds ratio equal to one or log odds ratio equal to zero. On our data, we find that these pairs are genotypes W/80 and 
IAC-80, and pest Bemissia and Agromyza. If ones delivery straight-line these pairs of genotypes and pests, it seem 
“almost” perpendicular one to another. It means that log odds ratio “tends” to zero.  Original data in Table 1 can 
verify that odds ratio between both of them tends to unity. It means that W/80 and IAC-80 has the same tendency, 
both are more susceptible to be attacked by Bemissia than the Agromyza in the same scale. 

 
Fig. 2. The Biplot of interaction models for dataset of Table 2 
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5.2.  Over dispersion, Outliers and Its Influence on RCIM Models 

There are two strong assumptions for Poisson model to be checked: (i) events occur independently over of time 
or exposure period, (ii) the conditional mean and variance are equal. In practice, the Poisson with a large numbers of 
count, usually have greater variance than the mean are described as over dispersion. Over dispersion and the offense 
homoscedasticity assumptions have the same impact in linear regression model. The model’s deviance become 
overestimated, it is greater than it should be. 

Over dispersion the Poisson regression can be detected by checking the Pearson Chi-Square (χ2) value or the 
deviance value divided by degrees of freedom. According to Hilbe (2011), a model may be over dispersed if the 
value of the Pearson (or χ2) statistic divided by the degrees of freedom (df) is greater than 1.0. The ratio of either is 
called the estimated dispersion parameter (or dispersion, for short).Small amounts of over dispersion are of little 
concern; however, if the dispersion statistic is greater than 1.25 for moderate sized models, then a correction may be 
warranted. Models with large numbers of observations maybe over dispersed with a dispersion statistic of 1.05.The 
common causes that can lead to over dispersion is additional variation to the mean or heterogeneity (particularly 
may cause by outlier(s)), here a Negative Binomial model is often used. 

Second observational data is the number of pods from 15 strains of soybeans grown in 8 different locations, 
which is available in the form of a matrix size of 15 × 8. Based on this data the simulation was conducted by adding 
the outliers in the data to show whether it will increase the estimated value of dispersion. The addition of outliers in 
the data was done by firstly calculating the standard deviation of each row and column then adds it up to the 
maximum value in each row and column. Mathematically, for the row it can be written as . 
We add 20 outliers observation in row and column of the data matrix, so we have a simulated dataset of 19.2% 
outliers in the matrix data.  In the last part of this section we conducted another simple scheme of simulation by 
adding outliers with increment of0.8%, 1.7%, 2.5%, . . , 19.2% of the 15 × 8 matrix data. 

Table 5 shows that there is a potential over dispersion problem either in the real data or in the simulated data 
which are used in this study. On both data, the deviance divided by its degrees of freedom is greater than 1. The 
simulated-data containing outlier has a value greater than the dispersion of real data. Table 5 indicates that outliers 
may cause over dispersion on RCIM modeling. RCIM Poisson with rank = 1 to rank = 4 fails to model the counting 
data containing outliers, since it’s estimated value of dispersion parameter is larger than 1 or it was already occurred 
an over dispersion. However, it should be noted here that the outlier increase slightly estimated dispersion 
parameters on RCIM Poisson with rank = 6. It was only increasing from 0.487 on real data to 0.562 for simulated 
data with outliers in it.  In other way, one can say that with increasing rank of model on RCIM influence of outliers 
to over dispersion getting less. The over dispersion problems at low rank of the RCIM can be overcome by using a 
negative binomial regression in RCIM scheme. Poisson regression was a special form of negative Binomial 
Regression with α = 0. 

