Series: Advances in Computer Science Research

Proceedings of the International Conference on
 Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021)

```
Search
+ Advanced search
    SEARCH
```

45 articles

Proceedings Article
On Ramsey $\left(m K_{2}, P_{4}\right)$-Minimal Graphs
Asep Iqbal Taufik, Denny Riama Silaban, Kristiana Wijaya

ATLANTIS	ABOUT	NEWS	PRODUCTS \& SERVICES	POLICIES		Y AFFILIATIONS	CONTACT
Part of SPRINGER NATURE	PROCEEDINGS		JOURNALS		B00KS	Search	Q

Proceedings of the International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021)

```
PREVIOUS VOLUME IN SERIES
```

The International Conference on Mathematics, Geometry, Statistics, and Computation (ICMaGeStiC) was held on November 27th, 2021, Jember, East Java, Indonesia. This conference is an excellent forum for the researchers, the lecturers, and the practitioners in Mathematics, to exchange findings and research ideas on mathematics and science education and to build networks for further collaboration.

Please click here for the conference website.

MaGeStiC 2021 Committee are willing to express our sincere thanks to all the powerful supports from all the contributors and the reviewers and the kind publications of Atlantis Press for all accepted papers. Sincerely hope for more academic cooperation with all scholars and scientists of the related fields in the future.

MaGeStiC 2021 International Committee

Bibliographic information:

Title	Proceedings of the International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021)
Editors	Kristiana Wijaya, Universitas Jember, Indonesia
Part of series	ACSR
Volume	96
ISSN	$2352-538 \mathrm{X}$
ISBN	$978-94-6239-529-9$

+ Advanced search
SEARCH
45 articles

Proceedings Article

On Ramsey Minimal Graphs for a 3-Matching Versus a Path on Five Vertices

Kristiana Wijaya, Edy Tri Baskoro, Asep Iqbal Taufik, Denny Riama Silaban
Let G, H, and F be simple graphs. The notation $F \rightarrow(G, H)$ means that any red-blue coloring of all edges of F contains a red copy of G or a blue copy of H. The graph F satisfying this property is called a Ramsey (G, H)-graph. A Ramsey (G, H)-graph is called minimal if for each edge $e \in E(F)$, there exists...

+ Article details
+ Download article (PDF)

Proceedings Article

Ramsey Graphs for a Star on Three Vertices Versus a Cycle

Maya Nabila, Edy Tri Baskoro, Hilda Assiyatun

Let G, A, and B be simple graphs. The notation $G \rightarrow(A, B)$ means that for any red-blue coloring of the edges of G, there is a red copy of A or a blue copy of B in G. A graph G is called a Ramsey graph for (A, B) if $G \rightarrow(A, B)$. Additionally, if the graph G satisfies that $G-e \rightarrow /(A, B)$, for any e $\in E(G)$,...

+ Article details
+ Download article (PDF)

Proceedings Article

On Ramsey $\left(m K_{2}, P_{4}\right)$-Minimal Graphs
Asep Iqbal Taufik, Denny Riama Silaban, Kristiana Wijaya
Let F, G, and H be simple graphs. The notation $F \rightarrow(G, H)$ means that any red-blue coloring of all edges of F will contain either a red copy of G or a blue copy of H. Graph F is a Ramsey (G, H)-minimal if $\mathrm{F} \rightarrow(\mathrm{G}, \mathrm{H})$ but for each $e \in \mathrm{E}(\mathrm{F}),(F-e) \rightarrow(\mathrm{G}, \mathrm{H})$. The set $\mathscr{R}(\mathrm{G}, \mathrm{H})$ consists of all Ramsey (G,...

Article details
Download article (PDF)

Spectrum of Unicyclic Graph

Budi Rahadjeng, Dwi Nur Yunianti, Raden Sulaiman, Agung Lukito
Let G be a simple graph with n vertices and let $A(G)$ be the $(0,1)$-adjacency matrix of G. The characteristic polynomial of the graph G with respect to the adjacency matrix $A(G)$, denoted by $\chi(\mathrm{G}, \lambda)$ is a determinant of $(\lambda \mathrm{I}-\mathrm{A}(\mathrm{G})$), where I is the identity matrix. Suppose that $\lambda 1 \geq \lambda 2 \geq$ $\cdots \geq \lambda$ n are the adjacency...

+ Article details
(+) Download article (PDF)

Proceedings Article

Distinguishing Number of the Generalized Theta Graph

Andi Pujo Rahadi, Edy Tri Baskoro, Suhadi Wido Saputro

A generalized theta graph is a graph constructed from two distinct vertices by joining them with 1 (>=3) internally disjoint paths of lengths greater than one. The distinguishing number $D(G)$ of a graph G is the least integer d such that G has a vertex labelling with d labels that is preserved only...

+ Article details
(Download article (PDF)
Proceedings Article

Edge Magic Total Labeling of (n, t)-Kites

Inne Singgih
An edge magic total (EMT) labeling of a graph $G=(V, E)$ is a bijection from the set of vertices and edges to a set of numbers defined by $\lambda: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots,|\mathrm{~V}|+|\mathrm{E}|\}$ with the property that for every $x y \in E$, the weight of $x y$ equals to a constant k, that is, $\lambda(x)+\lambda(y)+\lambda(x y)=k$ for some integer...

