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For any graphs 𝐹 , 𝐺, and 𝐻 , the notation 𝐹 → (𝐺, 𝐻) means that any red-blue coloring of all edges of 𝐹 will 
contain either a red copy of 𝐺 or a blue copy of 𝐻 . The set (𝐺, 𝐻) consists of all Ramsey (𝐺, 𝐻)-minimal graphs, 
namely all graphs 𝐹 satisfying 𝐹 → (𝐺, 𝐻) but for each 𝑒 ∈ 𝐸(𝐹 ), (𝐹 − 𝑒) ↛ (𝐺, 𝐻). In this paper, we propose a 
simple construction for creating new Ramsey minimal graphs from the previous known Ramsey minimal graphs 
(by subdivision operation). In particular, suppose 𝐹 ∈ (𝑚𝐾2, 𝑃4) and let 𝑒 ∈ 𝐸(𝐹 ) be an edge contained in a 
cycle of 𝐹 , we construct a new Ramsey minimal graph in ((𝑚 +1)𝐾2, 𝑃4) from graph 𝐹 by subdividing the edge 
𝑒 four times.
1. Introduction

Let 𝐹 , 𝐺, and 𝐻 be simple graphs. Write 𝐹 → (𝐺, 𝐻) to mean that 
for any red-blue coloring of all edges of 𝐹 there exists a red copy of 
𝐺 or a blue copy of 𝐻 as a subgraph of 𝐹 . A (𝐺, 𝐻)-coloring of 𝐹 is a 
red-blue coloring of 𝐹 such that neither a red 𝐺 nor a blue 𝐻 occurs. 
A graph 𝐹 will be called a Ramsey (𝐺, 𝐻)-minimal if 𝐹 → (𝐺, 𝐻) but for 
each 𝑒 ∈𝐸(𝐹 ), there exists a (𝐺, 𝐻)-coloring of a graph 𝐹 − 𝑒. The set of 
all Ramsey (𝐺, 𝐻)-minimal graphs will be denoted by (𝐺, 𝐻).

The characterization of all graphs 𝐹 in (𝐺, 𝐻) for a fixed pair 
of graphs 𝐺 and 𝐻 is an interesting but difficult problem. Even, it is 
for small graphs 𝐺 and 𝐻 . Burr et al. [1] showed that the problem of 
deciding whether a graph 𝐹 is a Ramsey (𝐺, 𝐻)-minimal graph is NP-

complete for any fixed 3-connected graphs 𝐺 and 𝐻 . Numerous papers 
discuss the problem of determining the members of the set (𝐺, 𝐻). 
In particular, Burr et al. [2] proved that if 𝐺 is a matching (𝐺 = 𝑚𝐾2), 
then the set (𝑚𝐾2, 𝐻) is finite for any graph 𝐻 . One of the problems 
of Ramsey minimal graphs is characterizing graphs belonging to the set 
(𝑚𝐾2, 𝐻) for some classes of a graph 𝐻 . For instance, the characteri-

zation of Ramsey minimal graphs belonging to (3𝐾2, 𝐾3) can be seen 
in [3]; (2𝐾2, 𝐾4) can be seen in [4, 5]. The set (2𝐾2, 𝑃3) is given 
by Mengersen and Oeckermann [6]. Furthermore, the set (3𝐾2, 𝑃3)
is given by Burr et al. [2] (without proof) and by Mushi and Baskoro 
[7] (with a proof). Next, Wijaya et al. [8] determined all graphs in 
(4𝐾2, 𝑃3). Moreover, Baskoro and Yulianti [9] characterized all graphs 
in (2𝐾2, 𝑃4) and (2𝐾2, 𝑃5).
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In 2016, Wijaya and Baskoro [10] constructed some Ramsey 
(2𝐾2, 2𝐻)-minimal graphs by using some operations over graphs in 
(2𝐾2, 𝐻) for 𝐻 is a cycle, path, or star. Recently, Wijaya et al. [11] de-

termined all unicyclic graphs in (𝑚𝐾2, 𝑃3) for each integer 𝑚 > 1. Most 
recently, Wijaya et al. [12] derived the necessary and sufficient condi-

tions for all graphs belonging to (𝑚𝐾2, 𝐻), for any integer 𝑚 > 1. They 
also proved that any graph obtained by subdividing one non-pendant 
edge in 𝐹 (∈(𝑚𝐾2, 𝑃3)) will be in ((𝑚 + 1)𝐾2, 𝑃3). They also showed 
the following lemma.

Lemma 1. Let 𝐻 be a connected graph and 𝑚 be a positive integer. Suppose 
𝐹 ∈(𝑚𝐾2, 𝐻). For each 𝑒 ∈𝐸(𝐹 ), let 𝜏 be an (𝑚𝐾2, 𝐻)-coloring of edges 
of 𝐹 − 𝑒. Then, there exists a red (𝑚 − 1)𝐾2 in 𝐹 − 𝑒.

Motivated by subdividing one non-pendant edge of a Ramsey 
(𝑚𝐾2, 𝑃3)-minimal graph by Wijaya et al. [12], in this paper, our aim 
is to prove that if 𝐹 ∈ (𝑚𝐾2, 𝑃4), then any graph obtained by sub-

dividing one edge contained in a cycle of 𝐹 (four times) will be in 
((𝑚 + 1)𝐾2, 𝑃4).

