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ABSTRACT

Let F, G, and H be simple graphs. The notation F — (G, H) means that any red-blue coloring of all edges of F will
contain either ared copy of G or ablue copy of H. Graph F isa Ramsey (G, H)-minimal if F - (G, H) but for each e
EE(F),(F—e)» (G,H). Theset R(G, H) consists of all Ramsey (G, H)-minimal graphs. Let mK, be matching with
m edges and B,, be a path on n vertices. In this paper, we construct al disconnected Ramsey minimal graphs, and found
some new connected graphs in R(3K,, P,). Furthermore, we also construct new Ramsey minimal graphsin R((m +
1)K,, P,) from Ramsey minimal graphsin R(mK,, P,) for m > 4, by subdivision operation.

Keywords. Matching, Path, Ramsey minimal graphs, Subdivision.

1. INTRODUCTION

Let F, G, and H be simple graphs. The notation F —
(G, H) means that in any red-blue coloring of F, there
existsared copy of G or ablue copy of H as a subgraph.
A (G, H)-coloring of F is a red-blue coloring of F such
that neither ared G nor ablue H occurs. A graph F issaid
to be a Ramsey (G, H)-minima if F - (G,H) but for
any e € E(F), there exists a (G, H)-coloring on graph
F —e. The set of al Ramsey (G, H)-minimal graphs is
denoted by R(G, H).

The determination and the characterization of all
graphs F belonging to R(G, H) are the main problemsin
Ramsey (G, H)-minimal graphs. Some papers discussthe
problem of determining all graphsin R(G, H). Burr et al.
[1] proved that if H is any graph then R(mK,, H) is a
finite set. One of challenging problems in Ramsey
Theory isto characterize al graphsin the set R(mK,, H)
for agiven graph H.

Let K,,, C,, and B, be a complete graph, a cycle, and
apath on n vertices, respectively. The characterization of
Ramsey minimal graphs belonging to R(2K,, K,) can be
seen in [2, 3]. The set R(2K,, P;) is determined by
Mengersen and Oeckermann [4]. Mushi and Baskoro [5]
determined all graphsin R (3K, P;). Furthermore, the set
R(4K,, P;) given by Wijayaet al. [6].

Wijaya et d. [7] showed that the cycle C, belongs to
R(mK,,B,) if and only if se[mn—n+1<s<

mn — 1]. Recently Wijayaet al. [8] constructed afamily
of Ramsey (mK,,P,) minima graphs from Ramsey
((m — 1)K,, P,) minimal graph by doing 4 times
subdivision on any edge belongs to a cycle in a Ramsey
(mK,, P,)-minimal graph. Furthermore, Wijayaet al. [9]
constructed a class of disconnected Ramsey (mK,, H)-
minimal graphs from a union of two or more connected
graphs. Motivated by result in[9], in this paper, we focus
on determining al disconnected graphs in R(3K,, P,),
and found some connected graphs belonging to Ramsey
(3K,, P,)-minimal. In addition, we also construct some
graph in R((m + 1)K,,P,) by doing subdivisions to
graphsin R(mK,, P,) form > 4.

2. PRELIMINARIES

Let G = (V,E)begraph. IfUCS V,thenG —-Uis a
graph obtained from G by deleting vertices in U and all
incident edges. If H € G, then G — E(H) is a graph
obtained from G by deleting edgesin H. When U = {v}
and E(H) = {e}, for smplicity, wewrite G — v and G —
e, respectively.

Lemma 1 and 2 provide the necessary and sufficient
conditions for any graph in R(3K,, H) for any graph H.

Lemma 1. [9, 10] For any fixed graph H, thegraph F —
(3K3,H) halds if and only if the following four
conditions are satisfied: (i) F —{u,v} 2 H for each
u,veV(F), (i) F—u—E(K3) 2 Hforeachu e V(F)

Copyright © 2022 The Authors. Published by Atlantis Press International B.V.
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and atriangle K3 in F, (iii) F — E(2K3) 2 H for every
twotrianglesin F, (iv) F — E(Ss) 2 H for every induced
subgraph with 5 vertices S in F.