+ Article details
Download article (PDF)

Proceedings Article

Further Result of H-Supermagic Labeling for Comb Product of Graphs

Ganesha Lapenangga P., Aryanto, Meksianis Z. Ndii
Let $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right)$ be a connected graph. H-magic labeling of graph G is a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots,|V(G)|+|E(G)|\}$ such that for every subgraph H'of G isomorphic to $H, \sum v \in V\left(H^{\prime}\right) f(v)+\sum e \in E\left(H^{\prime}\right) f(e)=k$. Moreover, it is H-supermagic labeling if $f(V)=\{1,2, \ldots$, $|\mathrm{V}|\}$....

+ Article details
\oplus Download article (PDF)

Labelling of Generalized Friendship, Windmill, and Torch Graphs with a Condition at Distance Two

Ikhsanul Halikin, Hafif Komarullah
A graph labelling with a condition at distance two was first introduced by Griggs and Robert. This labelling is also known as $\mathrm{L}(2,1)$-labelling. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a non-multiple graph, undirected, and connected. An $\mathrm{L}(2,1)$-labelling on a graph is defined as a mapping from the vertex set $\mathrm{V}(\mathrm{G})$ to the set...
\oplus Article details
Download article (PDF)

Proceedings Article

On the Minimum Span of Cone, Tadpole, and Barbell Graphs

Hafif Komarullah, Ikhsanul Halikin, Kiswara Agung Santoso
Let G be a simple and connected graph with p vertices and q edges. An $L(2,1)$-labelling on the graph G is a function $f: V(G) \rightarrow\{0,1, \ldots, k\}$ such that every two vertices with a distance one receive labels that differ by at least two, and every two vertices at distance two receive labels that differ by at...

+ Article details
+ Download article (PDF)
Proceedings Article

$L(2,1)$ Labeling of Lollipop and Pendulum Graphs
 Kusbudiono, Irham Af'idatul Umam, Ikhsanul Halikin, Mohamat Fatekurohman

One of the topics in graph labeling is $\mathrm{L}(2,1)$ labeling which is an extension of graph labeling. Definition of $L(2,1)$ labeling is a function that maps the set of vertices in the graph to nonnegative integers such that every two vertices u, v that have a distance one must have a label with a difference...

+ Article details
+ Download article (PDF)
Proceedings Article

Magic and Antimagic Decomposition of Amalgamation of Cycles
 Sigit Pancahayani, Annisa Rahmita Soemarsono, Dieky Adzkiya, Musyarofah

Consider $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ as a finite, simple, connected graph with vertex set V and edge set E . G is said to be a decomposable graph if there exists a collection of subgraphs of G, say $\mathscr{H}=\{\mathrm{Hi} \mid 1 \leq \mathrm{i}$ $\leq n\}$ such that for every $\mathrm{i} \neq \mathrm{j}, \mathrm{Hi}$ is isomorphic to $\mathrm{Hj}, \mathrm{U} \mathrm{i}=\ln \mathrm{Hi}=\mathrm{G}$ and should satisfy that $\mathrm{E}(\mathrm{Hi})$ $\cap \mathrm{E}(\mathrm{Hj})$..

+ Article details
+ Download article (PDF)
Proceedings Article

A Minimum Coprime Number for Amalgamation of Wheel

Hafif Komarullah, Slamin, Kristiana Wijaya
Let G be a simple graph of order n. A coprime labeling of a graph G is a vertex labeling of G with distinct positive integers from the set $\{1,2, \ldots, k\}$ for some $\mathrm{k} \geq \mathrm{n}$ such that any adjacent labels are relatively prime. The minimum value of k for which G has a coprime labelling, denoted as $\mathfrak{p r}(\mathrm{G})$, is...

+ Article details
+ Download article (PDF)

Rainbow Connection Number of Shackle Graphs

M. Ali Hasan, Risma Yulina Wulandari, A.N.M. Salman

Let G be a simple, finite and connected graph. For a natural number k, we define an edge coloring $\mathrm{c}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{k}\}$ where two adjacent edges can be colored the same. A u-v path (a path connecting two vertices u and v in $V(G))$ is called a rainbow path if no two edges of path receive the same color....

+ Article details
+ Download article (PDF)
Proceedings Article

Local Antimagic Vertex Coloring of Corona Product Graphs $P_{n} \circ P_{k}$

Setiawan, Kiki Ariyanti Sugeng

Let $G=(V, E)$ be a graph with vertex set V and edge set E. A bijection map $f: E \rightarrow\{1,2, \ldots,|E|\}$ is called a local antimagic labeling if, for any two adjacent vertices u and v, they have different vertex sums, i.e. $w(u) \neq w(v)$, where the vertex sum $w(u)=\Sigma e \in E(u) f(e)$, and $E(u)$ is the set of edges...

