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ABSTRACT 
Let 𝐹, 𝐺, and 𝐻 be simple graphs. The notation 𝐹 → (𝐺, 𝐻) means that any red-blue coloring of all edges of 𝐹 will 
contain either a red copy of 𝐺 or a blue copy of 𝐻. Graph 𝐹 is a Ramsey (𝐺, 𝐻)-minimal if 𝐹 → (𝐺, 𝐻) but for each 𝑒 
∈ 𝐸(𝐹), (𝐹 − 𝑒) ↛ (𝐺, 𝐻). The set ℛ(𝐺, 𝐻) consists of all Ramsey (𝐺, 𝐻)-minimal graphs. Let 𝑚𝐾2 be matching with 
m edges and 𝑃𝑛 be a path on n vertices. In this paper, we construct all disconnected Ramsey minimal graphs, and found 
some new connected graphs in ℛ(3𝐾2, 𝑃4). Furthermore, we also construct new Ramsey minimal graphs in ℛ((𝑚 +

1)𝐾2, 𝑃4) from Ramsey minimal graphs in ℛ(𝑚𝐾2, 𝑃4) for 𝑚 ≥ 4, by subdivision operation. 

Keywords: Matching, Path, Ramsey minimal graphs, Subdivision. 

1. INTRODUCTION 

Let 𝐹, 𝐺, and 𝐻 be simple graphs. The notation 𝐹 →
(𝐺, 𝐻) means that in any red-blue coloring of 𝐹 , there 
exists a red copy of 𝐺 or a blue copy of 𝐻 as a subgraph. 
A (𝐺, 𝐻)-coloring of 𝐹 is a red-blue coloring of 𝐹 such 
that neither a red 𝐺 nor a blue 𝐻 occurs. A graph 𝐹 is said 
to be a Ramsey (𝐺, 𝐻)-minimal if 𝐹 → (𝐺, 𝐻)  but for 
any 𝑒 ∈ 𝐸(𝐹), there exists a (𝐺, 𝐻)-coloring on graph 
𝐹 − 𝑒. The set of all Ramsey (𝐺, 𝐻)-minimal graphs is 
denoted by ℛ(𝐺, 𝐻). 

The determination and the characterization of all 
graphs 𝐹 belonging to ℛ(𝐺, 𝐻) are the main problems in 
Ramsey (𝐺, 𝐻)-minimal graphs. Some papers discuss the 
problem of determining all graphs in ℛ(𝐺, 𝐻). Burr et al. 
[1] proved that if 𝐻  is any graph then ℛ(𝑚𝐾2, 𝐻) is a 
finite set. One of challenging problems in Ramsey 
Theory is to characterize all graphs in the set ℛ(𝑚𝐾2, 𝐻) 
for a given graph 𝐻.  

Let 𝐾𝑛, 𝐶𝑛, and 𝑃𝑛 be a complete graph, a cycle, and 
a path on 𝑛 vertices, respectively. The characterization of 
Ramsey minimal graphs belonging to ℛ(2𝐾2, 𝐾4) can be 
seen in [2, 3]. The set ℛ(2𝐾2, 𝑃3)  is determined by 
Mengersen and Oeckermann [4]. Mushi and Baskoro [5] 
determined all graphs in ℛ(3𝐾2, 𝑃3). Furthermore, the set 
ℛ(4𝐾2, 𝑃3) given by Wijaya et al. [6].  

