Research article

Subdivision of graphs in $\mathcal{R}\left(m K_{2}, P_{4}\right)$

Kristiana Wijaya ${ }^{\text {a,* }}$, Edy Tri Baskoro ${ }^{\text {b }}$, Hilda Assiyatun ${ }^{\text {b }}$, Djoko Suprijanto ${ }^{\text {b }}$
${ }^{\text {a }}$ Graph, Combinatorics, and Algebra Research Group, Department of Mathematics, FMIPA, Universitas Jember, Jalan Kalimantan 37 Jember 68121, Indonesia
${ }^{\text {b }}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132 , Indonesia

A R T I C L E I N F O

Keywords:

Mathematics
Ramsey minimal graphs
Red-blue coloring
Matching
Path

Abstract

For any graphs F, G, and H, the notation $F \rightarrow(G, H)$ means that any red-blue coloring of all edges of F will contain either a red copy of G or a blue copy of H. The set $\mathcal{R}(G, H)$ consists of all Ramsey (G, H)-minimal graphs, namely all graphs F satisfying $F \rightarrow(G, H)$ but for each $e \in E(F),(F-e) \rightarrow(G, H)$. In this paper, we propose a simple construction for creating new Ramsey minimal graphs from the previous known Ramsey minimal graphs (by subdivision operation). In particular, suppose $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ and let $e \in E(F)$ be an edge contained in a cycle of F, we construct a new Ramsey minimal graph in $\mathcal{R}\left((m+1) K_{2}, P_{4}\right)$ from graph F by subdividing the edge e four times.

1. Introduction

Let F, G, and H be simple graphs. Write $F \rightarrow(G, H)$ to mean that for any red-blue coloring of all edges of F there exists a red copy of G or a blue copy of H as a subgraph of F. A (G, H)-coloring of F is a red-blue coloring of F such that neither a red G nor a blue H occurs. A graph F will be called a Ramsey (G, H)-minimal if $F \rightarrow(G, H)$ but for each $e \in E(F)$, there exists a (G, H)-coloring of a graph $F-e$. The set of all Ramsey (G, H)-minimal graphs will be denoted by $\mathcal{R}(G, H)$.

The characterization of all graphs F in $\mathcal{R}(G, H)$ for a fixed pair of graphs G and H is an interesting but difficult problem. Even, it is for small graphs G and H. Burr et al. [1] showed that the problem of deciding whether a graph F is a Ramsey (G, H)-minimal graph is NPcomplete for any fixed 3-connected graphs G and H. Numerous papers discuss the problem of determining the members of the set $\mathcal{R}(G, H)$. In particular, Burr et al. [2] proved that if G is a matching ($G=m K_{2}$), then the set $\mathcal{R}\left(m K_{2}, H\right)$ is finite for any graph H. One of the problems of Ramsey minimal graphs is characterizing graphs belonging to the set $\mathcal{R}\left(m K_{2}, H\right)$ for some classes of a graph H. For instance, the characterization of Ramsey minimal graphs belonging to $\mathcal{R}\left(3 K_{2}, K_{3}\right)$ can be seen in [3]; $\mathcal{R}\left(2 K_{2}, K_{4}\right)$ can be seen in [4, 5]. The set $\mathcal{R}\left(2 K_{2}, P_{3}\right)$ is given by Mengersen and Oeckermann [6]. Furthermore, the set $\mathcal{R}\left(3 K_{2}, P_{3}\right)$ is given by Burr et al. [2] (without proof) and by Mushi and Baskoro [7] (with a proof). Next, Wijaya et al. [8] determined all graphs in $\mathcal{R}\left(4 K_{2}, P_{3}\right)$. Moreover, Baskoro and Yulianti [9] characterized all graphs in $\mathcal{R}\left(2 K_{2}, P_{4}\right)$ and $\mathcal{R}\left(2 K_{2}, P_{5}\right)$.

In 2016, Wijaya and Baskoro [10] constructed some Ramsey $\left(2 K_{2}, 2 H\right)$-minimal graphs by using some operations over graphs in $\mathcal{R}\left(2 K_{2}, H\right)$ for H is a cycle, path, or star. Recently, Wijaya et al. [11] determined all unicyclic graphs in $\mathcal{R}\left(m K_{2}, P_{3}\right)$ for each integer $m>1$. Most recently, Wijaya et al. [12] derived the necessary and sufficient conditions for all graphs belonging to $\mathcal{R}\left(m K_{2}, H\right)$, for any integer $m>1$. They also proved that any graph obtained by subdividing one non-pendant edge in $F\left(\in \mathcal{R}\left(m K_{2}, P_{3}\right)\right)$ will be in $\mathcal{R}\left((m+1) K_{2}, P_{3}\right)$. They also showed the following lemma.

Lemma 1. Let H be a connected graph and m be a positive integer. Suppose $F \in \mathcal{R}\left(m K_{2}, H\right)$. For each $e \in E(F)$, let τ be an ($m K_{2}, H$)-coloring of edges of $F-e$. Then, there exists a red $(m-1) K_{2}$ in $F-e$.