Table 5 Estimated value of dispersion parameter 

Model 
Real Data  Simulated Data with Outliers 

Deviance Df Dispersion Deviance df Dispersion 

Rank  170.615 20 8.531 201.868 20 10.093 

Rank  99.284 18 5.516 119.123 18 6.618 

Rank  61.391 16 3.837 69.151 16 4.322 

Rank  30.348 14 2.168 35.177 14 2.513 

Rank  14.192 12 1.183 16.680 12 1.390 

Rank  4.869 10 0.487 5.617 10 0.562 

In the Poisson regression model, or generally in additive model, over dispersion will reflect badly on the testing 
of the model parameter, in this case, the log-likelihood value. As shown in Table 6, the value of the log-likelihood 
models of all rank tends to decrease by the presence of outliers. But there is something interesting in Negative 
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Binomial (NB) regression. First, either in the real data which is over dispersed or in simulated data with outliers, NB 
regression improve RCIM model to fit the data better than Poisson. It always successful to increase the log-
likelihood model, especially for model with low rank or for the additive model in general, i.e. (i) model null, (ii) 
additive models with rows or columns component only, or (iii) models with additive components rows and columns 
but without interaction (rank = 0). On RCIM models with rank = 1, it clearly appears that the negative binomial 
model can only improve the Poisson models of over dispersed data by increasing the log-likelihood values just 
slightly. While for the rank = 2 or more complex model, RCIM Poisson can fit the data properly, as good as done by 
RCIM NB models, regardless of estimate of dispersion parameter still larger than 5.  This indicates that RCIM or 
GAMMI model has ability to fit Poisson over dispersed data by additional multiplicative terms. Certainly with that, 
the model becomes more complicated. 

Table 6 Log-likelihood of RCIM models affected by outliers 

Table 7 The MSE of RCIM model with poison and negative binomial distribution 

Data Model Poisson Negative Binomial 

Real Data 

RCIM  0,021562830 0,020838680 

RCIM  0,012077778 0,012077740 

RCIM  0,008437611 0,008434989 

RCIM  0,005427515 0,005427515 

RCIM  0,002552477 0,002552321 

RCIM  0,000600769 0,000600608 

Simulated 
Data 

RCIM  0,025835524 0,024468820 

RCIM  0,014287709 0,014146090 

RCIM  0,009145594 0,009145374 

RCIM  0,005893773 0,005893766 

RCIM  0,002428332 0,002428258 

RCIM  0,001028197 0,001028055 
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Second, on simulated data with outliers that has more severe illness condition of over dispersion, NB models play 
an important role to improve the goodness of fit by increasing the value of the log-likelihoods, significantly. While 
an additional complexity of the RCIM (or GAMMI) model in its interaction terms has demonstrated that it has 
sufficient capability to fit over dispersed counting data. Generally we got similar information by comparing MSE of 
Poisson models versus the NB’s on simulated data with outliers. Table 7 shows that, in general, the NB always has 
slightly smaller MSE than Poisson models, this shown in fitting real data (over dispersed) either simulated data with 
outliers. Particularly, on the data that has more severe illness condition of over dispersion by outliers, the difference 
of the MSE between Poisson models and NB models seem larger than it on real data. 

 

 
Fig. 3. The estimated dispersion parameter affected by outliers observation on both Poisson and NB model at rank = 1, 2, 3, 4. 

Figure 3 shows the effect of outliers to the estimated dispersion parameter of Poisson and NB model at rank=1, 2, 
3, 4. It can be noted here that at low rank (rank = 1 and 2), with some outliers, estimated dispersion parameter tend 
to be increase rapidly, and Poisson model seem get a worse consequence, since it has a greater estimated than NB 
model. Contrary to that, at higher rank it seems that the influence of outliers is felt equally by Poisson and NB.The 
influence of outliers to the MSE was shown in Figure 4. It shows the same phenomenon to figure 3. Both figure 3 
and 4 indicate that over dispersion of count data can be handled by add an extra multiplicative term of GAMMI 
model (or use higher rank of RCIM).  
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Fig. 4. The MSE of both Poisson and NB model at rank = 1, 2, 3, 4 affected by outliers observation. 

6. Concluding Remark 

We here have some remark concluding our discussion that is: (1) the RCIM by VGAM package of R can be 
model the GEI of count data, as well as GAMMI model of Van Eeuwijk. It also provides the deviance analysis as 
well. (2) RCIM for GEI of Poisson count data was also facing the problem of over dispersion but it was shown that 
one can use the NB to model over dispersed count data. (3) over dispersion in count data may be caused by outliers. 
Outliers tend to increase the estimated dispersion parameter, and also increase the MSE of the model, both Poisson 
and NB. (4) but this is not worrisome, since we can model over dispersed Poisson count data by adding an extra 
multiplicative term of GAMMI (or by using higher rank of RCIM) with Poisson log-link. With this Poisson log-link, 
we stay in the transformation scale of the log link function, so we can use the Biplot interpretation directly to its log 
odds ratio, as our illustrative example of Biplot above. 
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