Wijaya et al. [7] showed that the cycle 𝐶𝑠 belongs to 
ℛ(𝑚𝐾2, 𝑃𝑛)  if and only if 𝑠 ∈ [𝑚𝑛 − 𝑛 + 1 ≤ 𝑠 ≤

𝑚𝑛 − 1]. Recently Wijaya et al. [8] constructed a family 
of Ramsey (𝑚𝐾2, 𝑃4)  minimal graphs from Ramsey 
((𝑚 − 1)𝐾2, 𝑃4)  minimal graph by doing 4 times 
subdivision on any edge belongs to a cycle in a Ramsey 
(𝑚𝐾2, 𝑃4)-minimal graph. Furthermore, Wijaya et al. [9] 
constructed a class of disconnected Ramsey (𝑚𝐾2, 𝐻)-
minimal graphs from a union of two or more connected 
graphs. Motivated by result in [9], in this paper, we focus 
on determining all disconnected graphs in ℛ(3𝐾2, 𝑃4), 
and found some connected graphs belonging to Ramsey 
(3𝐾2, 𝑃4)-minimal. In addition, we also construct some 
graph in ℛ((𝑚 + 1)𝐾2, 𝑃4)  by doing subdivisions to 
graphs in ℛ(𝑚𝐾2, 𝑃4) for m ≥ 4. 

2. PRELIMINARIES 

Let 𝐺 = (𝑉, 𝐸) be graph. If 𝑈 ⊆ 𝑉, then 𝐺 − 𝑈 is a 
graph obtained from 𝐺 by deleting vertices in 𝑈 and all 
incident edges. If 𝐻 ⊆ 𝐺,  then 𝐺 − 𝐸(𝐻)  is a graph 
obtained from 𝐺 by deleting edges in 𝐻. When 𝑈 = {𝑣} 
and 𝐸(𝐻) = {𝑒}, for simplicity, we write 𝐺 − 𝑣 and 𝐺 −
𝑒, respectively.  

Lemma 1 and 2 provide the necessary and sufficient 
conditions for any graph in ℛ(3𝐾2, 𝐻) for any graph 𝐻.  

Lemma 1. [9, 10] For any fixed graph 𝐻, the graph 𝐹 ⟶
(3𝐾2, 𝐻)  holds if and only if the following four 
conditions are satisfied: (i) 𝐹 − {𝑢, 𝑣} ⊇ 𝐻  for each            
𝑢, 𝑣 ∈ 𝑉(𝐹), (ii) 𝐹 − 𝑢 − 𝐸(𝐾3) ⊇ 𝐻 for each 𝑢 ∈ 𝑉(𝐹) 
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and a triangle 𝐾3  in 𝐹, (iii) 𝐹 − 𝐸(2𝐾3) ⊇ 𝐻 for every 
two triangles in 𝐹, (iv) 𝐹 − 𝐸(𝑆5) ⊇ 𝐻 for every induced 
subgraph with 5 vertices 𝑆 in 𝐹.  

Lemma 2. [9, 10] Let 𝐻 be a simple graph. Suppose 𝐹 is 
a Ramsey (3𝐾2, 𝐻)-graph. 𝐹 is said to be minimal if for 
each 𝑒 ∈ 𝐸(𝐹) satisfy (𝐹−𝑒) ↛ (3𝐾2, 𝐻) , that is               
(i) (𝐹 − 𝑒) − {𝑢, 𝑣} ⊉ 𝐻  for each 𝑢, 𝑣 ∈ 𝑉(𝐹),  ii) 𝐹 −

𝑢 − 𝐸(𝐾3) ⊉ 𝐻 for each 𝑢 ∈ 𝑉(𝐹) and a triangle 𝐾3 in 
𝐹, (iii) 𝐹 − 𝐸(2𝐾3) ⊉ 𝐻  for every two triangles in 𝐹, 
(iv) 𝐹 − 𝐸(𝑆5) ⊉ 𝐻 for every induced subgraph with 5 
vertices 𝑆 in 𝐹.        

Any graph satisfying all conditions in Lemma 1 and 
2 is a Ramsey (3𝐾2, 𝐻)-minimal graph. The condition 
stated in Lemma 2 is called the minimality property of 
a graph in ℛ(3𝐾2, 𝐻) . In [10], Wijaya et al. defined 
𝑆𝐹(𝑒, 𝑡)  as a 𝑡  times subdivision of edge 𝑒  in the 
connected graph 𝐹,  and gave Theorem 3. Moreover, 
Baskoro and Yulianti [7] gave Theorem 4.  