Motivated by subdividing one non-pendant edge of a Ramsey ($m K_{2}, P_{3}$)-minimal graph by Wijaya et al. [12], in this paper, our aim is to prove that if $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$, then any graph obtained by subdividing one edge contained in a cycle of F (four times) will be in $\mathcal{R}\left((m+1) K_{2}, P_{4}\right)$.

2. Subdivision graphs

The subdivision (k vertices) of a graph G on the edge $e=u v$ in $E(G)$, denoted by $S G(e, k)$, is a graph obtained from the graph G by removing the edge e and adding k new vertices $w_{1}, w_{2}, \ldots, w_{k}$ and $(k+1)$ new edges $u w_{1}, w_{1} w_{2}, w_{2} w_{3}, \ldots, w_{k-1} w_{k}, w_{k} v$. Therefore, $S G(e, k)$ has

[^0]

G

$S G\left(e_{4}, 2\right)$

$S G\left(e_{2}, 2\right)$

Fig. 1. The graphs $G, S G\left(e_{4}, 2\right), S G\left(e_{2}, 2\right)$, and $S G\left(e_{8}, 2\right)$, respectively.
the vertex set $V(S G(e, k))=V(G) \cup\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ and the edge set $E(S G(e, k))=E(G-e) \cup\left\{u w_{1}, w_{1} w_{2}, \ldots, w_{k-1} w_{k}, w_{k} v\right\}$ Henceforth, the edge e in the notation $S G(e, k)$ will be called the subdivision edge. For example, consider a graph G as depicted in Fig. 1. Some subdivision (2 vertices, black vertex) of the graph G on the edge e_{4} or e_{2} or e_{8} can be seen, respectively, in Fig. 1. We can see that the subdivision graphs $S G\left(e_{1}, 2\right), S G\left(e_{2}, 2\right)$, and $S G\left(e_{3}, 2\right)$ are isomorphic.

Let F be a Ramsey $\left(m K_{2}, P_{4}\right)$-minimal graph for the pair matching $m K_{2}$ and a path on 4 vertices P_{4}. Let e be an edge in $E(F)$. From now on, we use the notation τ_{e} as an $\left(m K_{2}, P_{4}\right)$-coloring of $F-e$, namely the red-blue coloring of edges of a graph $F-e$ such that there is neither a red $m K_{2}$ nor a blue P_{4}. According to Lemma 1, under the coloring τ_{e}, there exists a red $(m-1) K_{2}$ in a graph $F-e$. Since $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$, if we return the edge e to a graph F, then e can have either a red or a blue color. If the edge e has a red color, then clearly there exists a red $m K_{2}$ on a graph F, while if it has a blue color, then there exists a blue path P_{4} on a graph F. The next lemma discusses the property of the existence of a blue path P_{4} in a graph $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$.

Lemma 2. Let $m \geq 2$ be an integer and $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. Then, for any $e \in E(F)$, there exists a red-blue coloring of F having no red $m K_{2}$ and the edge e satisfies one of the following four conditions:
(i) e is any edge of exactly one blue path P_{4},
(ii) e is the middle edge of more than one blue path P_{4} (there is no blue path P_{5} in this case)
(iii) e is one of the middle edges of one or more than one blue path P_{5} (there is no blue path P_{6} in this case), or
(iv) e is the middle edge of one or more than one blue path P_{6}.

Note: more than one blue path P_{t} for $t \in[4,6]$ in this Lemma are not independent; they have one or more than one edge together.

Proof. Let F be a Ramsey ($m K_{2}, P_{4}$)-minimal graph. Suppose $e \in E(F)$. Then, there exists an $\left(m K_{2}, P_{4}\right)$-coloring τ_{e} of $F-e$. Under the coloring τ_{e}, there does not exist a red $m K_{2}$ of a graph $F-e$. Now, define a new coloring τ of a graph F such that
$\tau(x)= \begin{cases}\text { blue, } & \text { for } x=e, \\ \tau_{e}(x), & \text { for else. }\end{cases}$
Then, under the coloring τ, there does not exist a red $m K_{2}$ of a graph F. Meanwhile, the edge e is contained in a blue path P_{4}, otherwise $F \nrightarrow\left(m K_{2}, P_{4}\right)$. Furthermore, we prove that the edge e is contained in a blue path P_{t} for some $t \in[4,6]$. If we assume that the edge e is contained in a blue path P_{t}, for each $t \geq 7$, then deleting the edge e from this path yields a blue P_{4} in $F-e$ (under the coloring τ_{e}). So, $(F-e) \rightarrow\left(m K_{2}, P_{4}\right)$, a contradiction. Therefore, the edge e must be contained in a blue path P_{t}, for some $t \in[4,6]$. Next, since the path P_{4} is a subgraph of both P_{5} and P_{6}, it is easily verified the edge e satisfies one of the four conditions above.

As an illustration, the four conditions of the edge e can be depicted in Fig. 2. All graphs in Fig. 2 are the only blue subgraphs of F containing a blue P_{4}, under coloring τ. Deleting the edge e of a graph F remains an $\left(m K_{2}, P_{4}\right)$-coloring τ_{e} of all edges of $F-e$.