2. Subdivision graphs

The subdivision (𝑘 vertices) of a graph 𝐺 on the edge 𝑒 = 𝑢𝑣 in 𝐸(𝐺), 
denoted by 𝑆𝐺(𝑒, 𝑘), is a graph obtained from the graph 𝐺 by remov-

ing the edge 𝑒 and adding 𝑘 new vertices 𝑤1, 𝑤2, … , 𝑤𝑘 and (𝑘 + 1)
new edges 𝑢𝑤1, 𝑤1𝑤2, 𝑤2𝑤3, …, 𝑤𝑘−1𝑤𝑘, 𝑤𝑘𝑣. Therefore, 𝑆𝐺(𝑒, 𝑘) has 
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Fig. 1. The graphs 𝐺,𝑆𝐺(𝑒4,2), 𝑆𝐺(𝑒2,2), and 𝑆𝐺(𝑒8,2), respectively.

the vertex set 𝑉 (𝑆𝐺(𝑒, 𝑘)) = 𝑉 (𝐺) ∪ {𝑤1, 𝑤2, … , 𝑤𝑘} and the edge set 
𝐸(𝑆𝐺(𝑒, 𝑘)) = 𝐸(𝐺 − 𝑒) ∪ {𝑢𝑤1, 𝑤1𝑤2, …, 𝑤𝑘−1𝑤𝑘, 𝑤𝑘𝑣} Henceforth, the 
edge 𝑒 in the notation 𝑆𝐺(𝑒, 𝑘) will be called the subdivision edge. For 
example, consider a graph 𝐺 as depicted in Fig. 1. Some subdivision (2 
vertices, black vertex) of the graph 𝐺 on the edge 𝑒4 or 𝑒2 or 𝑒8 can 
be seen, respectively, in Fig. 1. We can see that the subdivision graphs 
𝑆𝐺(𝑒1, 2), 𝑆𝐺(𝑒2, 2), and 𝑆𝐺(𝑒3, 2) are isomorphic.

Let 𝐹 be a Ramsey (𝑚𝐾2, 𝑃4)-minimal graph for the pair matching 
𝑚𝐾2 and a path on 4 vertices 𝑃4. Let 𝑒 be an edge in 𝐸(𝐹 ). From now 
on, we use the notation 𝜏𝑒 as an (𝑚𝐾2, 𝑃4)-coloring of 𝐹 − 𝑒, namely the 
red-blue coloring of edges of a graph 𝐹 − 𝑒 such that there is neither a 
red 𝑚𝐾2 nor a blue 𝑃4. According to Lemma 1, under the coloring 𝜏𝑒, 
there exists a red (𝑚 − 1)𝐾2 in a graph 𝐹 − 𝑒. Since 𝐹 ∈(𝑚𝐾2, 𝑃4), if 
we return the edge 𝑒 to a graph 𝐹 , then 𝑒 can have either a red or a 
blue color. If the edge 𝑒 has a red color, then clearly there exists a red 
𝑚𝐾2 on a graph 𝐹 , while if it has a blue color, then there exists a blue 
path 𝑃4 on a graph 𝐹 . The next lemma discusses the property of the 
existence of a blue path 𝑃4 in a graph 𝐹 ∈(𝑚𝐾2, 𝑃4).

Lemma 2. Let 𝑚 ≥ 2 be an integer and 𝐹 ∈ (𝑚𝐾2, 𝑃4). Then, for any 
𝑒 ∈ 𝐸(𝐹 ), there exists a red-blue coloring of 𝐹 having no red 𝑚𝐾2 and the 
edge 𝑒 satisfies one of the following four conditions:

(i) 𝑒 is any edge of exactly one blue path 𝑃4,
(ii) 𝑒 is the middle edge of more than one blue path 𝑃4 (there is no blue 

path 𝑃5 in this case)

(iii) 𝑒 is one of the middle edges of one or more than one blue path 𝑃5 (there 
is no blue path 𝑃6 in this case), or

(iv) 𝑒 is the middle edge of one or more than one blue path 𝑃6 .

Note: more than one blue path 𝑃𝑡 for 𝑡 ∈ [4, 6] in this Lemma are not inde-

pendent; they have one or more than one edge together.

Proof. Let 𝐹 be a Ramsey (𝑚𝐾2, 𝑃4)-minimal graph. Suppose 𝑒 ∈𝐸(𝐹 ). 
Then, there exists an (𝑚𝐾2, 𝑃4)-coloring 𝜏𝑒 of 𝐹 − 𝑒. Under the coloring 
𝜏𝑒, there does not exist a red 𝑚𝐾2 of a graph 𝐹 − 𝑒. Now, define a new 
coloring 𝜏 of a graph 𝐹 such that

𝜏(𝑥) =
{

blue, for 𝑥 = 𝑒,

𝜏𝑒(𝑥), for else.