Theorem 3. Let 𝐹 be a connected graph and 𝑚 ≥ 2 be an 
integer. Suppose 𝛼 is one non-pendant edge of 𝐹. If 𝐹 ∈

ℛ(𝑚𝐾2, 𝑃4), then 𝑆𝐹(𝛼, 4) ∈ ℛ((𝑚 + 1)𝐾2, 𝑃4). 

Theorem 4. [7] ℛ(2𝐾2, 𝑃4) = {2𝑃4, 𝐶7, 𝐶6, 𝐶5, 𝐶4
+} , 

where 𝐶4
+ is a 𝐶4 with additional two pendant vertices as 

in Figure 1 

 

Figure 1 All graphs in ℛ(2𝐾2, 𝑃4). 

3. MAIN RESULTS 

3.1 Disconnected Graph in 𝓡(𝟑𝑲𝟐, 𝑷𝟒) 

In this section, we give all disconnected graphs 
belonging to ℛ(3𝐾2, 𝑃4). 

Theorem 5. 𝐺 ∪ 𝑃4 ∈  ℛ(3𝐾2, 𝑃4)  if and only if 𝐺  ∈ 
ℛ(2𝐾2, 𝑃4). 

Proof. (⇐) We will show that for any 𝐺 ∈ ℛ(2𝐾2, 𝑃4), 
then 𝐺 ∪ 𝑃4 ∈  ℛ(3𝐾2, 𝑃4). Since 𝐺 ∈ ℛ(2𝐾2, 𝑃4), then      
𝐺 → (2𝐾2, 𝑃4) and 𝐺 − 𝑒 ↛ (2𝐾2, 𝑃4) for any 𝑒 ∈ 𝐸(𝐺). 
Since 𝐺 → (2𝐾2, 𝑃4), by coloring all edges incident to 
any vertex in 𝐺 produces a blue copy of 𝑃4 subset of 𝐺. 
Thus, any red coloring of two independent edges in 𝐺 
produces blue copy of 𝑃4  subset of 𝐺 ∪ 𝑃4 . Moreover, 

any red coloring of one edge in 𝐺  and one edge in 𝑃4 
produces a blue copy of 𝑃4 subset of 𝐺 ∪ 𝑃4. Hence, 𝐺 ∪
𝑃4 → (3𝐾2, 𝑃4) . Let 𝑒1 ∈ 𝐸(𝐺)  and 𝑒2 ∈ 𝐸(𝑃4) . Since 
𝐺 − 𝑒1 ↛ (2𝐾2, 𝑃4), there exists a red-blue coloring of 
𝐺 − 𝑒1  where a red 𝐾2  occurs and blue 𝑃4  cannot be 
found. Therefore, there exists a red-blue coloring on 𝐺 ∪
𝑃4 − 𝑒1  where neither a red 3𝐾2  nor a blue 𝑃4  occurs. 
Moreover, any red coloring of two independent edges in 
𝐺 ⊂ 𝐺 ∪ 𝑃4 − 𝑒2 produces red-blue coloring of 𝐺 ∪ 𝑃4 −
𝑒2 where neither a red 3𝐾2 nor a blue 𝑃4 occurs. Hence, 
𝐺 ∪ 𝑃4 − 𝑒 ↛ (3𝐾2, 𝑃4) . Since 𝐺 ∪ 𝑃4 → (3𝐾2, 𝑃4)  and 
𝐺 ∪ 𝑃4 − 𝑒 ↛ (3𝐾2, 𝑃4)  for any 𝑒 ∈ 𝐸(𝐺),  then 𝐺 ∪
𝑃4 ∈ ℛ(3𝐾2, 𝑃4). 

(⇒) If 𝐺 ∪ 𝑃4 ∈ ℛ(3𝐾2, 𝑃4), then 𝐺 ∈ ℛ(2𝐾2, 𝑃4). For a 
contradiction, suppose that G ∉ ℛ(2𝐾2, 𝑃4). Then, we 
have two cases.  