Let F be a connected graph and e be an edge of F. We can see that there are two conditions about the edge e, as below.
(i) $P_{4} \circ-e=e=e$
(ii)

(iii) $P_{5} \bigcirc \longrightarrow-\frac{e}{-} \longrightarrow-$

Fig. 2. The four conditions of the edge e in Lemma 2.
(i) The edge e is not contained in any cycle of F.

Then $S F(e, 4) \supseteq\left(F \cup P_{4}\right)$. If $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ then $F \cup P_{4} \in \mathcal{R}((m+$ 1) K_{2}, P_{4}) [12]. Hence, for each e is not contained in any cycle of F, if $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ then $S F(e, 4) \notin \mathcal{R}\left((m+1) K_{2}, P_{4}\right)$.
(ii) The edge e is contained in a cycle of F.

The graph $S F(e, 4)$ is not contained $F \cup P_{4}$. That is why, for this case, we shall prove that if $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ then $S F(e, 4) \in \mathcal{R}((m+$ 1) K_{2}, P_{4}) for each edge e is contained in a cycle of F, in theorem below.

Before doing this, we define the set $S F(4)$. Let F be a connected graph and e be an edge in a cycle of F. Let $S F(4)=\{S F(e, 4) \mid e \in$ $E(F)$ and e is an edge contained in a cycle of $F\}$ be the set of all graphs $S F(e, 4)$ for all edges contained in a cycle of F. For example, $S G(4)$ $=\left\{S G\left(e_{2}, 2\right), S G\left(e_{4}, 2\right), S G\left(e_{5}, 2\right), S G\left(e_{8}, 2\right)\right\}$ of a graph G as depicted in Fig. 1.

Theorem 3. Let F be a connected graph and $m \geq 2$ be an integer. Suppose α is an edge contained in a cycle of F. If $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$, then $S F(\alpha, 4) \in$ $\mathcal{R}\left((m+1) K_{2}, P_{4}\right)$. Consequently, $S F(4) \subseteq \mathcal{R}\left((m+1) K_{2}, P_{4}\right)$.

Proof. Let $F \in \mathcal{R}\left(m K_{2}, P_{4}\right)$ be a connected graph and $\alpha \in E(F)$ be an edge contained in a cycle of F. We shall prove that $S F(\alpha, 4) \in \mathcal{R}((m+$ 1) $\left.K_{2}, P_{4}\right)$. Let $E(S F(\alpha, 4))=E(F-\alpha) \cup\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$ be the edge set of $S F(\alpha, 4)$ where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ are the five new consecutive edges of the subdivision (4 vertices) of the graph F on the edge $\alpha, S F(\alpha, 4)$.

First, suppose to the contrary, that $S F(\alpha, 4) \nrightarrow\left((m+1) K_{2}, P_{4}\right)$. It means that there exists an $\left((m+1) K_{2}, P_{4}\right)$-coloring τ of $S F(\alpha, 4)$. Under coloring τ, the graph $S F(\alpha, 4)$ contains at most m independent red edges, where one or two red edges originated from the five new edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$.

- If one of the edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$, and α_{5} provides one red independent edge, then the number of the disjoint red edges of $F-\alpha$ is exactly $m-1$. We now replace the edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ with the edge α and color α by blue. Then, we obtain a graph isomorphic to F containing a red $(m-1) K_{2}$ but no blue P_{4}. It means that F has an $\left(m K_{2}, P_{4}\right)$-coloring. The last statement contradicts the fact that $F \rightarrow\left(m K_{2}, P_{4}\right)$.
- If the edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$, and α_{5} provide two independent red edges (red $2 K_{2}$), then the number of the independent red edges of $F-\alpha$ is exactly $m-2$. Now, we replace the edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$, and α_{5} by the edge α and color α by red. Then, we obtain a graph isomorphic to F containing a red $(m-1) K_{2}$ but no blue P_{4}, which contradicts $F \rightarrow\left(m K_{2}, P_{4}\right)$.

Therefore, from two cases above, we conclude that $S F(\alpha, 4) \rightarrow((m+$ 1) $\left.K_{2}, P_{4}\right)$.

Next, we show that $S F(\alpha, 4)$ is minimal. It means that for every $e \in E(S F(\alpha, 4))$, there exists an $\left((m+1) K_{2}, P_{4}\right)$-coloring of $S F(\alpha, 4)-e$. We consider two cases, namely (i) $e \in E(F)$ and $e \neq \alpha$ and (ii) $e \in$ $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$. First, for every $e \in E(F)$, there exists an $\left(m K_{2}, P_{4}\right)$ -

Fig. 3. A path \mathbf{P} of length 3 in F containing the edge α.
coloring τ_{e} of $F-e$. Let $\alpha \in E(F-e)$ be the subdivision edge. So, the edge α becomes the edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ in $E(S F(\alpha, 4))$. Under the coloring τ_{e}, the color of edge α can have either a red or blue color. Now, define a coloring τ of $S F(\alpha, 4)-e$ such that $\tau(x)=\tau_{e}(x)$ for each $x \in E(F-\{e, \alpha\})$, and assign color to the five new edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$, and α_{5} depending the color of α under τ_{e} of the graph $F-e$ as follows.