+ Article details
+ Download article (PDF)

Proceedings Article

Local Antimagic Vertex Coloring of Gear Graph

Masdaria Natalina Br Silitonga, Kiki Ariyanti Sugeng

Let $G=(V, E)$ be a graph that consist of a vertex set V and an edge set E. The local antimagic labeling f of a graph G with edge-set E is a bijection map from E to $\{1,2, \ldots,|E|\}$ such that $w(u)$ $\neq w(v)$, where $w(u)=\sum e \in E(u) f(e)$ and $E(u)$ is the set of edges incident to u. In this labeling, every vertex...
© Article details

+ Download article (PDF)
Proceedings Article

Implementations of Dijkstra Algorithm for Searching the Shortest Route of Ojek Online and a Fuzzy Inference System for Setting the Fare Based on Distance and Difficulty of Terrain (Case Study: in Semarang City, Indonesia)

Vani Natali Christie Sebayang, Isnaini Rosyida
Ojek Online is a motorcycle taxi that is usually used by people that need a short time for traveling. It is one of the easiest forms of transportation, but there are some obstacles in hilly areas such as Semarang City. The fare produced by online motorcycle taxis is sometimes not in accordance with the...

+ Article details
+ Download article (PDF)

Honorary Chair	Natanael Karjanto
Kusbudiono	Sungkyunkwan University, South Korea
Universitas Jember, Indonesia	
	Novi Herawati Bong
Conference General Chair	University of Delaware, United States
Kiswara Agung Santoso	Technical Committee
Universitas Jember, Indonesia	Abduh Riski
Steering Committee	Universitas Jember, Indonesia
I Made Tirta	Ikhsanul Halikin
Universitas Jember, Indonesia	Universitas Jember, Indonesia
Moh. Hasan	Bagus Juliyanto
Universitas Jember, Indonesia	Universitas Jember, Indonesia
Inne Singgih	Millatuz Zahroh
University of Cincinnati, United States	Universitas Jember, Indonesia
Organizing Committtee	
Kristiana Wijaya Firdaus Ubaidillah	
Universitas Jember, Indonesia	Universitas Jember, Indonesia
Yuliani Setia Dewi	
Universitas Jember, Indonesia	
	Universitas Jember, Indonesia
Alfian Futuhul Hadi	Treasurer
Universitas Jember, Indonesia	
	Ahmad Kamsyakawuni
Mohamat Fatekurohman	Universitas Jember, Indonesia
Universitas Jember, Indonesia	
	Dian Anggraeni
Agustina Pradjaningsih	Universitas Jember, Indonesia
Universitas Jember, Indonesia	

On Ramsey ($m K_{2}, P_{4}$)-Minimal Graphs

Asep Iqbal Taufik ${ }^{1}$, Denny Riama Silaban ${ }^{1, *}$, Kristiana Wijaya ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Sciences
Universitas Indonesia, Depok 16424, Indonesia
${ }^{2}$ Graph, Combinatorics, and Algebra Research Group, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Jember, Jember 68121, Indonesia
*Corresponding author. Email: denny@sci.ui.ac.id

Abstract

Let F, G, and H be simple graphs. The notation $F \rightarrow(G, H)$ means that any red-blue coloring of all edges of F will contain either a red copy of G or a blue copy of H. Graph F is a Ramsey (G, H)-minimal if $F \rightarrow(G, H)$ but for each e $\in E(F),(F-e) \nrightarrow(G, H)$. The set $\mathcal{R}(G, H)$ consists of all Ramsey (G, H)-minimal graphs. Let $m K_{2}$ be matching with m edges and P_{n} be a path on n vertices. In this paper, we construct all disconnected Ramsey minimal graphs, and found some new connected graphs in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$. Furthermore, we also construct new Ramsey minimal graphs in $\mathcal{R}((m+$ 1) K_{2}, P_{4}) from Ramsey minimal graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ for $m \geq 4$, by subdivision operation.

Keywords: Matching, Path, Ramsey minimal graphs, Subdivision.

1. INTRODUCTION

Let F, G, and H be simple graphs. The notation $F \rightarrow$ (G, H) means that in any red-blue coloring of F, there exists a red copy of G or a blue copy of H as a subgraph. A (G, H)-coloring of F is a red-blue coloring of F such that neither a red G nor a blue H occurs. A graph F is said to be a Ramsey (G, H)-minimal if $F \rightarrow(G, H)$ but for any $e \in E(F)$, there exists a (G, H)-coloring on graph $F-e$. The set of all Ramsey (G, H)-minimal graphs is denoted by $\mathcal{R}(G, H)$.

The determination and the characterization of all graphs F belonging to $\mathcal{R}(G, H)$ are the main problems in Ramsey (G, H)-minimal graphs. Some papers discuss the problem of determining all graphs in $\mathcal{R}(G, H)$. Burr et al. [1] proved that if H is any graph then $\mathcal{R}\left(m K_{2}, H\right)$ is a finite set. One of challenging problems in Ramsey Theory is to characterize all graphs in the set $\mathcal{R}\left(m K_{2}, H\right)$ for a given graph H.

Let K_{n}, C_{n}, and P_{n} be a complete graph, a cycle, and a path on n vertices, respectively. The characterization of Ramsey minimal graphs belonging to $\mathcal{R}\left(2 K_{2}, K_{4}\right)$ can be seen in [2, 3]. The set $\mathcal{R}\left(2 K_{2}, P_{3}\right)$ is determined by Mengersen and Oeckermann [4]. Mushi and Baskoro [5] determined all graphs in $\mathcal{R}\left(3 K_{2}, P_{3}\right)$. Furthermore, the set $\mathcal{R}\left(4 K_{2}, P_{3}\right)$ given by Wijaya et al. [6].