Case 1. Suppose G ↛ (2𝐾2, 𝑃4).  Then there exist a 
(2𝐾2, 𝑃4) -coloring of G. Extend the coloring to color      
𝐺 ∪ 𝑃4 and color the edges of 𝑃4 by red. Thus, there exist 
a (3𝐾2, 𝑃4)-coloring of 𝐺 ∪ 𝑃4, which contradicts the fact 
that 𝐺 ∪ 𝑃4 ∈ ℛ(3𝐾2, 𝑃4).  

Case 2. Suppose 𝐺 → (2𝐾2, 𝑃4), but 𝐺 is not minimal. It 
means there exists a graph 𝐻  ∈ ℛ(2𝐾2, 𝑃4) where 𝐺 ⊃
𝐻 . Thus 𝐺 ∪ 𝑃4 ⊃ 𝐻 ∪ 𝑃4 . Since 𝐻  ∈ ℛ(2𝐾2, 𝑃4),  then        
𝐻 ∪ 𝑃4 ∈  ℛ(3𝐾2, 𝑃4) by the first case, which contradicts 
to the minimality of 𝐺 ∪ 𝑃4. 

Therefore, from two cases above, we conclude that 
𝐺 ∪ 𝑃4 ∈  ℛ(3𝐾2, 𝑃4) if and only if 𝐺 ∈ ℛ(2𝐾2, 𝑃4).  ■ 

Theorem 6. Let 𝐻  be a disconnected graph in 
ℛ(3𝐾2, 𝑃4) . Therefore, one component of 𝐻  must be 
isomorphic to 𝑃4.  

Proof. Suppose to the contrary that 𝐻 = 𝐻1 ∪ 𝐻2  and 
none of 𝐻1  or 𝐻2  is isomorphic to 𝑃4. Since there is no 
component in 𝐻 isomorphic to 𝑃4, there is no component 
𝑃4  in either 𝐻1  and 𝐻2.  Every vertex in 𝐻  is in a 
connected subgraph containing a 𝑃4. Then, both 𝐻1 and 
𝐻2 contain 𝑃4. Therefore, there will be edges 𝑒1 ∈ 𝐸(𝐻1) 
and 𝑒2 ∈ 𝐸(𝐻2)  such that 𝑃4  ⊆ 𝐻1 − 𝑒1  and 𝑃4  ⊆ 
𝐻2 –  𝑒2. Since 𝐻 ∈ ℛ(3𝐾2, 𝑃4), there exist a (3𝐾2, 𝑃4)-
coloring of 𝐻 – 𝑒1  and 𝐻 – 𝑒2 , say 𝐽1  and 𝐽2 , 
respectively. Under 𝐽1, 𝐻1 – 𝑒1 must contain at least one 
red edge and 𝐻2 must have a (2𝐾2, 𝑃4)-coloring. Since if 
it is not the case, 𝐻 − 𝑒1 would contain a red 3𝐾2 or blue 
𝑃4 , a contradiction to the minimality of 𝐻.  Moreover, 
under 𝐽2, 𝐻2 − 𝑒2 must contain at least one red edge and 
𝐻1 must have a (2𝐾2, 𝑃4)-coloring. We conclude that we 
will obtain a (3𝐾2, 𝑃4)-coloring of 𝐻  if we color 𝐻  by 
using 𝐽1  on 𝐻2  and 𝐽2  on 𝐻1 , which contradicts to the 
minimality of 𝐻.  

Therefore, if 𝐻  is a disconnected graph in 
ℛ(3𝐾2, 𝑃4).  Then, one component of 𝐻  must be 
isomorphic to 𝑃4.       ■ 
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Theorem 7. The graphs 𝐶5 ∪ 𝑃4 , 𝐶6 ∪ 𝑃4 , 𝐶7 ∪ 𝑃4 ,    
𝐶4

+ ∪ 𝑃4  and 3𝑃4  are the only disconnected graphs in 
ℛ(3𝐾2, 𝑃4). 