- If $\tau_{e}(\alpha)=$ red, then color the edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ by either red, blue, blue, red, red, respectively, if α_{1} is adjacent to a red edge of F, or red, red, blue, blue, red, respectively, if α_{5} is adjacent to a red edge of F. Otherwise, if both α_{1} and α_{5} are adjacent to a blue edge of F, then color the edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ by red, blue, blue, red, red, respectively. In this case, the red edge α_{1} displaces the red edge α. That is why the coloring of the five new edges donates one independent red edge. So, τ is an $\left((m+1) K_{2}, P_{4}\right)$-coloring of $S F(\alpha, 4)-e$.
- If $\tau_{e}(\alpha)=$ blue, then the only one vertex, which is incident with the edge α, will be incident with a blue edge. Otherwise, F will not be minimal. Furthermore, color the edges $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$ by blue, red, red, blue, blue, respectively if α_{5} is adjacent to a red edge of F, and color by blue, blue, red, red, blue, respectively, if α_{1} is adjacent to a red edge of F. In this case, the five new edges only contribute to one independent red edge. Hence, τ is an $\left((m+1) K_{2}, P_{4}\right)$-coloring of $S F(\alpha, 4)-e$.

Now, consider the case if $e \in\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$. By symmetry, it is enough to consider if e is either α_{1}, α_{2}, or α_{3}.
(1) Case of $e=\alpha_{1}$. Then, α_{2} is a pendant edge of $S F(\alpha, 4)-\alpha_{1}$. Let τ_{α} be an $\left(m K_{2}, P_{4}\right)$-coloring of $F-\alpha$. Now, define $\tau_{\alpha_{1}}$ as a red-blue coloring of edges of $S F(\alpha, 4)-\alpha_{1}$ such that
$\tau_{\alpha_{1}}(x)= \begin{cases}\text { red, } & \text { for } x=\alpha_{4}, \alpha_{5}, \\ \text { blue, } & \text { for } x=\alpha_{2}, \alpha_{3}, \\ \tau_{\alpha}(x), & \text { for else } .\end{cases}$
It is easy to see that under coloring $\tau_{\alpha_{1}}$, there is neither a red ($m+$ 1) K_{2} nor a blue P_{4} in $S F(\alpha, 4)-\alpha_{1}$. Hence, $\tau_{\alpha_{1}}$ is an $\left((m+1) K_{2}, P_{4}\right)$ coloring of $S F(\alpha, 4)-\alpha_{1}$.
(2) Case of $e=\alpha_{2}$. Then, both α_{1} and α_{3} are pendant edges of $S F(\alpha, 4)-$ α_{2}. Consider the edge of F adjacent to α_{5}, say b. Then there exists an $\left(m K_{2}, P_{4}\right)$-coloring τ_{b} of $F-b$. Now, define a red-blue coloring $\tau_{\alpha_{2}}$ of $S F(\alpha, 4)-\alpha_{2}$ such that
$\tau_{\alpha_{2}}(x)= \begin{cases}\text { red, } & \text { for } x=\alpha_{5}, b, \\ \text { blue, } & \text { for } x=\alpha_{3}, \alpha_{4}, \\ \tau_{b}(\alpha), & \text { for } x=\alpha_{1}, \\ \tau_{b}(x), & \text { otherwise } .\end{cases}$
We can easily see that $\tau_{\alpha_{2}}$ is an $\left((m+1) K_{2}, P_{4}\right)$-coloring of $S F(\alpha, 4)-$ α_{2}.
(3) Next, we consider $e=\alpha_{3}$. Let \mathbf{P} be a path of length 3 in F containing the subdivision edge α with the vertex-set $V(\mathbf{P})=$ $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and the edge-set $E(\mathbf{P})=\{r, s, \alpha\}$, where $r=$ $w_{1} w_{2}, s=w_{2} w_{3}$, and $\alpha=w_{3} w_{4}$ (see Fig. 3). In this case, the edge α_{1} is incident with the vertex w_{3}. We now consider an ($m K_{2}, P_{4}$)coloring τ_{r} of $F-r$ and an $\left(m K_{2}, P_{4}\right)$-coloring τ_{s} of $F-s$. Without loss of generality, we consider the subdivision edge α is contained in a path P_{4}, P_{5}, or P_{6} as referred to in Lemma 2. It means that under both coloring τ_{r} and τ_{s} and according to Lemma 2, the subdivision edge α has a blue color. Therefore, there are 3 possibilities