Lemma2.[9, 10] Let H be asimple graph. Suppose F is
aRamsey (3K,, H)-graph. F is said to be minimal if for
each e € E(F) saisfy (F—e) » (3K3, H), that is
(i) (F—e)—{u,v} 2 H for each u,v € V(F), ii) F —
u—E(K3) 2 Hfor eachu € V(F) and atriangle K3 in
F, (iii) F — E(2K3) 2 H for every two triangles in F,
(iv) F — E(Ss) 2 H for every induced subgraph with 5
verticesSinF.

Any graph satisfying all conditionsin Lemma 1 and
2 is a Ramsey (3K,, H)-minimal graph. The condition
stated in Lemma 2 is called the minimality property of
a graph in R(3K,,H). In [10], Wijaya et a. defined
SF(e,t) as at times subdivision of edge e in the
connected graph F, and gave Theorem 3. Moreover,
Baskoro and Y ulianti [ 7] gave Theorem 4.

Theorem 3. Let F beaconnected graphand m > 2 bean
integer. Suppose «a is one non-pendant edge of F. If F €
R(mK,, P,), then SF(a,4) € R((m + 1)K,, P,).

Theorem 4. [7] R(2K,,P,) = {2P,,C,,Cq,Cs,Cit} |
where C; isa C, with additional two pendant vertices as
inFigure 1

WA O
DT

Figure1 All graphsin R(2K,, P,).
3. MAINRESULTS

3.1 Disconnected Graph in R(3K,, P,)

In this section, we give all disconnected graphs
belonging to R(3K,, P,).

Theorem 5. G UP, € R(3K,, P,) if and only if G €
R(2K,,P,).

Proof. (&) We will show that for any G € R(2K,, P,),
then G U P, € R(3K,, P,). Since G € R(2K,, P,), then
G - (2K,,P) and G — e » (2K,, P,) for any e € E(G).
Since G - (2K,, P,), by coloring all edges incident to
any vertex in G produces a blue copy of P, subset of G.
Thus, any red coloring of two independent edges in G
produces blue copy of P, subset of G U P,. Moreover,

Advances in Computer Science Research, volume 96

any red coloring of one edge in G and one edge in P,
produces a blue copy of P, subset of G U P,. Hence, G U
P, - (3K,,P,). Let e; € E(G) and e, € E(P,). Since
G —e; » (2K, P,), there exists a red-blue coloring of
G — e; where a red K, occurs and blue P, cannot be
found. Therefore, there exists a red-blue coloring on G U
P, — e; where neither a red 3K, nor a blue P, occurs.
Moreover, any red coloring of two independent edges in
G c G U P, — e, producesred-blue coloringof G U P, —
e, where neither a red 3K, nor a blue P, occurs. Hence,
GUP,—e» (3K,,P,). Since GUP, - (3K,,P,) and
GUP,—e» (3K,,P,) for any e € E(G), then GU
P, € R(3K,, P,).

(=)IfGu P, € R(3K,, P,), then G € R(2K,, P,). For a
contradiction, suppose that G ¢ R(2K,,P,). Then, we
have two cases.

Case 1. Suppose G » (2K,, P,). Then there exist a
(2K,, P,)-coloring of G. Extend the coloring to color
G U P, and color the edges of P, by red. Thus, there exist
a (3K, P,)-coloring of G U P,, which contradicts the fact
that G U P, € R(3K,, P,).

Case 2. Suppose G — (2K,, P,), but G is not minimal. It
means there exists a graph H € R(2K,, P,) where G ©
H. ThusGUP, D HUP,. Since H € R(2K,,P,), then
H U P, € R(3K;, P,) by thefirst case, which contradicts
to the minimality of G U P,.

Therefore, from two cases above, we conclude that
GUP, € R(3K,, P ifandonly if G € R(2K,, P,). W

Theorem 6. Let H be a disconnected graph in
R(3K,, P,). Therefore, one component of H must be
isomorphic to P,.