Wijaya et al. [7] showed that the cycle C_{s} belongs to $\mathcal{R}\left(m K_{2}, P_{n}\right)$ if and only if $s \in[m n-n+1 \leq s \leq$
$m n-1$]. Recently Wijaya et al. [8] constructed a family of Ramsey $\left(m K_{2}, P_{4}\right)$ minimal graphs from Ramsey $\left((m-1) K_{2}, P_{4}\right)$ minimal graph by doing 4 times subdivision on any edge belongs to a cycle in a Ramsey ($m K_{2}, P_{4}$)-minimal graph. Furthermore, Wijaya et al. [9] constructed a class of disconnected Ramsey ($m K_{2}, H$)minimal graphs from a union of two or more connected graphs. Motivated by result in [9], in this paper, we focus on determining all disconnected graphs in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$, and found some connected graphs belonging to Ramsey ($3 K_{2}, P_{4}$)-minimal. In addition, we also construct some graph in $\mathcal{R}\left((m+1) K_{2}, P_{4}\right)$ by doing subdivisions to graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ for $\mathrm{m} \geq 4$.

2. PRELIMINARIES

Let $G=(V, E)$ be graph. If $U \subseteq V$, then $G-U$ is a graph obtained from G by deleting vertices in U and all incident edges. If $H \subseteq G$, then $G-E(H)$ is a graph obtained from G by deleting edges in H. When $U=\{v\}$ and $E(H)=\{e\}$, for simplicity, we write $G-v$ and $G-$ e, respectively.

Lemma 1 and 2 provide the necessary and sufficient conditions for any graph in $\mathcal{R}\left(3 K_{2}, H\right)$ for any graph H.

Lemma 1. [9, 10] For any fixed graph H, the graph $F \rightarrow$ ($3 K_{2}, H$) holds if and only if the following four conditions are satisfied: (i) $F-\{u, v\} \supseteq H$ for each $u, v \in V(F)$, (ii) $F-u-E\left(K_{3}\right) \supseteq H$ for each $u \in V(F)$
and a triangle K_{3} in F, (iii) $F-E\left(2 K_{3}\right) \supseteq H$ for every two triangles in F, (iv) $F-E\left(S_{5}\right) \supseteq H$ for every induced subgraph with 5 vertices S in F.

Lemma 2. [9, 10] Let H be a simple graph. Suppose F is a Ramsey $\left(3 K_{2}, H\right)$-graph. F is said to be minimal if for each $e \in E(F)$ satisfy $(F-e) \leftrightarrow\left(3 K_{2}, H\right)$, that is (i) $(F-e)-\{u, v\} \nsupseteq H$ for each $u, v \in V(F)$, ii) $F-$ $u-E\left(K_{3}\right) \nsupseteq H$ for each $u \in V(F)$ and a triangle K_{3} in F, (iii) $F-E\left(2 K_{3}\right) \nsupseteq H$ for every two triangles in F, (iv) $F-E\left(S_{5}\right) \nsupseteq H$ for every induced subgraph with 5 vertices S in F.

Any graph satisfying all conditions in Lemma 1 and 2 is a Ramsey $\left(3 K_{2}, H\right)$-minimal graph. The condition stated in Lemma 2 is called the minimality property of a graph in $\mathcal{R}\left(3 K_{2}, H\right)$. In [10], Wijaya et al. defined $S F(e, t)$ as a t times subdivision of edge e in the connected graph F, and gave Theorem 3. Moreover, Baskoro and Yulianti [7] gave Theorem 4.

Theorem 3. Let F be a connected graph and $m \geq 2$ be an integer. Suppose α is one non-pendant edge of F. If $F \in$ $\mathcal{R}\left(m K_{2}, P_{4}\right)$, then $S F(\alpha, 4) \in \mathcal{R}\left((m+1) K_{2}, P_{4}\right)$.

Theorem 4. [7] $\mathcal{R}\left(2 K_{2}, P_{4}\right)=\left\{2 P_{4}, C_{7}, C_{6}, C_{5}, C_{4}^{+}\right\}$, where C_{4}^{+}is a C_{4} with additional two pendant vertices as in Figure 1

Figure 1 All graphs in $\mathcal{R}\left(2 K_{2}, P_{4}\right)$.

3. MAIN RESULTS

3.1 Disconnected Graph in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$

In this section, we give all disconnected graphs belonging to $\mathcal{R}\left(3 K_{2}, P_{4}\right)$.

Theorem 5. $G \cup P_{4} \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$ if and only if $G \in$ $\mathcal{R}\left(2 K_{2}, P_{4}\right)$.