Fig. 4. The graph $F \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$.
about the path \mathbf{P}, where from all possibilities, we consider either the coloring τ_{r} or τ_{s}.
(a) A path \mathbf{P} is contained in a blue path P_{4} (but \mathbf{P} is not contained in a blue path P_{5}). Then $\mathbf{P}=P_{4}$. Under the coloring τ_{r}, the blue edge incident with w_{2} is the only edge s. Let $\tau_{\alpha_{3}}$ be a red-blue coloring of edges of $S F(\alpha, 4)-\alpha_{3}$ such that
$\tau_{\alpha_{3}}(x)= \begin{cases}\text { red, } & \text { for } x=\alpha_{1}, s, \\ \text { blue, } & \text { for } x=\alpha_{2}, \text { and } x=\alpha_{4}, \alpha_{5}, r, \\ \tau_{r}(x), & \text { otherwise } .\end{cases}$
So, $\tau_{\alpha_{3}}$ is an $\left((m+1) K_{2}, P_{4}\right)$-coloring of $S F(\alpha, 4)-\alpha_{3}$.
(b) A path \mathbf{P} is contained in a blue path P_{5} (but \mathbf{P} is not contained in a blue path P_{6}). Under the coloring τ_{r}, then (i) there exists at least one edge incident with the vertex w_{1} has a blue color, and (ii) the blue edge which is incident with the vertex w_{4} is the only α. We now define $\tau_{\alpha_{3}}$ as a red-blue coloring of edges of $S F(\alpha, 4)-\alpha_{3}$ such that
$\tau_{\alpha_{3}}(x)= \begin{cases}\text { red, } & \text { for } x=\alpha_{1}, s, \\ \text { blue, } & \text { for } x=\alpha_{2}, \alpha_{4}, \alpha_{5}, r, \\ \tau_{r}(x), & \text { otherwise. }\end{cases}$
So, $\tau_{\alpha_{3}}$ is an $\left((m+1) K_{2}, P_{4}\right)$-coloring of $S F(\alpha, 4)-\alpha_{3}$.
(c) A path \mathbf{P} is contained in a blue path P_{6}. Under the coloring τ_{r}, then (i) there is exactly one blue edge incident with the vertex w_{1}, say $p=v w_{1}$, and (ii) at least one edge incident with the vertex v also having a blue color. Now, consider two cases below.

- If s is the only blue edge adjacent to α, then define $\tau_{\alpha_{3}}$ as a red-blue coloring of edges of $S F(\alpha, 4)-\alpha_{3}$ such that

$$
\tau_{\alpha_{3}}(x)= \begin{cases}\text { red, } & \text { for } x=r, s, \\ \text { blue, } & \text { for } x=\alpha_{1}, \alpha_{2}, \text { and } x=\alpha_{4}, \alpha_{5}, \\ \tau_{r}(x), & \text { otherwise }\end{cases}
$$

So, $\tau_{\alpha_{3}}$ is an $\left((m+1) K_{2}, P_{4}\right)$-coloring of $S F(\alpha, 4)-\alpha_{3}$.

- If the blue edge adjacent to α is not only s, then there exists at least one blue edge, say s_{1}, which is incident with the vertex w_{3}. For this case, we consider an $\left((m+1) K_{2}, P_{4}\right)$-coloring τ_{s} of edges of $F-s$. Under the coloring τ_{s}, the blue edge incident with the vertex v is only the edge p. Now, define $\tau_{\alpha_{3}}$ as a red-blue coloring of edges of $S F(\alpha, 4)-\alpha_{3}$ such that
$\tau_{\alpha_{3}}(x)= \begin{cases}\text { red, } & \text { for } x=\alpha_{1}, s, \\ \text { blue, } & \text { for } x=\alpha_{2}, \text { and } x=\alpha_{4}, \alpha_{5}, \\ \tau_{r}(x), & \text { for } x \text { is incident with } w_{4}, \\ \tau_{s}(x), & \text { for else. }\end{cases}$
So, $\tau_{\alpha_{3}}$ is an $\left((m+1) K_{2}, P_{4}\right)$-coloring of $S F(\alpha, 4)-\alpha_{3}$.

Therefore, $S F(\alpha, 4) \in \mathcal{R}\left((m+1) K_{2}, P_{4}\right)$.

As an illustration, consider the graph F in Fig. 4. We can prove that the graph F in Fig. 4 is in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$. The graph F satisfies the following conditions (see [3, 12]):

Lemma 2 results a $\left(3 K_{2}, P_{4}\right)$-coloring of $F-e$

$F \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$

$S F\left(e_{1}, 4\right)$

$S F\left(e_{4}, 4\right)$

$S F\left(e_{5}, 4\right)$

$S F\left(e_{6}, 4\right)$

Fig. 6. Five non-isomorphism graphs belonging to $\mathcal{R}\left(4 K_{2}, P_{4}\right)$ which is obtained by subdividing four times (4 yellow vertices) an edge in a cycle of $F \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$.

Fig. 7. Some red-blue colorings of $S F\left(e_{5}, 4\right)$ such that removing the blue edge e satisfying Lemma 2 results a $\left(4 K_{2}, P_{4}\right)$-coloring of $S F\left(e_{5}, 4\right)-e$.
(i) for each $u, v \in V(F), F-\{u, v\} \supseteq P_{4}$,
(ii) for each subset on 5 vertices $S_{5} \subseteq V(F), F-E\left(F\left[S_{5}\right]\right) \supseteq P_{4}$, where $F\left[S_{5}\right]$ is an induced subgraph of 5 vertices in S_{5} of a graph F.