Proof. Suppose to the contrary that H = H, U H, and
none of H; or H, is isomorphic to P,. Since there is no
component in H isomorphic to P,, there is no component
P, in either H; and H,. Every vertex in H is in a
connected subgraph containing a P,. Then, both H; and
H, contain P,. Therefore, there will be edges e, € E(H,)
and e, € E(H,) such that P, € H, —e; and P, C
H, - e,. Since H € R(3K,, P,), there exist a (3K,, P,)-
coloring of H-e; and H-e, , say J; and J, ,
respectively. Under J;, H; - e; must contain at least one
red edge and H, must have a (2K, P,)-coloring. Since if
itisnot the case, H — e; would contain ared 3K, or blue
P,, a contradiction to the minimality of H. Moreover,
under /,, H, — e, must contain at least one red edge and
H, must have a (2K,, P,)-coloring. We conclude that we
will obtain a (3K,, P,)-coloring of H if we color H by
using /; on H, and J, on H;, which contradicts to the
minimality of H.

Therefore, if H is a disconnected graph in
R(3K,,P,). Then, one component of H must be
isomorphic to P,. |
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Theorem 7. The graphs CsUP,, C¢UP,, C,UP,,
Cf U P, and 3P, are the only disconnected graphs in
R(3K,, P,).

Proof. Using Theorem 6, if F is a disconnected graph in
R(3K,, P,), then F must have a component isomorphic
to P,. Furthermore, Theorem 5 states that the other
component of F must be amember of the set R(2K;, P,).
Moreover, Theorem 4 determined al graphs in
R(2K,, P,). Therefore, thegraphs Cs U P, C4 U Py, C; U
P,, Cf U P, and 3P, are the only disconnected graphsin
RQ3K,,P,). [ ]

3.2 Some Connected Graphsin R(3K,, P,)

In this section, we determine some connected graphs
other than the cycle belonging to R(3K,, P,). First, we
show that a graph F;, depicted in Fig. 2, is a Ramsey
(3K;, P,)-minimal graph.

Proposition 8. Let F; be a graph as depicted in Fig. 2.
The graph F; isaRamsey (3K,, P,)-minimal graph.

Figure2 Thegraph F; € (3K,, P,).

Proof. First, we show that for any red-blue coloring of F;
contains a red 3K, or a blue P,. We can see that F; —
{u,v} dways contains a pah P, for any
u,v € V(F,). It can be verified that F; — E(Ss) 2 H for
every induced subgraph with 5 vertices S in F;. Since F;
has no triangle, then by Lemma 1 we have that
F; = (3K;, P,). Next, we prove the minimality property.
For any edge e we will show that (F;, — e) » (3K, P,).
If e is one of the dashed edges in Fig. 3, then each red-
blue coloring in Fig. 3 is the (3K, P,)-coloring on F;, —
e. Therefore F; € R(3K,, P,). |

Figure 3 The (3K,, P,)-coloringson F, — e if eisone of
the dashed edges.

Advances in Computer Science Research, volume 96

Suppose V(C,) = {v1,V3, ..., Vp_q, v} is the
vertex-set of C,. We define a graph C; as a graph
obtained from C,, by adding a pendant vertex, say v, 1,
adjacent to v, for a € [1,n]. A graph 2" is obtained
from C,, by adding two pendant vertices, say v,,, and
VUn4+2, adjacent to v, and v, , respectively, for a,b €
[1,n]. Moreover, following Wijaya et a. in [10], we
define special graphs with certain circumference. Let
a, b, ¢ d e £ gand hbe eight integers. Graph C,[(a, b),
(¢ d)] is obtained from C, by adding two new edges
v,vp and v.v, . Graph C, [(a b), (¢ d), (e H] is
obtained from C, by adding three new edges v, v,
vVq, and vvr. Graph Cy,[(a, D), (¢ a), (e 0, (g h)] is
obtained from C, by adding four new edges v,v,,
VeVq , VeVr , and v,v,. Now, consider graphs
Cel(1,4),(2)5),(2,6),35)],  €7[(1,3),(2,6),(57)]
¢,[(1,5), B,7N], ¢7[(2,6), 3,71, Cs[(2,7), (4,7), (6,8)]
C2*1(1,4), (3,6)] as depicted in Fig. 4. We will show
that those graphs are Ramsey (3K, P,)-minimal.