Proof. (\Leftarrow) We will show that for any $G \in \mathcal{R}\left(2 K_{2}, P_{4}\right)$, then $G \cup P_{4} \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$. Since $G \in \mathcal{R}\left(2 K_{2}, P_{4}\right)$, then $G \rightarrow\left(2 K_{2}, P_{4}\right)$ and $G-e \rightarrow\left(2 K_{2}, P_{4}\right)$ for any $e \in E(G)$. Since $G \rightarrow\left(2 K_{2}, P_{4}\right)$, by coloring all edges incident to any vertex in G produces a blue copy of P_{4} subset of G. Thus, any red coloring of two independent edges in G produces blue copy of P_{4} subset of $G \cup P_{4}$. Moreover,
any red coloring of one edge in G and one edge in P_{4} produces a blue copy of P_{4} subset of $G \cup P_{4}$. Hence, $G \cup$ $P_{4} \rightarrow\left(3 K_{2}, P_{4}\right)$. Let $e_{1} \in E(G)$ and $e_{2} \in E\left(P_{4}\right)$. Since $G-e_{1} \rightarrow\left(2 K_{2}, P_{4}\right)$, there exists a red-blue coloring of $G-e_{1}$ where a red K_{2} occurs and blue P_{4} cannot be found. Therefore, there exists a red-blue coloring on $G \cup$ $P_{4}-e_{1}$ where neither a red $3 K_{2}$ nor a blue P_{4} occurs. Moreover, any red coloring of two independent edges in $G \subset G \cup P_{4}-e_{2}$ produces red-blue coloring of $G \cup P_{4}-$ e_{2} where neither a red $3 K_{2}$ nor a blue P_{4} occurs. Hence, $G \cup P_{4}-e \nrightarrow\left(3 K_{2}, P_{4}\right)$. Since $G \cup P_{4} \rightarrow\left(3 K_{2}, P_{4}\right)$ and $G \cup P_{4}-e \nrightarrow\left(3 K_{2}, P_{4}\right)$ for any $e \in E(G)$, then $G \cup$ $P_{4} \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$.
(\Rightarrow) If $G \cup P_{4} \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$, then $G \in \mathcal{R}\left(2 K_{2}, P_{4}\right)$. For a contradiction, suppose that $G \notin \mathcal{R}\left(2 K_{2}, P_{4}\right)$. Then, we have two cases.

Case 1. Suppose $G \rightarrow\left(2 K_{2}, P_{4}\right)$. Then there exist a $\left(2 K_{2}, P_{4}\right)$-coloring of G. Extend the coloring to color $G \cup P_{4}$ and color the edges of P_{4} by red. Thus, there exist a ($3 K_{2}, P_{4}$)-coloring of $G \cup P_{4}$, which contradicts the fact that $G \cup P_{4} \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$.

Case 2. Suppose $G \rightarrow\left(2 K_{2}, P_{4}\right)$, but G is not minimal. It means there exists a graph $H \in \mathcal{R}\left(2 K_{2}, P_{4}\right)$ where $G \supset$ H. Thus $G \cup P_{4} \supset H \cup P_{4}$. Since $H \in \mathcal{R}\left(2 K_{2}, P_{4}\right)$, then $H \cup P_{4} \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$ by the first case, which contradicts to the minimality of $G \cup P_{4}$.

Therefore, from two cases above, we conclude that $G \cup P_{4} \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$ if and only if $G \in \mathcal{R}\left(2 K_{2}, P_{4}\right)$.

Theorem 6. Let H be a disconnected graph in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$. Therefore, one component of H must be isomorphic to P_{4}.

Proof. Suppose to the contrary that $H=H_{1} \cup H_{2}$ and none of H_{1} or H_{2} is isomorphic to P_{4}. Since there is no component in H isomorphic to P_{4}, there is no component P_{4} in either H_{1} and H_{2}. Every vertex in H is in a connected subgraph containing a P_{4}. Then, both H_{1} and H_{2} contain P_{4}. Therefore, there will be edges $e_{1} \in E\left(H_{1}\right)$ and $e_{2} \in E\left(H_{2}\right)$ such that $P_{4} \subseteq H_{1}-e_{1}$ and $P_{4} \subseteq$ $H_{2}-e_{2}$. Since $H \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$, there exist a ($3 K_{2}, P_{4}$)coloring of $H-e_{1}$ and $H-e_{2}$, say J_{1} and J_{2}, respectively. Under $J_{1}, H_{1}-e_{1}$ must contain at least one red edge and H_{2} must have a ($2 K_{2}, P_{4}$)-coloring. Since if it is not the case, $H-e_{1}$ would contain a red $3 K_{2}$ or blue P_{4}, a contradiction to the minimality of H. Moreover, under $J_{2}, H_{2}-e_{2}$ must contain at least one red edge and H_{1} must have a ($2 K_{2}, P_{4}$)-coloring. We conclude that we will obtain a ($3 K_{2}, P_{4}$)-coloring of H if we color H by using J_{1} on H_{2} and J_{2} on H_{1}, which contradicts to the minimality of H.

Therefore, if H is a disconnected graph in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$. Then, one component of H must be isomorphic to P_{4}.

Theorem 7. The graphs $C_{5} \cup P_{4}, C_{6} \cup P_{4}, C_{7} \cup P_{4}$, $C_{4}^{+} \cup P_{4}$ and $3 P_{4}$ are the only disconnected graphs in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$.
Proof. Using Theorem 6, if F is a disconnected graph in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$, then F must have a component isomorphic to P_{4}. Furthermore, Theorem 5 states that the other component of F must be a member of the set $\mathcal{R}\left(2 K_{2}, P_{4}\right)$. Moreover, Theorem 4 determined all graphs in $\mathcal{R}\left(2 K_{2}, P_{4}\right)$. Therefore, the graphs $C_{5} \cup P_{4}, C_{6} \cup P_{4}, C_{7} \cup$ $P_{4}, C_{4}^{+} \cup P_{4}$ and $3 P_{4}$ are the only disconnected graphs in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$.