So, $F \rightarrow\left(3 K_{2}, P_{4}\right)$. The minimality property of a graph F, that is for each $e \in E(F)$, there exists a ($3 K_{2}, P_{4}$)-coloring of $F-e$, can be seen in Fig. 5. Removing one blue edge e satisfying Lemma 2 results a ($3 K_{2}, P_{4}$)-coloring of $F-e$. By Theorem 3, up to isomorphism, if we subdivide an edge $e_{i}(i \in[1,8])$, four times, of a graph F in Fig. 4, then we obtain five non-isomorphism subdivision graphs (4 vertices) belonging to $\mathcal{R}\left(4 K_{2}, P_{4}\right)$, namely $S F\left(e_{1}, 4\right), S F\left(e_{4}, 4\right), S F\left(e_{5}, 4\right), S F\left(e_{6}, 4\right)$, and $S F\left(e_{7}, 4\right)$ as depicted in Fig. 6. The proof of the minimality of a graph $S F\left(e_{5}, 4\right)$ can be seen in Fig. 7, while the minimality of the other graphs can be shown in the same fashion.

3. Some classes of Ramsey ($m K_{2}, P_{4}$) minimal graphs

In this section, we give some connected graphs other than cycle belonging to $\mathcal{R}\left(m K_{2}, P_{4}\right)$ for an integer m. We construct these graphs by subdivision (4 vertices) on the edge contained in a cycle of a graph F, where F is either in $\mathcal{R}\left(2 K_{2}, P_{4}\right)$ or in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$. Baskoro and Yulianti [9], proved that $\mathcal{R}\left(2 K_{2}, P_{4}\right)=\left\{2 P_{4}, C_{5}, C_{6}, C_{7}, C_{4}^{2}(1)\right\}$, where $C_{4}^{2}(1)$ is a cycle on 4 vertices with two additional pendant vertices so that the two vertices of degree 3 are adjacent, as depicted in Fig. 8. In general, we define a graph $C_{n}^{2}(s)$ as a graph formed from a cycle on n vertices with two

$C_{8}^{2}(1), C_{8}^{2}(3) \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$
$C_{4}^{2}(1) \in \mathcal{R}\left(2 K_{2}, P_{4}\right)$

$C_{12}^{2}(1), C_{12}^{2}(3), C_{12}^{2}(5) \in \mathcal{R}\left(4 K_{2}, P_{4}\right)$

Fig. 8. Some graphs are in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ for $m=2,3$, or 4.
additional pendant vertices such that the two vertices of degree 3 are at distance s. By Theorem 3, the subdivision (4 (yellow) vertices) on any edge contained in a cycle of the graph $C_{4}^{2}(1)$ yields $C_{8}^{2}(1)$ and $C_{8}^{2}(3)$, as depicted in Fig. 8; and both are in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$. Next, the subdivision (4 (green) vertices) on any edge contained in a cycle of a graph $C_{8}^{2}(1)$ will produce graphs in $\mathcal{R}\left(4 K_{2}, P_{4}\right)$, namely $C_{12}^{2}(1)$ and $C_{12}^{2}(5)$. Meanwhile, the subdivision (4 (green) vertices) on any edge contained in a cycle of a graph $C_{8}^{2}(3)$ will yield graphs in $\mathcal{R}\left(4 K_{2}, P_{4}\right)$, namely $C_{12}^{2}(3)$ and $C_{12}^{2}(5)$, as depicted in Fig. 8. By continuing this step recursively, we get corollary below.

Corollary 4. Let $m \geq 2$ be a natural number. Then, the graph $C_{4(m-1)}^{2}(s)$ is in $\mathcal{R}\left(m K_{2}, P_{4}\right)$, for any odd integer $s \leq 2 m-3$.

We now define four special graphs formed by a cycle C_{n} with circumference n by adding two new edges connecting vertices of the cycle C_{n}. Suppose $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}\right.$, $\left.v_{n} v_{1}\right\}$ are the vertex-set and edge-set of C_{n}, respectively. Let i, j, k, l be four distinct integers, we denote by $C_{n}[(i, k),(j, l)]$ the graph formed from a cycle C_{n} by adding two new edges $v_{i} v_{k}$ and $v_{j} v_{l}$. Now, consider graphs: $C_{8}[(1,4),(2,7)], C_{8}[(1,5),(3,7)], C_{8}[(1,5),(2,6)]$ and $C_{8}[(1,4),(2,6)]$ as depicted in Figs. 9, 10, 11, and 12, respectively. In the following lemma, we prove that these four graphs $C_{8}[(1,4),(2,7)]$, $C_{8}[(1,5),(3,7)], C_{8}[(1,5),(2,6)]$ and $C_{8}[(1,4),(2,6)]$ are in $\mathcal{R}\left(3 K_{2}, P_{4}\right)$.