Theorem 9. All graphs in Fig. 4 are Ramsey (3K,, P,)-
minimal graphs.

Proof. Let F be any graph in Fig. 4. It is easy to see that
F satisfies all the conditions in Lemma 1. Then, F —
(3K,, P,) holds. Now, we will show the minimality
property of F. Let e be any edge in F. If e is one of the
dashed edges, then a (3K,, P, )-coloring on F —e is
provided in Figures 5, 6, 7. 8, 9 and 10 respectively for
all cases. ]

g

Vs or Vs

Ci(1,5),(3,7)] Cs((2,7), (4, 7). (6,8)]

C7((2.6),(3,7)] C3(1,3),(2,6),(5,7)]

Ci'1(1,4),(3.6)]

Figure 4 Six non-isomorphic graphs belonging to
R(3K,, P,) which is obtained from C,, with some cords
or pendant vertices or combination both.
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Figure5The (3K, P,)-coloringson c2*(1,4),(3,6)] — Figure 9 The (3K, P,) -colorings on
e if e is one of the dashed edges. C7[(2,6), (3,7)] — e if eisone of the dashed edges.

Figure = 6  The (3K P,) -colorings — on Figure 10 The (3K, P,) -colorings on
Ce[(1,4),(2,5),(2,6),(3,5)] — eif eisoneof thedashed  (,[(2,7), (4,7), (6,8)] — e if eisone of the dashed edges.
edges.

3.3 Some New Family of Ramsey (7K ,, P,)-
Minimal Graphs

Recall that SF(e,t) is a subdivision t times of edge
e. In the previous section, it has been shown that F; €
R(3K,, P,). According to Theorem 3, if we subdivide (4
times) any non-pendant edge of F;, then we obtain three
non-isomorphism graphs belonging to R(4K,,P,),
namely SF,(e;,4), SF,(es,4), and SF;(eg,4) as
depicted in Fig.11 (4 vertices, green vertex). The proof of
the minimality of a graph SF;(es,4) can be seen in
Fig.12, while the minimality of the other graphs can be

Figure 7 The (3K, P,) -colorings on represented in the same way.
AC
. i

C2[(1,3),(2,6),(5,7)] — e if e is one of the dashed /\ Y
Y L
{ Ay K/L
d/ N A ,
) SFi(e1,4) SF(e5,4) SFi(ex,4)

F, € R(3K:, Py

Figure 11 Three non-isomorphism graphs belonging to
(3K, P,) are obtained by subdividing four times (4 green
vertices) a non-pendant edge of F;.

Figure 8 The (3K,,P,) -colorings on
C,[(1,5), (3,7)] — e if eisone of the dashed edges.

14



ATLANTIS

PRESS

Figure 12 The (4K,, P,)-coloringson SF; (es, 4) — eiif e
is one of the dashed edges.

Now, we consider graph C,[(1,5), (3,7)]. Since every
edge in C,[(1,5), (3,7)] is non-pendant, then according
to Theorem 3, the subdivision (4 times) on any edge of
C,[(1,5),(3,7)] will produce three non-isomorphism
graphs in R(4K,, P,). By repeating this process for the
resulting graphs, we obtain Corollary 10.

Corollary 10. Let m > 4 be an integer. Then, the graphs
C4m—5[(1’5)' (3!7)]' C4m—5[(1'4m - 7)1 (4m —9,4m —
5], and Cun_s[(1,4m—7),(34m —5)] ae in
R(mK,, P,).