Then, under the coloring 𝜏 , there does not exist a red 𝑚𝐾2 of a graph 
𝐹 . Meanwhile, the edge 𝑒 is contained in a blue path 𝑃4, otherwise 
𝐹 ↛ (𝑚𝐾2, 𝑃4). Furthermore, we prove that the edge 𝑒 is contained in a 
blue path 𝑃𝑡 for some 𝑡 ∈ [4, 6]. If we assume that the edge 𝑒 is contained 
in a blue path 𝑃𝑡, for each 𝑡 ≥ 7, then deleting the edge 𝑒 from this path 
yields a blue 𝑃4 in 𝐹 − 𝑒 (under the coloring 𝜏𝑒). So, (𝐹 − 𝑒) → (𝑚𝐾2, 𝑃4), 
a contradiction. Therefore, the edge 𝑒 must be contained in a blue path 
𝑃𝑡, for some 𝑡 ∈ [4, 6]. Next, since the path 𝑃4 is a subgraph of both 𝑃5
and 𝑃6, it is easily verified the edge 𝑒 satisfies one of the four conditions 
above. □

As an illustration, the four conditions of the edge 𝑒 can be depicted 
in Fig. 2. All graphs in Fig. 2 are the only blue subgraphs of 𝐹 containing 
a blue 𝑃4, under coloring 𝜏 . Deleting the edge 𝑒 of a graph 𝐹 remains 
an (𝑚𝐾2, 𝑃4)-coloring 𝜏𝑒 of all edges of 𝐹 − 𝑒.

Let 𝐹 be a connected graph and 𝑒 be an edge of 𝐹 . We can see that 
there are two conditions about the edge 𝑒, as below.
2

Fig. 2. The four conditions of the edge 𝑒 in Lemma 2.

(i) The edge 𝑒 is not contained in any cycle of 𝐹 .

Then 𝑆𝐹 (𝑒, 4) ⊇ (𝐹 ∪ 𝑃4). If 𝐹 ∈ (𝑚𝐾2, 𝑃4) then 𝐹 ∪ 𝑃4 ∈ ((𝑚 +
1)𝐾2, 𝑃4) [12]. Hence, for each 𝑒 is not contained in any cycle of 𝐹 , 
if 𝐹 ∈(𝑚𝐾2, 𝑃4) then 𝑆𝐹 (𝑒, 4) ∉((𝑚 + 1)𝐾2, 𝑃4).

(ii) The edge 𝑒 is contained in a cycle of 𝐹 .

The graph 𝑆𝐹 (𝑒, 4) is not contained 𝐹 ∪ 𝑃4. That is why, for this 
case, we shall prove that if 𝐹 ∈(𝑚𝐾2, 𝑃4) then 𝑆𝐹 (𝑒, 4) ∈((𝑚 +
1)𝐾2, 𝑃4) for each edge 𝑒 is contained in a cycle of 𝐹 , in theorem 
below.

Before doing this, we define the set 𝑆𝐹 (4). Let 𝐹 be a connected 
graph and 𝑒 be an edge in a cycle of 𝐹 . Let 𝑆𝐹 (4) = {𝑆𝐹 (𝑒, 4) | 𝑒 ∈
𝐸(𝐹 ) and 𝑒 is an edge contained in a cycle of 𝐹 } be the set of all graphs 
𝑆𝐹 (𝑒, 4) for all edges contained in a cycle of 𝐹 . For example, 𝑆𝐺(4)
= {𝑆𝐺(𝑒2, 2), 𝑆𝐺(𝑒4, 2), 𝑆𝐺(𝑒5, 2), 𝑆𝐺(𝑒8, 2)} of a graph 𝐺 as depicted in 
Fig. 1.

Theorem 3. Let 𝐹 be a connected graph and 𝑚 ≥ 2 be an integer. Suppose 
𝛼 is an edge contained in a cycle of 𝐹 . If 𝐹 ∈(𝑚𝐾2, 𝑃4), then 𝑆𝐹 (𝛼, 4) ∈
((𝑚 + 1)𝐾2, 𝑃4). Consequently, 𝑆𝐹 (4) ⊆((𝑚 + 1)𝐾2, 𝑃4).

Proof. Let 𝐹 ∈ (𝑚𝐾2, 𝑃4) be a connected graph and 𝛼 ∈ 𝐸(𝐹 ) be an 
edge contained in a cycle of 𝐹 . We shall prove that 𝑆𝐹 (𝛼, 4) ∈((𝑚 +
1)𝐾2, 𝑃4). Let 𝐸(𝑆𝐹 (𝛼, 4)) = 𝐸(𝐹 − 𝛼) ∪ {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5} be the edge set 
of 𝑆𝐹 (𝛼, 4) where 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 are the five new consecutive edges of 
the subdivision (4 vertices) of the graph 𝐹 on the edge 𝛼, 𝑆𝐹 (𝛼, 4).

First, suppose to the contrary, that 𝑆𝐹 (𝛼, 4) ↛ ((𝑚 + 1)𝐾2, 𝑃4). It 
means that there exists an ((𝑚 + 1)𝐾2, 𝑃4)-coloring 𝜏 of 𝑆𝐹 (𝛼, 4). Un-

der coloring 𝜏 , the graph 𝑆𝐹 (𝛼, 4) contains at most 𝑚 independent red 
edges, where one or two red edges originated from the five new edges 
𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5.