Proof. Using Theorem 6, if 𝐹 is a disconnected graph in 
ℛ(3𝐾2, 𝑃4), then 𝐹 must have a component isomorphic 
to 𝑃4 . Furthermore, Theorem 5 states that the other 
component of F must be a member of the set ℛ(2𝐾2, 𝑃4). 
Moreover, Theorem 4 determined all graphs in 
ℛ(2𝐾2, 𝑃4). Therefore, the graphs 𝐶5 ∪ 𝑃4, 𝐶6 ∪ 𝑃4, 𝐶7 ∪
𝑃4, 𝐶4

+ ∪ 𝑃4 and 3𝑃4 are the only disconnected graphs in 
ℛ(3𝐾2, 𝑃4).                     ■ 

3.2 Some Connected Graphs in 𝓡(𝟑𝑲𝟐, 𝑷𝟒) 

In this section, we determine some connected graphs 
other than the cycle belonging to ℛ(3𝐾2, 𝑃4). First, we 
show that a graph 𝐹1,  depicted in Fig. 2, is a Ramsey 
(3𝐾2, 𝑃4)-minimal graph.  

Proposition 8. Let 𝐹1 be a graph as depicted in Fig. 2. 
The graph 𝐹1 is a Ramsey (3𝐾2, 𝑃4)-minimal graph. 

 

Figure 2 The graph 𝐹1 ∈ (3𝐾2, 𝑃4). 

Proof. First, we show that for any red-blue coloring of 𝐹1 
contains a red 3𝐾2  or a blue 𝑃4 . We can see that 𝐹1 −
{𝑢, 𝑣}  always contains a path 𝑃4  for any                         
𝑢, 𝑣 ∈ 𝑉(𝐹1). It can be verified that 𝐹1 − 𝐸(𝑆5) ⊇ 𝐻 for 
every induced subgraph with 5 vertices 𝑆 in 𝐹1. Since 𝐹1 
has no triangle, then by Lemma 1 we have that                
𝐹1 → (3𝐾2, 𝑃4). Next, we prove the minimality property. 
For any edge 𝑒 we will show that (𝐹1 − 𝑒) ↛ (3𝐾2, 𝑃4). 
If 𝑒 is one of the dashed edges in Fig. 3, then each red-
blue coloring in Fig. 3 is the (3𝐾2, 𝑃4)-coloring on 𝐹1 −

𝑒. Therefore 𝐹1 ∈ ℛ(3𝐾2, 𝑃4).    ■ 

 

Figure 3 The (3𝐾2, 𝑃4)-colorings on 𝐹1 − 𝑒 if e is one of 
the dashed edges. 

Suppose 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣𝑛}  is the 
vertex-set of 𝐶𝑛 . We define a graph 𝐶𝑛

𝑎  as a graph 
obtained from 𝐶𝑛 by adding a pendant vertex, say 𝑣𝑛+1, 
adjacent to 𝑣𝑎  for 𝑎 ∈ [1, 𝑛]. A graph 𝐶𝑛

𝑎,𝑏  is obtained 
from 𝐶𝑛  by adding two pendant vertices, say 𝑣𝑛+1  and 
𝑣𝑛+2 , adjacent to 𝑣𝑎  and 𝑣𝑏 , respectively, for 𝑎, 𝑏 ∈
[1, 𝑛] . Moreover, following Wijaya et al. in [10], we 
define special graphs with certain circumference. Let 
a, b, c, d, e, f, g and h be eight integers. Graph 𝐶𝑛[(a, b), 
(c, d)] is obtained from 𝐶𝑛 by adding two new edges 
𝑣𝑎𝑣𝑏  and 𝑣𝑐𝑣𝑑 . Graph 𝐶𝑛 [(a, b), (c, d), (e, f)] is 
obtained from 𝐶𝑛  by adding three new edges 𝑣𝑎𝑣𝑏 , 
𝑣𝑐𝑣𝑑 , and 𝑣𝑒𝑣𝑓 . Graph 𝐶𝑛[(a, b), (c, d), (e, f), (g, h)] is 

obtained from 𝐶𝑛  by adding four new edges 𝑣𝑎𝑣𝑏 , 
𝑣𝑐𝑣𝑑 , 𝑣𝑒𝑣𝑓 , and 𝑣𝑔𝑣ℎ .  Now, consider graphs 