Proof. Let {v,,v,,..,v;,} be the vertex-set of
C,[(1,5), (3,7)]. The subdivision (4 vertices) on the edge
e=vv, Will result C;1[(1,9),(7,11)] Since
C,[(1,5),(3,7) € R(3K;, P,), then by Theorem 3, we
have that C;,[(1,9), (7,11)] € R(4K,, P,). Furthermore,
by subdividing (4 vertices) the edge e = v,v, of
C11[(1,9), (7,11)], we obtain C;5[(1,13),(11,15)]. By
Theorem 3, we have that C;5[(1,13),(11,15)] €
R(5K,, P,). By continuing this process and applying it to
the resulting graph, then we obtain the graph
Cym—s[(1,4m — 7),(4m — 9,4m — 5)]. By Theorem 3,
Cym—s[(1,4m — 7),(4m — 9,4m — 5)] € R(mK,, P,).
Next, by subdivision (4 vertices) ontheedge e = v,v, of
the graph C;[(1,5),(3,7)] , repeatedly, and apply
Theorem 3, we obtain C4p_s[(1,4m —7),(3,4m —
5)] € R(mK,, P,). By doing the same way to the edge
e = v,v;, We obtain Cy,,_5[(1,5), (3,7)] € R(mK,, P,).
[ |

In the same way, we can construct some other graphs
in R(mK,, P,) from some graph in R(3K;, P,), namely,

CMAA, B0)] G149, (25),(26),(3,5)]
c71(1,3),(2,6), (5,7)], c71(2,6),(3,7)], and
Cs[(2,7), (4,7), (6,8)]. Therefore, we have Corollary 11.

Corollary 11. Let m > 4 be an integer. Then the
following 19 graphsare in R(mK,, P,).

L Cinosl(14),3,6)],
2. Cim24m=8((1,4m — 8), (4m — 9,4m — 6)],
3. C™%[(1,4m — 8), (3,4m — 6)],
4. Cum_e[(1,4m —8),(4m —10,4m — 7),
(4m —10,4m — 6), (4m — 9,4m — 7)],
5. Cum-e[(1,4m —8),(2,4m — 7),(2,4m — 6),

Advances in Computer Science Research, volume 96

(4m—-9,4m —7)],

Cam-6[(1,4),(2,5), (2,6), (3,5)],
Cim-s[(2,6), 3,7)],

Cim=3[(2,4m — 6), (4m — 9,4m — 5)],
Cim=8[(2,4m — 6), (3,4m — 5)],

10. C}™=21(2,6), (3,4m — 5)]

11. ¢3,_s[(1,3),(2,6), (5,7)],

12. Cm7[(1,4m —9), (4m — 10,4m — 6), (4m —
7,4m — 5)],

13. Cfi’,?_‘g [(1,4m —9),(2,4m — 6),(4m — 7,4m —
51

14. Cm™=7[(1,3),(2,4m — 6), (4m — 7,4m — 5)],

15. C3,_s[(1,3), (2,4m — 6), (5,4m — 5)],

16. C3,_s[(1,3),(2,6), (5,4m — 5)],

17. Com-n[(2.7), (4.7, (6,8)],

18. Cyim-1[(2,4m —5),(4m — 8,4m - 5),
(4m —6,4(m — 1))],

19. Cym-1[(2,7), (4,7), (6,4(m — 1))].

© © N O

4. CONCLUSION

In this paper, we discuss the construction of a
disconnected Ramsey minimal graphin R(3K;, P,) from
Ramsey minimal graph ini R(2K,, P,). We show that all
disconnected graphs in R(3K,, P,) are Cs U P,, C4 U P,
C,UP, CfUP,, and3P,. In addition, we give some
connected graphs in R(3K,,P,) , namely, F,,
Cel(1,4),(2,5),(2,6),35)] , €71(1,3),(2,6),(57)]
C7[(1,5), (317)]! C’; [(2,6), (3,7)]; C8 [(2'7): (417)1 (618)]
C63'4[(1,4), (3,6)] as depicted in Fig. 4. Furthermore,
we aso construct nineteen new families of Ramsey
(mK,, P,) minimal graphs for m > 4.
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