• If one of the edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, and 𝛼5 provides one red indepen-

dent edge, then the number of the disjoint red edges of 𝐹 − 𝛼 is 
exactly 𝑚 − 1. We now replace the edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 with the 
edge 𝛼 and color 𝛼 by blue. Then, we obtain a graph isomorphic to 
𝐹 containing a red (𝑚 − 1)𝐾2 but no blue 𝑃4. It means that 𝐹 has 
an (𝑚𝐾2, 𝑃4)-coloring. The last statement contradicts the fact that 
𝐹 → (𝑚𝐾2, 𝑃4).

• If the edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, and 𝛼5 provide two independent red edges 
(red 2𝐾2), then the number of the independent red edges of 𝐹 − 𝛼

is exactly 𝑚 − 2. Now, we replace the edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, and 𝛼5 by 
the edge 𝛼 and color 𝛼 by red. Then, we obtain a graph isomorphic 
to 𝐹 containing a red (𝑚 − 1)𝐾2 but no blue 𝑃4, which contradicts 
𝐹 → (𝑚𝐾2, 𝑃4).

Therefore, from two cases above, we conclude that 𝑆𝐹 (𝛼, 4) → ((𝑚 +
1)𝐾2, 𝑃4).

Next, we show that 𝑆𝐹 (𝛼, 4) is minimal. It means that for every 
𝑒 ∈ 𝐸(𝑆𝐹 (𝛼, 4)), there exists an ((𝑚 + 1)𝐾2, 𝑃4)-coloring of 𝑆𝐹 (𝛼, 4) − 𝑒. 
We consider two cases, namely (i) 𝑒 ∈ 𝐸(𝐹 ) and 𝑒 ≠ 𝛼 and (ii) 𝑒 ∈
{𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5}. First, for every 𝑒 ∈ 𝐸(𝐹 ), there exists an (𝑚𝐾2, 𝑃4)-
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Fig. 3. A path 𝐏 of length 3 in 𝐹 containing the edge 𝛼.

coloring 𝜏𝑒 of 𝐹 − 𝑒. Let 𝛼 ∈ 𝐸(𝐹 − 𝑒) be the subdivision edge. So, the 
edge 𝛼 becomes the edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 in 𝐸(𝑆𝐹 (𝛼, 4)). Under the 
coloring 𝜏𝑒, the color of edge 𝛼 can have either a red or blue color. 
Now, define a coloring 𝜏 of 𝑆𝐹 (𝛼, 4) − 𝑒 such that 𝜏(𝑥) = 𝜏𝑒(𝑥) for each 
𝑥 ∈ 𝐸(𝐹 − {𝑒, 𝛼}), and assign color to the five new edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, 
and 𝛼5 depending the color of 𝛼 under 𝜏𝑒 of the graph 𝐹 − 𝑒 as follows.

• If 𝜏𝑒(𝛼) = red, then color the edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 by either red, 
blue, blue, red, red, respectively, if 𝛼1 is adjacent to a red edge of 
𝐹 , or red, red, blue, blue, red, respectively, if 𝛼5 is adjacent to a 
red edge of 𝐹 . Otherwise, if both 𝛼1 and 𝛼5 are adjacent to a blue 
edge of 𝐹 , then color the edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 by red, blue, blue, 
red, red, respectively. In this case, the red edge 𝛼1 displaces the 
red edge 𝛼. That is why the coloring of the five new edges donates 
one independent red edge. So, 𝜏 is an ((𝑚 + 1)𝐾2, 𝑃4)-coloring of 
𝑆𝐹 (𝛼, 4) − 𝑒.

• If 𝜏𝑒(𝛼) = blue, then the only one vertex, which is incident with the 
edge 𝛼, will be incident with a blue edge. Otherwise, 𝐹 will not be 
minimal. Furthermore, color the edges 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 by blue, red, 
red, blue, blue, respectively if 𝛼5 is adjacent to a red edge of 𝐹 , and 
color by blue, blue, red, red, blue, respectively, if 𝛼1 is adjacent to 
a red edge of 𝐹 . In this case, the five new edges only contribute to 
one independent red edge. Hence, 𝜏 is an ((𝑚 + 1)𝐾2, 𝑃4)-coloring 
of 𝑆𝐹 (𝛼, 4) − 𝑒.

Now, consider the case if 𝑒 ∈ {𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5}. By symmetry, it is 
enough to consider if 𝑒 is either 𝛼1, 𝛼2, or 𝛼3.

(1) Case of 𝑒 = 𝛼1. Then, 𝛼2 is a pendant edge of 𝑆𝐹 (𝛼, 4) − 𝛼1. Let 𝜏𝛼
be an (𝑚𝐾2, 𝑃4)-coloring of 𝐹 − 𝛼. Now, define 𝜏𝛼1 as a red-blue 
coloring of edges of 𝑆𝐹 (𝛼, 4) − 𝛼1 such that

𝜏𝛼1
(𝑥) =

⎧⎪⎨⎪⎩
red, for 𝑥 = 𝛼4, 𝛼5,

blue, for 𝑥 = 𝛼2, 𝛼3,

𝜏𝛼(𝑥), for else.