3.2 Some Connected Graphs in $\mathcal{R}\left(3 \mathrm{~K}_{2}, \mathrm{P}_{4}\right)$

In this section, we determine some connected graphs other than the cycle belonging to $\mathcal{R}\left(3 K_{2}, P_{4}\right)$. First, we show that a graph F_{1}, depicted in Fig. 2, is a Ramsey ($3 K_{2}, P_{4}$)-minimal graph.

Proposition 8. Let F_{1} be a graph as depicted in Fig. 2. The graph F_{1} is a Ramsey ($3 K_{2}, P_{4}$)-minimal graph.

Figure 2 The graph $F_{1} \in\left(3 K_{2}, P_{4}\right)$.
Proof. First, we show that for any red-blue coloring of F_{1} contains a red $3 K_{2}$ or a blue P_{4}. We can see that $F_{1}-$ $\{u, v\}$ always contains a path P_{4} for any $u, v \in V\left(F_{1}\right)$. It can be verified that $F_{1}-E\left(S_{5}\right) \supseteq H$ for every induced subgraph with 5 vertices S in F_{1}. Since F_{1} has no triangle, then by Lemma 1 we have that $F_{1} \rightarrow\left(3 K_{2}, P_{4}\right)$. Next, we prove the minimality property. For any edge e we will show that $\left(F_{1}-e\right) \nrightarrow\left(3 K_{2}, P_{4}\right)$. If e is one of the dashed edges in Fig. 3, then each redblue coloring in Fig. 3 is the ($3 K_{2}, P_{4}$)-coloring on $F_{1}-$ e. Therefore $F_{1} \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$.

Figure 3 The ($3 K_{2}, P_{4}$)-colorings on $F_{1}-e$ if e is one of the dashed edges.

Suppose $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}\right\}$ is the vertex-set of C_{n}. We define a graph C_{n}^{a} as a graph obtained from C_{n} by adding a pendant vertex, say v_{n+1}, adjacent to v_{a} for $a \in[1, n]$. A graph $C_{n}^{a, b}$ is obtained from C_{n} by adding two pendant vertices, say v_{n+1} and v_{n+2}, adjacent to v_{a} and v_{b}, respectively, for $a, b \in$ [1, n]. Moreover, following Wijaya et al. in [10], we define special graphs with certain circumference. Let a, b, c, d, e, f, g and h be eight integers. Graph $C_{n}[(a, b)$, (c, d)] is obtained from C_{n} by adding two new edges $v_{a} v_{b}$ and $v_{c} v_{d}$. Graph $C_{n}[(a, b),(c, d),(e, f)]$ is obtained from C_{n} by adding three new edges $v_{a} v_{b}$, $v_{c} v_{d}$, and $v_{e} v_{f}$. Graph $C_{n}[(a, b),(c, d),(e, f),(g, h)]$ is obtained from C_{n} by adding four new edges $v_{a} v_{b}$, $v_{c} v_{d}, v_{e} v_{f}$, and $v_{g} v_{h}$. Now, consider graphs $C_{6}[(1,4),(2,5),(2,6),(3,5)], \quad C_{7}^{5}[(1,3),(2,6),(5,7)]$ $C_{7}[(1,5),(3,7)], C_{7}^{7}[(2,6),(3,7)], C_{8}[(2,7),(4,7),(6,8)]$ $C_{6}^{3,4}[(1,4),(3,6)]$ as depicted in Fig. 4. We will show that those graphs are Ramsey ($3 K_{2}, P_{4}$)-minimal.
Theorem 9. All graphs in Fig. 4 are Ramsey $\left(3 K_{2}, P_{4}\right)$ minimal graphs.

Proof. Let F be any graph in Fig. 4. It is easy to see that F satisfies all the conditions in Lemma 1. Then, $F \rightarrow$ ($3 K_{2}, P_{4}$) holds. Now, we will show the minimality property of F. Let e be any edge in F. If e is one of the dashed edges, then a ($3 K_{2}, P_{4}$)-coloring on $F-e$ is provided in Figures 5, 6, 7. 8, 9 and 10 respectively for all cases.

$C_{6}[(1,4),(2,5),(2,6),(3,5)]$

$C_{7}[(1,5),(3,7)]$

$C_{7}^{7}[(2,6),(3,7)]$

$C_{7}^{5}[(1,3),(2,6),(5,7)]$

$C_{8}[(2,7),(4,7),(6,8)]$

Figure 4 Six non-isomorphic graphs belonging to $\mathcal{R}\left(3 K_{2}, P_{4}\right)$ which is obtained from C_{n} with some cords or pendant vertices or combination both.

PRESS

Figure 5 The ($3 K_{2}, P_{4}$)-colorings on $C_{6}^{3,4}[(1,4),(3,6)]$ e if e is one of the dashed edges.

Figure 6 The $\left(3 K_{2}, P_{4}\right)$-colorings on $C_{6}[(1,4),(2,5),(2,6),(3,5)]-e$ if e is one of the dashed edges.

Figure 7 The $\left(3 K_{2}, P_{4}\right)$-colorings on $C_{7}^{5}[(1,3),(2,6),(5,7)]-e$ if e is one of the dashed edges.

Figure 8 The $\left(3 K_{2}, P_{4}\right)$-colorings on $C_{7}[(1,5),(3,7)]-e$ if e is one of the dashed edges.

Figure 9 The $\left(3 K_{2}, P_{4}\right)$-colorings on $C_{7}^{7}[(2,6),(3,7)]-e$ if e is one of the dashed edges.