𝐶6[(1,4), (2,5), (2,6), (3,5)],  𝐶7
5[(1,3), (2,6), (5,7)] 

𝐶7[(1,5), (3,7)], 𝐶7
7[(2,6), (3,7)], 𝐶8[(2,7), (4,7), (6,8)] 

𝐶6
3,4[(1,4), (3,6)] as depicted in Fig. 4. We will show 

that those graphs are Ramsey (3𝐾2, 𝑃4)-minimal.  

Theorem 9. All graphs in Fig. 4 are Ramsey (3𝐾2, 𝑃4)-
minimal graphs. 

Proof. Let 𝐹 be any graph in Fig. 4. It is easy to see that 
𝐹 satisfies all the conditions in Lemma 1. Then, 𝐹 ⟶
(3𝐾2, 𝑃4)  holds. Now, we will show the minimality 
property of F. Let 𝑒 be any edge in 𝐹. If 𝑒 is one of the 
dashed edges, then a ( 3𝐾2, 𝑃4 )-coloring on 𝐹 − 𝑒  is 
provided in Figures 5, 6, 7. 8, 9 and 10 respectively for 
all cases.     ■ 

 

Figure 4 Six non-isomorphic graphs belonging to 
ℛ(3𝐾2, 𝑃4) which is obtained from 𝐶𝑛 with some cords 
or pendant vertices or combination both. 
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Figure 5 The (3𝐾2, 𝑃4)-colorings on 𝐶6
3,4[(1,4), (3,6)] −

𝑒 if 𝑒 is one of the dashed edges. 

 

Figure 6 The (3𝐾2, 𝑃4) -colorings on 
𝐶6[(1,4), (2,5), (2,6), (3,5)] − 𝑒 if e is one of the dashed 
edges. 
        

 

Figure 7 The (3𝐾2, 𝑃4) -colorings on 
𝐶7

5[(1,3), (2,6), (5,7)] − 𝑒  if e is one of the dashed 
edges. 

         

Figure 8 The (3𝐾2, 𝑃4) -colorings on      
𝐶7[(1,5), (3,7)] − 𝑒 if e is one of the dashed edges. 

 

Figure 9 The (3𝐾2, 𝑃4) -colorings on      
𝐶7

7[(2,6), (3,7)] − 𝑒 if e is one of the dashed edges. 

        

 

Figure 10 The (3𝐾2, 𝑃4) -colorings on      
𝐶8[(2,7), (4,7), (6,8)] − 𝑒 if e is one of the dashed edges. 

3.3 Some New Family of Ramsey (𝑚𝑲𝟐, 𝑷𝟒)-
Minimal Graphs 

Recall that 𝑆𝐹(𝑒, 𝑡) is a subdivision 𝑡 times of edge 
𝑒. In the previous section, it has been shown that 𝐹1 ∈
ℛ(3𝐾2, 𝑃4). According to Theorem 3, if we subdivide (4 
times) any non-pendant edge of 𝐹1, then we obtain three 
non-isomorphism graphs belonging to ℛ(4𝐾2, 𝑃4), 
namely 𝑆𝐹1(𝑒1, 4),  𝑆𝐹1(𝑒5, 4),  and 𝑆𝐹1(𝑒8, 4)  as 
depicted in Fig.11 (4 vertices, green vertex). The proof of 
the minimality of a graph 𝑆𝐹1(𝑒5, 4)  can be seen in 
Fig.12, while the minimality of the other graphs can be 
represented in the same way.    