It is easy to see that under coloring 𝜏𝛼1 , there is neither a red (𝑚 +
1)𝐾2 nor a blue 𝑃4 in 𝑆𝐹 (𝛼, 4) − 𝛼1. Hence, 𝜏𝛼1 is an ((𝑚 +1)𝐾2, 𝑃4)-
coloring of 𝑆𝐹 (𝛼, 4) − 𝛼1.

(2) Case of 𝑒 = 𝛼2. Then, both 𝛼1 and 𝛼3 are pendant edges of 𝑆𝐹 (𝛼, 4) −
𝛼2. Consider the edge of 𝐹 adjacent to 𝛼5, say 𝑏. Then there exists 
an (𝑚𝐾2, 𝑃4)-coloring 𝜏𝑏 of 𝐹 − 𝑏. Now, define a red-blue coloring 
𝜏𝛼2

of 𝑆𝐹 (𝛼, 4) − 𝛼2 such that

𝜏𝛼2
(𝑥) =

⎧⎪⎪⎨⎪⎪⎩

red, for 𝑥 = 𝛼5, 𝑏,

blue, for 𝑥 = 𝛼3, 𝛼4,

𝜏𝑏(𝛼), for 𝑥 = 𝛼1,

𝜏𝑏(𝑥), otherwise.

We can easily see that 𝜏𝛼2 is an ((𝑚 +1)𝐾2, 𝑃4)-coloring of 𝑆𝐹 (𝛼, 4) −
𝛼2.

(3) Next, we consider 𝑒 = 𝛼3. Let 𝐏 be a path of length 3 in 𝐹
containing the subdivision edge 𝛼 with the vertex-set 𝑉 (𝐏) =
{𝑤1, 𝑤2, 𝑤3, 𝑤4} and the edge-set 𝐸(𝐏) = {𝑟, 𝑠, 𝛼}, where 𝑟 =
𝑤1𝑤2, 𝑠 = 𝑤2𝑤3, and 𝛼 = 𝑤3𝑤4 (see Fig. 3). In this case, the edge 
𝛼1 is incident with the vertex 𝑤3. We now consider an (𝑚𝐾2, 𝑃4)-
coloring 𝜏𝑟 of 𝐹 − 𝑟 and an (𝑚𝐾2, 𝑃4)-coloring 𝜏𝑠 of 𝐹 − 𝑠. Without 
loss of generality, we consider the subdivision edge 𝛼 is contained 
in a path 𝑃4, 𝑃5, or 𝑃6 as referred to in Lemma 2. It means that 
under both coloring 𝜏𝑟 and 𝜏𝑠 and according to Lemma 2, the sub-

division edge 𝛼 has a blue color. Therefore, there are 3 possibilities 
3

Fig. 4. The graph 𝐹 ∈(3𝐾2, 𝑃4).

about the path 𝐏, where from all possibilities, we consider either 
the coloring 𝜏𝑟 or 𝜏𝑠.

(a) A path 𝐏 is contained in a blue path 𝑃4 (but 𝐏 is not contained 
in a blue path 𝑃5). Then 𝐏 = 𝑃4. Under the coloring 𝜏𝑟, the blue 
edge incident with 𝑤2 is the only edge 𝑠. Let 𝜏𝛼3 be a red-blue 
coloring of edges of 𝑆𝐹 (𝛼, 4) − 𝛼3 such that

𝜏𝛼3
(𝑥) =

⎧⎪⎨⎪⎩
red, for 𝑥 = 𝛼1, 𝑠,

blue, for 𝑥 = 𝛼2, and 𝑥 = 𝛼4, 𝛼5, 𝑟,

𝜏𝑟(𝑥), otherwise.

So, 𝜏𝛼3 is an ((𝑚 + 1)𝐾2, 𝑃4)-coloring of 𝑆𝐹 (𝛼, 4) − 𝛼3.

(b) A path 𝐏 is contained in a blue path 𝑃5 (but 𝐏 is not contained 
in a blue path 𝑃6). Under the coloring 𝜏𝑟, then (i) there exists 
at least one edge incident with the vertex 𝑤1 has a blue color, 
and (ii) the blue edge which is incident with the vertex 𝑤4 is 
the only 𝛼. We now define 𝜏𝛼3 as a red-blue coloring of edges 
of 𝑆𝐹 (𝛼, 4) − 𝛼3 such that

𝜏𝛼3
(𝑥) =

⎧⎪⎨⎪⎩
red, for 𝑥 = 𝛼1, 𝑠,

blue, for 𝑥 = 𝛼2, 𝛼4, 𝛼5, 𝑟,

𝜏𝑟(𝑥), otherwise.

So, 𝜏𝛼3 is an ((𝑚 + 1)𝐾2, 𝑃4)-coloring of 𝑆𝐹 (𝛼, 4) − 𝛼3.

(c) A path 𝐏 is contained in a blue path 𝑃6. Under the coloring 
𝜏𝑟, then (i) there is exactly one blue edge incident with the 
vertex 𝑤1, say 𝑝 = 𝑣𝑤1, and (ii) at least one edge incident with 
the vertex 𝑣 also having a blue color. Now, consider two cases 
below.