Lemma 5. The graphs $C_{8}[(1,4),(2,7)], C_{8}[(1,5),(3,7)], C_{8}[(1,5),(2,6)]$, and $C_{8}[(1,4),(2,6)]$ are Ramsey $\left(3 K_{2}, P_{4}\right)$-minimal graphs.

Proof. Let F be one of the graphs $C_{8}[(1,4),(2,7)], C_{8}[(1,5),(3,7)]$, $C_{8}[(1,5),(2,6)]$, or $C_{8}[(1,4),(2,6)]$. We can easily show the graph $F \rightarrow$ ($3 K_{2}, P_{4}$), since it satisfies the following conditions (see [3, 12]):
(i) for any distinct two vertices $u, v \in V(F), F-\{u, v\} \supseteq P_{4}$,
(ii) for any 5-subset $S_{5} \subseteq V(F), F-E\left(F\left[S_{5}\right]\right) \supseteq P_{4}$, where $F\left[S_{5}\right]$ is the induced subgraph of S_{5} of F.

Next, the minimality of a graph F can be seen in Figs. 9, 10, 11, and 12 , where removing one blue edge labeled (i, j) will result a $\left(3 K_{2}, P_{4}\right)$ coloring of $F-v_{i} v_{j}$, for some distinct $i, j \in[1,8]$.

Now, we consider the graph $C_{8}[(1,4),(2,7)]$. Since every edge in $C_{8}[(1,4),(2,7)]$ is contained in a cycle then by Theorem 3 , the subdivision (4 vertices) on any edge of $C_{8}[(1,4),(2,7)]$ will result some graphs in $\mathcal{R}\left(4 K_{2}, P_{4}\right)$. By repeating the process to the resulting graph again and again, we obtain the following corollary.

Corollary 6. Let $m \geq 3$ be an integer. Then, the graphs $C_{4(m-1)}[(1,4),(2,4 m-$ 5)], $C_{4(m-1)}[(1,4 m-8),(2,4 m-5)]$, and $C_{4(m-1)}[(1,4 m-8),(4 m-10,4 m-6)]$ are in $\mathcal{R}\left(m K_{2}, P_{4}\right)$.

$C_{8}[(1,4),(2,7)]$

Fig. 9. Some red-blue colorings of $C_{8}[(1,4),(2,7)]$ such that removing one labeled blue edge (i, j) will result a ($3 K_{2}, P_{4}$)-coloring of $C_{8}[(1,4),(2,7)]-v_{i} v_{j}$ for some distinct $i, j \in[1,8]$.

$C_{8}[(1,5),(3,7)]$

Fig. 10. Some red-blue colorings of $C_{8}[(1,5),(3,7)]$ such that removing one labeled blue edge (i, j) will result a $\left(3 K_{2}, P_{4}\right)$-coloring of $C_{8}[(1,5),(3,7)]-v_{i} v_{j}$ for some distinct $i, j \in[1,8]$.

$C_{8}[(1,5),(2,6)]$
Fig. 11. Some red-blue colorings of $C_{8}[(1,5),(2,6)]$ such that removing one labeled blue edge (i, j) will result a $\left(3 K_{2}, P_{4}\right)$-coloring of $C_{8}[(1,5),(2,6)]-v_{i} v_{j}$ for some distinct $i, j \in[1,8]$.

$C_{8}[(1,4),(2,6)]$

Fig. 12. Some red-blue colorings of $C_{8}[(1,4),(2,6)]$ such that removing one labeled blue edge (i, j) will result a $\left(3 K_{2}, P_{4}\right)$-coloring of $C_{8}[(1,4),(2,6)]-v_{i} v_{j}$ for some distinct $i, j \in[1,8]$.

Proof. Consider the graph $C_{8}[(1,4),(2,7)] \in \mathcal{R}\left(3 K_{2}, P_{4}\right)$. Let $\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{8}\right\}$ be the vertex-set of $C_{8}[(1,4),(2,7)]$. The subdivision (4 vertices) on the edge $e=v_{4} v_{5}$ will result $C_{12}[(1,4),(2,11)]$. By Theorem 3, $C_{12}[(1,4),(2,11)] \in \mathcal{R}\left(4 K_{2}, P_{4}\right)$. Furthermore, by considering the edge $e=v_{4} v_{5}$ of $C_{12}[(1,4),(2,11)]$ and subdivision (4 vertices) on this edge, we obtain the graph $C_{16}[(1,4),(2,15)]$. Again, by Theorem 3, $C_{16}[(1,4),(2,15)] \in \mathcal{R}\left(5 K_{2}, P_{4}\right)$. If we continue this process and apply to
the resulting graph, then we obtain the graph $C_{4(m-1)}[(1,4),(2,4 m-5)]$. By Theorem 3, $C_{4(m-1)}[(1,4),(2,4 m-5)] \in \mathcal{R}\left(m K_{2}, P_{4}\right)$.