 

Figure 11 Three non-isomorphism graphs belonging to 
(3𝐾2, 𝑃4) are obtained by subdividing four times (4 green 
vertices) a non-pendant edge of 𝐹1. 
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Figure 12 The (4𝐾2, 𝑃4)-colorings on 𝑆𝐹1(𝑒5, 4) − 𝑒 if e 
is one of the dashed edges. 

Now, we consider graph 𝐶7[(1,5), (3,7)]. Since every 
edge in 𝐶7[(1,5), (3,7)] is non-pendant, then according 
to Theorem 3, the subdivision (4 times) on any edge of 
𝐶7[(1,5), (3,7)]  will produce three non-isomorphism 
graphs in ℛ(4𝐾2, 𝑃4). By repeating this process for the 
resulting graphs, we obtain Corollary 10. 

Corollary 10. Let 𝑚 ≥ 4 be an integer. Then, the graphs 
𝐶4𝑚−5[(1,5), (3,7)],  𝐶4𝑚−5[(1,4𝑚 − 7), (4𝑚 − 9,4𝑚 −
5)],  and 𝐶4𝑚−5[(1,4𝑚 − 7), (3,4𝑚 − 5)]  are in 
ℛ(𝑚𝐾2, 𝑃4). 

Proof. Let {𝑣1, 𝑣2, … , 𝑣7}  be the vertex-set of 
𝐶7[(1,5), (3,7)]. The subdivision (4 vertices) on the edge 
𝑒 = 𝑣1𝑣2  will result 𝐶11[(1,9), (7,11)] . Since 
𝐶7[(1,5), (3,7) ∈ ℛ(3𝐾2, 𝑃4) , then by Theorem 3, we 
have that 𝐶11[(1,9), (7,11)] ∈ ℛ(4𝐾2, 𝑃4). Furthermore, 
by subdividing (4 vertices) the edge 𝑒 = 𝑣1𝑣2  of 
𝐶11[(1,9), (7,11)], we obtain 𝐶15[(1,13), (11,15)]. By 
Theorem 3, we have that 𝐶15[(1,13), (11,15)] ∈
ℛ(5𝐾2, 𝑃4). By continuing this process and applying it to 
the resulting graph, then we obtain the graph 
𝐶4𝑚−5[(1,4𝑚 − 7), (4𝑚 − 9,4𝑚 − 5)]. By Theorem 3, 
𝐶4𝑚−5[(1,4𝑚 − 7), (4𝑚 − 9,4𝑚 − 5)] ∈ ℛ(𝑚𝐾2, 𝑃4). 
Next, by subdivision (4 vertices) on the edge 𝑒 = 𝑣3𝑣4 of 
the graph 𝐶7[(1,5), (3,7)] , repeatedly, and apply 
Theorem 3, we obtain 𝐶4𝑚−5[(1,4𝑚 − 7), (3,4𝑚 −
5)] ∈ ℛ(𝑚𝐾2, 𝑃4). By doing the same way to the edge 
𝑒 = 𝑣7𝑣1, we obtain 𝐶4𝑚−5[(1,5), (3,7)] ∈ ℛ(𝑚𝐾2, 𝑃4). 
      ■ 

In the same way, we can construct some other graphs 
in ℛ(𝑚𝐾2, 𝑃4) from some graph in ℛ(3𝐾2, 𝑃4), namely,  
𝐶6

3,4[(1,4), (3,6)] , 𝐶6[(1,4), (2,5), (2,6), (3,5)], 
𝐶7

5[(1,3), (2,6), (5,7)],  𝐶7
7[(2,6), (3,7)],  and 

𝐶8[(2,7), (4,7), (6,8)]. Therefore, we have Corollary 11.  

Corollary 11. Let 𝑚 ≥ 4 be an integer. Then the 
following 19 graphs are in ℛ(𝑚𝐾2, 𝑃4). 