• If 𝑠 is the only blue edge adjacent to 𝛼, then define 𝜏𝛼3 as a 
red-blue coloring of edges of 𝑆𝐹 (𝛼, 4) − 𝛼3 such that

𝜏𝛼3
(𝑥) =

⎧⎪⎨⎪⎩
red, for 𝑥 = 𝑟, 𝑠,

blue, for 𝑥 = 𝛼1, 𝛼2, and 𝑥 = 𝛼4, 𝛼5,

𝜏𝑟(𝑥), otherwise.

So, 𝜏𝛼3 is an ((𝑚 + 1)𝐾2, 𝑃4)-coloring of 𝑆𝐹 (𝛼, 4) − 𝛼3.

• If the blue edge adjacent to 𝛼 is not only 𝑠, then there exists at 
least one blue edge, say 𝑠1, which is incident with the vertex 
𝑤3. For this case, we consider an ((𝑚 +1)𝐾2, 𝑃4)-coloring 𝜏𝑠 of 
edges of 𝐹 − 𝑠. Under the coloring 𝜏𝑠, the blue edge incident 
with the vertex 𝑣 is only the edge 𝑝. Now, define 𝜏𝛼3 as a 
red-blue coloring of edges of 𝑆𝐹 (𝛼, 4) − 𝛼3 such that

𝜏𝛼3
(𝑥) =

⎧⎪⎪⎨⎪⎪⎩

red, for 𝑥 = 𝛼1, 𝑠,

blue, for 𝑥 = 𝛼2, and 𝑥 = 𝛼4, 𝛼5,

𝜏𝑟(𝑥), for 𝑥 is incident with 𝑤4,

𝜏𝑠(𝑥), for else.

So, 𝜏𝛼3 is an ((𝑚 + 1)𝐾2, 𝑃4)-coloring of 𝑆𝐹 (𝛼, 4) − 𝛼3.

Therefore, 𝑆𝐹 (𝛼, 4) ∈((𝑚 + 1)𝐾2, 𝑃4). □

As an illustration, consider the graph 𝐹 in Fig. 4. We can prove 
that the graph 𝐹 in Fig. 4 is in (3𝐾2, 𝑃4). The graph 𝐹 satisfies the 
following conditions (see [3, 12]):



K. Wijaya et al. Heliyon 6 (2020) e03843
Fig. 5. Some red-blue colorings of 𝐹 such that removing a blue edge 𝑒 satisfying 
Lemma 2 results a (3𝐾2, 𝑃4)-coloring of 𝐹 − 𝑒.

Fig. 6. Five non-isomorphism graphs belonging to (4𝐾2, 𝑃4) which is ob-

tained by subdividing four times (4 yellow vertices) an edge in a cycle of 
𝐹 ∈(3𝐾2, 𝑃4).

Fig. 7. Some red-blue colorings of 𝑆𝐹 (𝑒5, 4) such that removing the blue edge 𝑒
satisfying Lemma 2 results a (4𝐾2, 𝑃4)-coloring of 𝑆𝐹 (𝑒5, 4) − 𝑒.

(i) for each 𝑢, 𝑣 ∈ 𝑉 (𝐹 ), 𝐹 − {𝑢, 𝑣} ⊇ 𝑃4,

(ii) for each subset on 5 vertices 𝑆5 ⊆ 𝑉 (𝐹 ), 𝐹 −𝐸(𝐹 [𝑆5]) ⊇ 𝑃4, where 
𝐹 [𝑆5] is an induced subgraph of 5 vertices in 𝑆5 of a graph 𝐹 .

So, 𝐹 → (3𝐾2, 𝑃4). The minimality property of a graph 𝐹 , that is for 
each 𝑒 ∈ 𝐸(𝐹 ), there exists a (3𝐾2, 𝑃4)-coloring of 𝐹 − 𝑒, can be seen 
in Fig. 5. Removing one blue edge 𝑒 satisfying Lemma 2 results a 
(3𝐾2, 𝑃4)-coloring of 𝐹 − 𝑒. By Theorem 3, up to isomorphism, if we 
subdivide an edge 𝑒𝑖 (𝑖 ∈ [1, 8]), four times, of a graph 𝐹 in Fig. 4, then 
we obtain five non-isomorphism subdivision graphs (4 vertices) belong-

ing to (4𝐾2, 𝑃4), namely 𝑆𝐹 (𝑒1, 4), 𝑆𝐹 (𝑒4, 4), 𝑆𝐹 (𝑒5, 4), 𝑆𝐹 (𝑒6, 4), and 
𝑆𝐹 (𝑒7, 4) as depicted in Fig. 6. The proof of the minimality of a graph 
𝑆𝐹 (𝑒5, 4) can be seen in Fig. 7, while the minimality of the other graphs 
can be shown in the same fashion.