Now, by subdivision (4 vertices) on the edge $e=v_{2} v_{3}$ of the graph $C_{8}[(1,4),(2,7)]$, repeatedly, and apply Theorem 3, we obtain $C_{4(m-1)}[(1,4 m-8),(2,4 m-5)] \in \mathcal{R}\left(m K_{2}, P_{4}\right)$. The last graph $C_{4(m-1)}[(1,4 m-8),(4 m-10,4 m-6)]$ is in $\mathcal{R}\left(m K_{2}, P_{4}\right)$. If this above process is applied to the edge $e=v_{1} v_{2}$, then we obtain $C_{4(m-1)}[(1,4 m-$ 8), $(2,4 m-5)] \in \mathcal{R}\left(m K_{2}, P_{4}\right)$.

In the same fashion, we can construct the other graphs which are in $\mathcal{R}\left(m K_{2}, P_{4}\right)$ from graphs $C_{8}[(1,5),(3,7)], C_{8}[(1,5),(2,6)]$ and $C_{8}[(1,4),(2,6)]$. Therefore, we have the following corollary.

Corollary 7. Let $m \geq 3$ be an integer. Then the graphs:
(i) $C_{4(m-1)}[(1,5),(3,7)]$,
(ii) $C_{4(m-1)}[(1,4 m-7),(2,4 m-6)]$,
(iii) $C_{4(m-1)}[(1,4 m-7),(4 m-10,4 m-6)]$,
(iv) $C_{4(m-1)}[(1,4 m-8),(2,4 m-6)]$, and
(v) $C_{4(m-1)}[(1,4 m-8),(4 m-10,4 m-6)]$ are in $\mathcal{R}\left(m K_{2}, P_{4}\right)$.

Declarations

Author contribution statement

Kristiana Wijaya: Conceived and designed experiments; Performed the experiments; Wrote the paper.

Edy Tri Baskoro: Conceived and designed experiments; Analyzed the data; Wrote the paper.

Hilda Assiyatun, Djoko Suprijanto: Analyzed and interpreted the data.

Funding statement

This research has been supported by the World Class Research (WCR) Program, Ministry of Research, Technology and Higher Education, Indonesia, Decree No. 7/E/KPT/2019 and Contract No. 127/SP2H/LT/DRPM/2019.

The research of the first author has been supported by DRPM, Directorate General of Strengthening for Research and Development, Ministry of Research, Technology and Higher Education, Indonesia through "Hibah Penelitian Dasar", Decree No. 7/E/KPT/2019 and Contract No. 175/SP2H/LT/DRPM/2019.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] S.A. Burr, P. Erdös, R.J. Faudree, R.H. Schelp, A class of Ramsey-finite graphs, in: Proceeding of the Ninth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, 1978, pp. 171-180.
[2] S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau, R.H. Schelp, Ramsey minimal graphs for matchings, in: The Theory and Applications of Graphs, Kalamazoo, Mich., 1980, Wiley, New York, 1981, pp. 159-168.
[3] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, On Ramsey ($3 K_{2}, K_{3}$)-minimal graphs, AIP Conf. Proc. 1707 (2016) 020025.
[4] E.T. Baskoro, K. Wijaya, On Ramsey $\left(2 K_{2}, K_{4}\right)$-minimal graphs, in: Mathematics in the 21st Century, Springer Proc. Math. Stat. 98 (2015) 11-17.
[5] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, The complete list of Ramsey $\left(2 K_{2}, K_{4}\right)$-minimal graphs, Electron. J. Graph Theory Appl. 3 (2) (2015) 216-227.
[6] I. Mengersen, J. Oeckermann, Matching-star Ramsey sets, Discrete Appl. Math. 95 (1999) 417-424.
[7] H. Muhshi, E.T. Baskoro, On Ramsey ($3 K_{2}, P_{3}$)-minimal graphs, AIP Conf. Proc. 1450 (2012) 110-117.
[8] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, On Ramsey ($4 K_{2}, P_{3}$)-minimal graphs, AKCE Int. J. Graphs Comb. 15 (2018) 174-186.
[9] E.T. Baskoro, L. Yulianti, On Ramsey minimal graphs for $2 K_{2}$ versus P_{n}, Adv. Appl. Discrete Math. 8 (2) (2011) 83-90.
[10] K. Wijaya, E.T. Baskoro, On Ramsey $\left(2 K_{2}, 2 H\right)$-minimal graphs, in: J. Cushing, M. Saleem, H. Srivastava, M. Khan, M. Merajuddin (Eds.), Applied Analysis in Bio-
logical and Physical Sciences, in: Springer Proc. Math. Stat., vol. 186, Springer, New Delhi, 2016, pp. 219-225.
[11] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, On unicyclic Ramsey ($m K_{2}, P_{3}$)minimal graphs, Proc. Comput. Sci. 74 (2015) 10-14.
[12] K. Wijaya, E.T. Baskoro, H. Assiyatun, D. Suprijanto, On Ramsey ($m K_{2}, H$)-minimal graphs, Graphs Comb. 33 (1) (2017) 233-243.

[^0]: * Corresponding author.

 E-mail addresses: kristiana.fmipa@unej.ac.id (K. Wijaya), ebaskoro@math.itb.ac.id (E.T. Baskoro), hilda@math.itb.ac.id (H. Assiyatun), djoko@math.itb.ac.id (D. Suprijanto).