Figure 10 The $\left(3 K_{2}, P_{4}\right)$-colorings on $C_{8}[(2,7),(4,7),(6,8)]-e$ if e is one of the dashed edges.

3.3 Some New Family of Ramsey ($\mathrm{mK}_{2}, \mathrm{P}_{4}$)Minimal Graphs

Recall that $S F(e, t)$ is a subdivision t times of edge e. In the previous section, it has been shown that $F_{1} \in$ $\mathcal{R}\left(3 K_{2}, P_{4}\right)$. According to Theorem 3, if we subdivide (4 times) any non-pendant edge of F_{1}, then we obtain three non-isomorphism graphs belonging to $\mathcal{R}\left(4 K_{2}, P_{4}\right)$, namely $S F_{1}\left(e_{1}, 4\right), \quad S F_{1}\left(e_{5}, 4\right)$, and $S F_{1}\left(e_{8}, 4\right)$ as depicted in Fig. 11 (4 vertices, green vertex). The proof of the minimality of a graph $S F_{1}\left(e_{5}, 4\right)$ can be seen in Fig.12, while the minimality of the other graphs can be represented in the same way.

Figure 11 Three non-isomorphism graphs belonging to ($3 K_{2}, P_{4}$) are obtained by subdividing four times (4 green vertices) a non-pendant edge of F_{1}.

Figure 12 The ($4 K_{2}, P_{4}$)-colorings on $S F_{1}\left(e_{5}, 4\right)-e$ if e is one of the dashed edges.

Now, we consider graph $C_{7}[(1,5),(3,7)]$. Since every edge in $C_{7}[(1,5),(3,7)]$ is non-pendant, then according to Theorem 3, the subdivision (4 times) on any edge of $C_{7}[(1,5),(3,7)]$ will produce three non-isomorphism graphs in $\mathcal{R}\left(4 K_{2}, P_{4}\right)$. By repeating this process for the resulting graphs, we obtain Corollary 10.

Corollary 10. Let $m \geq 4$ be an integer. Then, the graphs $C_{4 m-5}[(1,5),(3,7)], C_{4 m-5}[(1,4 m-7),(4 m-9,4 m-$ $5)]$, and $C_{4 m-5}[(1,4 m-7),(3,4 m-5)]$ are in $\mathcal{R}\left(m K_{2}, P_{4}\right)$.

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}$ be the vertex-set of $C_{7}[(1,5),(3,7)]$. The subdivision (4 vertices) on the edge $e=v_{1} v_{2}$ will result $C_{11}[(1,9),(7,11)]$. Since $C_{7}\left[(1,5),(3,7) \in \mathcal{R}\left(3 K_{2}, P_{4}\right)\right.$, then by Theorem 3, we have that $C_{11}[(1,9),(7,11)] \in \mathcal{R}\left(4 K_{2}, P_{4}\right)$. Furthermore, by subdividing (4 vertices) the edge $e=v_{1} v_{2}$ of $C_{11}[(1,9),(7,11)]$, we obtain $C_{15}[(1,13),(11,15)]$. By Theorem 3, we have that $C_{15}[(1,13),(11,15)] \in$ $\mathcal{R}\left(5 K_{2}, P_{4}\right)$. By continuing this process and applying it to the resulting graph, then we obtain the graph $C_{4 m-5}[(1,4 m-7),(4 m-9,4 m-5)]$. By Theorem 3, $C_{4 m-5}[(1,4 m-7),(4 m-9,4 m-5)] \in \mathcal{R}\left(m K_{2}, P_{4}\right)$.
Next, by subdivision (4 vertices) on the edge $e=v_{3} v_{4}$ of the graph $C_{7}[(1,5),(3,7)]$, repeatedly, and apply Theorem 3, we obtain $C_{4 m-5}[(1,4 m-7),(3,4 m-$ 5) $] \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. By doing the same way to the edge $e=v_{7} v_{1}$, we obtain $C_{4 m-5}[(1,5),(3,7)] \in \mathcal{R}\left(m K_{2}, P_{4}\right)$.

In the same way, we can construct some other graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ from some graph in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$, namely, $C_{6}^{3,4}[(1,4),(3,6)] \quad, \quad C_{6}[(1,4),(2,5),(2,6),(3,5)]$, $C_{7}^{5}[(1,3),(2,6),(5,7)], \quad C_{7}^{7}[(2,6),(3,7)]$, and $C_{8}[(2,7),(4,7),(6,8)]$. Therefore, we have Corollary 11.
Corollary 11. Let $m \geq 4$ be an integer. Then the following 19 graphs are in $\mathcal{R}\left(m K_{2}, P_{4}\right)$.