3. Some classes of Ramsey (𝒎𝑲𝟐, 𝑷𝟒) minimal graphs

In this section, we give some connected graphs other than cycle be-

longing to (𝑚𝐾2, 𝑃4) for an integer 𝑚. We construct these graphs by 
subdivision (4 vertices) on the edge contained in a cycle of a graph 𝐹 , 
where 𝐹 is either in (2𝐾2, 𝑃4) or in (3𝐾2, 𝑃4). Baskoro and Yulianti 
[9], proved that (2𝐾2, 𝑃4) = {2𝑃4, 𝐶5, 𝐶6, 𝐶7, 𝐶2

4 (1)}, where 𝐶2
4 (1) is a 

cycle on 4 vertices with two additional pendant vertices so that the two 
vertices of degree 3 are adjacent, as depicted in Fig. 8. In general, we de-

fine a graph 𝐶2(𝑠) as a graph formed from a cycle on 𝑛 vertices with two 

𝑛

4

Fig. 8. Some graphs are in (𝑚𝐾2, 𝑃4) for 𝑚 = 2,3, or 4.

additional pendant vertices such that the two vertices of degree 3 are at 
distance 𝑠. By Theorem 3, the subdivision (4 (yellow) vertices) on any 
edge contained in a cycle of the graph 𝐶2

4 (1) yields 𝐶2
8 (1) and 𝐶2

8 (3), as 
depicted in Fig. 8; and both are in (3𝐾2, 𝑃4). Next, the subdivision (4 
(green) vertices) on any edge contained in a cycle of a graph 𝐶2

8 (1) will 
produce graphs in (4𝐾2, 𝑃4), namely 𝐶2

12(1) and 𝐶2
12(5). Meanwhile, 

the subdivision (4 (green) vertices) on any edge contained in a cycle of 
a graph 𝐶2

8 (3) will yield graphs in (4𝐾2, 𝑃4), namely 𝐶2
12(3) and 𝐶2

12(5), 
as depicted in Fig. 8. By continuing this step recursively, we get corol-

lary below.

Corollary 4. Let 𝑚 ≥ 2 be a natural number. Then, the graph 𝐶2
4(𝑚−1)(𝑠) is 

in (𝑚𝐾2, 𝑃4), for any odd integer 𝑠 ≤ 2𝑚 − 3. □

We now define four special graphs formed by a cycle 𝐶𝑛 with cir-

cumference 𝑛 by adding two new edges connecting vertices of the cycle 
𝐶𝑛. Suppose 𝑉 (𝐶𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸(𝐶𝑛) = {𝑣1𝑣2, 𝑣2𝑣3, … , 𝑣𝑛−1𝑣𝑛,
𝑣𝑛𝑣1} are the vertex-set and edge-set of 𝐶𝑛, respectively. Let 𝑖, 𝑗, 𝑘, 𝑙 be 
four distinct integers, we denote by 𝐶𝑛[(𝑖, 𝑘), (𝑗, 𝑙)] the graph formed 
from a cycle 𝐶𝑛 by adding two new edges 𝑣𝑖𝑣𝑘 and 𝑣𝑗𝑣𝑙 . Now, 
consider graphs: 𝐶8[(1, 4), (2, 7)], 𝐶8[(1, 5), (3, 7)], 𝐶8[(1, 5), (2, 6)] and 
𝐶8[(1, 4), (2, 6)] as depicted in Figs. 9, 10, 11, and 12, respectively. In 
the following lemma, we prove that these four graphs 𝐶8[(1, 4), (2, 7)], 
𝐶8[(1, 5), (3, 7)], 𝐶8[(1, 5), (2, 6)] and 𝐶8[(1, 4), (2, 6)] are in (3𝐾2, 𝑃4).

Lemma 5. The graphs 𝐶8[(1, 4), (2, 7)], 𝐶8[(1, 5), (3, 7)], 𝐶8[(1, 5), (2, 6)], 
and 𝐶8[(1, 4), (2, 6)] are Ramsey (3𝐾2, 𝑃4)-minimal graphs.

Proof. Let 𝐹 be one of the graphs 𝐶8[(1, 4), (2, 7)], 𝐶8[(1, 5), (3, 7)], 
𝐶8[(1, 5), (2, 6)], or 𝐶8[(1, 4), (2, 6)]. We can easily show the graph 𝐹 →
(3𝐾2, 𝑃4), since it satisfies the following conditions (see [3, 12]):

(i) for any distinct two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐹 ), 𝐹 − {𝑢, 𝑣} ⊇ 𝑃4,

(ii) for any 5-subset 𝑆5 ⊆ 𝑉 (𝐹 ), 𝐹 −𝐸(𝐹 [𝑆5]) ⊇ 𝑃4, where 𝐹 [𝑆5] is the 
induced subgraph of 𝑆5 of 𝐹 .

Next, the minimality of a graph 𝐹 can be seen in Figs. 9, 10, 11, and 
12, where removing one blue edge labeled (𝑖, 𝑗) will result a (3𝐾2, 𝑃4)-
coloring of 𝐹 − 𝑣𝑖𝑣𝑗 , for some distinct 𝑖, 𝑗 ∈ [1, 8]. □

Now, we consider the graph 𝐶8[(1, 4), (2, 7)]. Since every edge in 
𝐶8[(1, 4), (2, 7)] is contained in a cycle then by Theorem 3, the subdivi-

sion (4 vertices) on any edge of 𝐶8[(1, 4), (2, 7)] will result some graphs 
in (4𝐾2, 𝑃4). By repeating the process to the resulting graph again and 
again, we obtain the following corollary.