1. 𝐶4𝑚−6
3,4 [(1,4), (3,6)], 

2. 𝐶4𝑚−6
4𝑚−9,4𝑚−8[(1,4𝑚 − 8), (4𝑚 − 9,4𝑚 − 6)], 

3. 𝐶4𝑚−6
3,4𝑚−8[(1,4𝑚 − 8), (3,4𝑚 − 6)], 

4. 𝐶4𝑚−6[(1,4𝑚 − 8), (4𝑚 − 10,4𝑚 − 7),  

(4𝑚 − 10,4𝑚 − 6), (4𝑚 − 9,4𝑚 − 7)],  

5. 𝐶4𝑚−6[(1,4𝑚 − 8), (2,4𝑚 − 7), (2,4𝑚 − 6),  

(4𝑚 − 9,4𝑚 − 7)], 

6. 𝐶4𝑚−6[(1,4), (2,5), (2,6), (3,5)], 

7. 𝐶4𝑚−5
7 [(2,6), (3,7)], 

8. 𝐶4𝑚−5
4𝑚−5[(2,4𝑚 − 6), (4𝑚 − 9,4𝑚 − 5)], 

9. 𝐶4𝑚−5
4𝑚−5[(2,4𝑚 − 6), (3,4𝑚 − 5)], 

10. 𝐶4𝑚−5
4𝑚−5[(2,6), (3,4𝑚 − 5)] 

11. 𝐶4𝑚−5
5 [(1,3), (2,6), (5,7)], 

12. 𝐶4𝑚−5
4𝑚−7[(1,4𝑚 − 9), (4𝑚 − 10,4𝑚 − 6), (4𝑚 −

7,4𝑚 − 5)], 

13. 𝐶4𝑚−5
4𝑚−7[(1,4𝑚 − 9), (2,4𝑚 − 6), (4𝑚 − 7,4𝑚 −

5)], 

14. 𝐶4𝑚−5
4𝑚−7[(1,3), (2,4𝑚 − 6), (4𝑚 − 7,4𝑚 − 5)], 

15. 𝐶4𝑚−5
5 [(1,3), (2,4𝑚 − 6), (5,4𝑚 − 5)], 

16. 𝐶4𝑚−5
5 [(1,3), (2,6), (5,4𝑚 − 5)], 

17. 𝐶4(𝑚−1)[(2,7), (4,7), (6,8)], 

18. 𝐶4(𝑚−1)[(2,4𝑚 − 5), (4𝑚 − 8,4𝑚 − 5),  

(4𝑚 − 6,4(𝑚 − 1))], 

19. 𝐶4(𝑚−1)[(2,7), (4,7), (6,4(𝑚 − 1))].  

4. CONCLUSION 

In this paper, we discuss the construction of a 
disconnected Ramsey minimal graph in ℛ(3𝐾2, 𝑃4) from 
Ramsey minimal graph ini ℛ(2𝐾2, 𝑃4). We show that all 
disconnected graphs in ℛ(3𝐾2, 𝑃4) are 𝐶5 ∪ 𝑃4, 𝐶6 ∪ 𝑃4,  
𝐶7 ∪ 𝑃4 ,  𝐶4

+ ∪ 𝑃4 , and 3𝑃4 . In addition, we give some 
connected graphs in ℛ(3𝐾2, 𝑃4) , namely, 𝐹1,  
𝐶6[(1,4), (2,5), (2,6), (3,5)] , 𝐶7

5[(1,3), (2,6), (5,7)] 
𝐶7[(1,5), (3,7)], 𝐶7

7[(2,6), (3,7)], 𝐶8[(2,7), (4,7), (6,8)] 

𝐶6
3,4[(1,4), (3,6)] as depicted in Fig. 4. Furthermore, 

we also construct nineteen new families of Ramsey 
(𝑚𝐾2, 𝑃4) minimal graphs for 𝑚 ≥ 4. 
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