1. $C_{4 m-6}^{3,4}[(1,4),(3,6)]$,
2. $C_{4 m-6}^{4 m-9,4 m-8}[(1,4 m-8),(4 m-9,4 m-6)]$,
3. $C_{4 m-6}^{3,4 m-8}[(1,4 m-8),(3,4 m-6)]$,
4. $C_{4 m-6}[(1,4 m-8),(4 m-10,4 m-7)$,
$(4 m-10,4 m-6),(4 m-9,4 m-7)]$,
5. $\quad C_{4 m-6}[(1,4 m-8),(2,4 m-7),(2,4 m-6)$,
$(4 m-9,4 m-7)]$,
6. $C_{4 m-6}[(1,4),(2,5),(2,6),(3,5)]$,
7. $C_{4 m-5}^{7}[(2,6),(3,7)]$,
8. $C_{4 m-5}^{4 m-5}[(2,4 m-6),(4 m-9,4 m-5)]$,
9. $C_{4 m-5}^{4 m-5}[(2,4 m-6),(3,4 m-5)]$,
10. $C_{4 m-5}^{4 m-5}[(2,6),(3,4 m-5)]$
11. $C_{4 m-5}^{5}[(1,3),(2,6),(5,7)]$,
12. $C_{4 m-5}^{4 m-7}[(1,4 m-9),(4 m-10,4 m-6),(4 m-$ $7,4 m-5)]$,
13. $C_{4 m-5}^{4 m-7}[(1,4 m-9),(2,4 m-6),(4 m-7,4 m-$ 5)],
14. $C_{4 m-5}^{4 m-7}[(1,3),(2,4 m-6),(4 m-7,4 m-5)]$,
15. $C_{4 m-5}^{5}[(1,3),(2,4 m-6),(5,4 m-5)]$,
16. $C_{4 m-5}^{5}[(1,3),(2,6),(5,4 m-5)]$,
17. $C_{4(m-1)}[(2,7),(4,7),(6,8)]$,
18. $C_{4(m-1)}[(2,4 m-5),(4 m-8,4 m-5)$,
$(4 m-6,4(m-1))]$,
19. $C_{4(m-1)}[(2,7),(4,7),(6,4(m-1))]$.

4. CONCLUSION

In this paper, we discuss the construction of a disconnected Ramsey minimal graph in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$ from Ramsey minimal graph ini $\mathcal{R}\left(2 K_{2}, P_{4}\right)$. We show that all disconnected graphs in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$ are $C_{5} \cup P_{4}, C_{6} \cup P_{4}$, $C_{7} \cup P_{4}, C_{4}^{+} \cup P_{4}$, and $3 P_{4}$. In addition, we give some connected graphs in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$, namely, F_{1}, $C_{6}[(1,4),(2,5),(2,6),(3,5)] \quad, \quad C_{7}^{5}[(1,3),(2,6),(5,7)]$ $C_{7}[(1,5),(3,7)], C_{7}^{7}[(2,6),(3,7)], C_{8}[(2,7),(4,7),(6,8)]$ $C_{6}^{3,4}[(1,4),(3,6)]$ as depicted in Fig. 4. Furthermore, we also construct nineteen new families of Ramsey ($m K_{2}, P_{4}$) minimal graphs for $m \geq 4$.

ACKNOWLEDGMENTS

Part of this research is funded by PUTI KIUniversitas Indonesia 2020 Research Grant No. NKB779/UN2.RST/HKP.05.00/ 2020.

AUTHORS' CONTRIBUTIONS

Asep Iqbal Taufik: Conceived and designed experiments; Conducted experiments; Wrote the paper original draft preparation.

Denny Riama Silaban: Supervision and validation; Wrote the paper - review and editing.

Kristiana Wijaya: Supervision and validation; Wrote the paper - review and editing.

REFERENCES

[1] S.A. Burr, P. Erdös, R.J. Faudree, R.H. Schelp, A class of Ramsey-finite graphs, Proc. 9th Conf. Combinatorics, Graph Theory, and Computing, pp. 171-180.
[2] E.T. Baskoro, K. Wijaya, On Ramsey $\left(2 K_{2}, K_{4}\right)$ minimal graphs, in: Mathematics in the 21st Century, Springer Proc. Math. Stat. 98 (2015) 1117.
[3] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, The complete list of Ramsey ($2 K_{2}, K_{4}$)minimal graphs, Electron. J. Graph Theory Appl. 3 (2) (2015) 216-227.

DOI: https://doi.org/10.5614/ejgta.2015.3.2.9
[4] I. Mengersen, J. Oeckermann, Matching-star Ramsey sets, Discrete Appl. Math. 95 (1999) 417-424.
[5] H. Muhshi, E.T. Baskoro, On Ramsey ($3 K_{2}, P_{3}$)minimal graphs, AIP Conf. Proc. 1450 (2012) 110-117. DOI: https://doi.org/10.1063/1.4724125
[6] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, On Ramsey ($4 K_{2}, P_{3}$)-minimal graphs, AKCE Int. J. Graphs Comb. 15 (2018) 174-186. DOI: https://doi.org/10.1016/j.akcej.2017.08.003
[7] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, On unicyclic Ramsey ($m K_{2}, P_{3}$) minimal graphs, Proc. Comput. Sci. 74 (2015) 10-14.
DOI: https://doi.org/10.1016/j.procs.2015.12.067
[8] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, Subdivision of graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$, Heliyon 6 (2020) e03843. DOI: https://doi.org/10.1016/j.heliyon.2020.e03843
[9] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, On Ramsey ($m K_{2}, H$)-minimal graphs, Graphs Comb. 33 (1) (2017) 233-243. DOI: https://doi.org/10.1007/s00373-016-1748
[10] E.T. Baskoro, L. Yulianti, On Ramsey minimal graphs for $2 K_{2}$ versus Pn, Adv. Appl. Discrete Math. 8(2) (2011) 83-90. DOI: http://www.pphmj.com/journals/articles/880.htm