Corollary 6. Let 𝑚 ≥ 3 be an integer. Then, the graphs 𝐶4(𝑚−1)[(1, 4), (2, 4𝑚 −
5)], 𝐶4(𝑚−1)[(1, 4𝑚 −8), (2, 4𝑚 −5)], and 𝐶4(𝑚−1)[(1, 4𝑚 −8), (4𝑚 −10, 4𝑚 −6)]
are in (𝑚𝐾2, 𝑃4).
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Fig. 9. Some red-blue colorings of 𝐶8[(1, 4), (2, 7)] such that removing one la-

beled blue edge (𝑖, 𝑗) will result a (3𝐾2, 𝑃4)-coloring of 𝐶8[(1, 4), (2, 7)] − 𝑣𝑖𝑣𝑗 for 
some distinct 𝑖, 𝑗 ∈ [1, 8].

Fig. 10. Some red-blue colorings of 𝐶8[(1, 5), (3, 7)] such that removing one la-

beled blue edge (𝑖, 𝑗) will result a (3𝐾2, 𝑃4)-coloring of 𝐶8[(1, 5), (3, 7)] − 𝑣𝑖𝑣𝑗 for 
some distinct 𝑖, 𝑗 ∈ [1, 8].

Fig. 11. Some red-blue colorings of 𝐶8[(1, 5), (2, 6)] such that removing one la-

beled blue edge (𝑖, 𝑗) will result a (3𝐾2, 𝑃4)-coloring of 𝐶8[(1, 5), (2, 6)] − 𝑣𝑖𝑣𝑗 for 
some distinct 𝑖, 𝑗 ∈ [1, 8].

Fig. 12. Some red-blue colorings of 𝐶8[(1, 4), (2, 6)] such that removing one la-

beled blue edge (𝑖, 𝑗) will result a (3𝐾2, 𝑃4)-coloring of 𝐶8[(1, 4), (2, 6)] − 𝑣𝑖𝑣𝑗 for 
some distinct 𝑖, 𝑗 ∈ [1, 8].

Proof. Consider the graph 𝐶8[(1, 4), (2, 7)] ∈ (3𝐾2, 𝑃4). Let {𝑣1, 𝑣2, … ,
𝑣8} be the vertex-set of 𝐶8[(1, 4), (2, 7)]. The subdivision (4 vertices) 
on the edge 𝑒 = 𝑣4𝑣5 will result 𝐶12[(1, 4), (2, 11)]. By Theorem 3, 
𝐶12[(1, 4), (2, 11)] ∈ (4𝐾2, 𝑃4). Furthermore, by considering the edge 
𝑒 = 𝑣4𝑣5 of 𝐶12[(1, 4), (2, 11)] and subdivision (4 vertices) on this 
edge, we obtain the graph 𝐶16[(1, 4), (2, 15)]. Again, by Theorem 3, 
𝐶16[(1, 4), (2, 15)] ∈(5𝐾2, 𝑃4). If we continue this process and apply to 
5

the resulting graph, then we obtain the graph 𝐶4(𝑚−1) [(1, 4), (2, 4𝑚 −5)]. 
By Theorem 3, 𝐶4(𝑚−1)[(1, 4), (2, 4𝑚 − 5)] ∈(𝑚𝐾2, 𝑃4).

Now, by subdivision (4 vertices) on the edge 𝑒 = 𝑣2𝑣3 of the 
graph 𝐶8[(1, 4), (2, 7)], repeatedly, and apply Theorem 3, we obtain 
𝐶4(𝑚−1)[(1, 4𝑚 − 8), (2, 4𝑚 − 5)] ∈ (𝑚𝐾2, 𝑃4). The last graph

𝐶4(𝑚−1)[(1, 4𝑚 − 8), (4𝑚 − 10, 4𝑚 − 6)] is in (𝑚𝐾2, 𝑃4). If this above pro-

cess is applied to the edge 𝑒 = 𝑣1𝑣2, then we obtain 𝐶4(𝑚−1)[(1, 4𝑚 −
8), (2, 4𝑚 − 5)] ∈(𝑚𝐾2, 𝑃4). □

In the same fashion, we can construct the other graphs which 
are in (𝑚𝐾2, 𝑃4) from graphs 𝐶8[(1, 5), (3, 7)], 𝐶8[(1, 5), (2, 6)] and 
𝐶8[(1, 4), (2, 6)]. Therefore, we have the following corollary.

Corollary 7. Let 𝑚 ≥ 3 be an integer. Then the graphs:

(i) 𝐶4(𝑚−1)[(1, 5), (3, 7)],
(ii) 𝐶4(𝑚−1)[(1, 4𝑚 − 7), (2, 4𝑚 − 6)],
(iii) 𝐶4(𝑚−1)[(1, 4𝑚 − 7), (4𝑚 − 10, 4𝑚 − 6)],
(iv) 𝐶4(𝑚−1)[(1, 4𝑚 − 8), (2, 4𝑚 − 6)], and

(v) 𝐶4(𝑚−1)[(1, 4𝑚 − 8), (4𝑚 − 10, 4𝑚 − 6)] are in (𝑚𝐾2, 𝑃4). □
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