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ABSTRACT

Let G be a smple graph of order n. A coprime labeling of a graph G is a vertex labeling of G with distinct positive
integersfromthe set {1, 2, ..., k} for some k = n such that any adjacent |abels are relatively prime. The minimum value
of k for which G has a coprime labelling, denoted as pr(G), is called the minimum coprime number of G. A coprime
labeling of G with the largest label being pr(G) is said a minimum coprime labeling of G. In this paper, we give the
exact value of the minimum coprime number for amalgamations of wheel W, when n is odd positive integer.

Keywords: Minimum coprime labeling, Minimum coprime number, Amalgamation of whesel.

1. INTRODUCTION

Let G be asimple graph with the vertex-set V(G) and
theedge-set E(G). A coprimelabeling of agraph G isan
injective function f:V(G) - {1,2,...,k} so that the
labels of any two adjacent vertices are relatively prime.
Clearly that k = n, where n is the number of vertices of
agraph G. If k = n, then the function f is called aprime
labeling of G. A graph that admits a prime labelling is
called a prime. However, it does not make sense to refer
to a graph as coprime, since all graphs have a coprime
labeling (for instance, usethefirst n primeintegers asthe
labels) (see [1]). Therefore, the problem of a coprime
labeling is to find the minimum value of k namely a
minimum coprime number of G and denoted as pr(G). A
coprime labeling of G with the largest label being pr(G)
is said a minimum coprime labeling of G.

The concept of a prime labeling originated with
Entringer and was first introduced in a paper by Tout,
Dabbouvy, and Howalla [2]. Around 1980, Entringer
gave conjecture that all trees are prime graphs. Among
the classes of trees known as prime are paths, stars,
spiders, olive trees, palm trees, binomial trees, all trees of
order up to 50, banana trees, and al caterpillars with
maximum degree at most 5 (see[2, 3,4, 5, 6, 7]).

Deretsky, Lee, and Mitchem [8] proved that all cycles
C, (i.e., a2-regular graph with n vertices) are prime.
Lee, Wui, and Y eh [9] proved that wheel I, (i.e., acycle

C,, with one central vertex adjacent to n verticesin C,)) is
primeif and only if n is even; a complete graph K,, (i.e.,
an (n — 1)-regular graph with n vertices) isnot primefor
n = 4. The other results about prime labeling can be seen
in[10, 11, 12, 13, 14, 15, 16] and completely the survey
about thislabeling in Galian [17].

Asplund and Fox [18] obtained the exact value of the
minimum coprime number of complete graph K,, and odd
wheel W, (i.e., wheel W, with odd n) namely pr(K,) =
DPn-1, Where p,_; is the first (n—1) primes; and
pr(W,) = n+ 2 for any odd integer n = 3. In another
paper, Asplund and Fox [19] gave the minimun coprime
number of Generalized Petersen and Prism Graphs. Lee
[20] determine the minimum coprime number for a few
well-studied classes of graphs, including the coronas of
complete graphs with empty graphs and the joins of two
paths.

Herein, we discuss about the minimum coprime
labeling for amalgamation of wheel. Amalgamation of t
copies of G at the fixed vertex v, € V(G), denoted by
Amal(G, vy, t), is the graph obtained from t copies of G
by identifying t copies of G at the fixed vertex v,. Lee,
Wui, and Y eh [11] have shown that Amal(G, v,, t) hasa
prime labeling when G is a path, a cycle, or an even
wheel. They also showed that the amalgamation of odd
wheel is not prime. Therefore, in this paper we give the
the exact value of the minimum coprime number of

Copyright © 2022 The Authors. Published by Atlantis Press International B.V.
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Amal(W,, vy, t) when n is odd and v, is the centra
vertex of wheel W, namely the vertex of degree n in W,.

2. MAIN RESULTS

In this section we will discuss prime and coprime
labeling for amalgamation of wheel W, for any odd
positive integer. Before doing that, we discuss about two
integers said to be relatively prime. We know that
gcd(a,1) =1 for any integer a. Any two consecutive
integers also has the greatest common divisor one,
namely gcd(a, a + 1) = 1. Two lemmas below useful to
prove that two integers are relatively prime.

Theorem 2.1 [21] Two integers a and b are said to be
relatively prime, if there exist two integers x and y such
that ax + by = 1. [ ]

Lemma 2.2 Let a be odd positive integer. If a positive
integer r does not have odd factor other than one, then
ged(a,a+r1r) =1.

Proof. Suppose that gcd(a,a + 1) = k. Then a = kx
anda+r=ky. SOk(y—x)=r. Bothaanda+r
are odd. So, k must be odd. Since r does not have odd
factor other than one, we get k =1. Therefore
ged(a,a+r1r) =1. [

Let v, bethe central vertex of wheel I,. Supposethe
vertex-set and edge-set of an Amal(W,, v, t) are
V(Amal(W,, vy, 1)) = {vo} U {v;|i € [1,¢],j € [1,n]},
where degree of v, and v;; isd(v,) = nt and d(v;;) =
3,  respectively, and  E(Amal(W,, vy, 1)) =
{vovij, Vi | 1€ [L 8], j€[Ln]} U {vjvijsq|i €
[1,t],j € [1,n — 1]}, respectively. An Amal(W,, v,,t)
has (nt + 1) vertices. The lower bound of the minimum
coprime number for amalgamation of the odd wheel is
given in Lemma below.

Lemma 2.3 Let v, bethe central vertex of wheel W,. For
each integer t>1 and odd integer n=>1,
pr(Amal(Wn, vo,t)) >m+ Dt +1.

Proof. Let n, t > 1 beintegers where n isodd. We know
that an Amal(W,, vy, t) has (nt + 1) vertices, where the
one vertex, called the central vertex v, adjacent to all
vertices in Amal(W,,, vy,t). There are t cycles with
length n where every cycle needs "T_l even labels and
" odd labels. So, a graph Amal(W,,vo,t) needs
((nTH)t+ 1) odd labels. Clearly that there are not
enough odd labels in the set {1,2, ...,nt + 1}. It means
thaa an Amal(W,, v, t) cannot be labeled by
1,2, ...,nt + 1 such that every two adjacent vertices have

therelatively prime labels. Since there are (("T“) t+ 1)
odd labels in the set {1,2,..,(n+ 1)t + 1}, hence
pr(Amal(Ws,vo, 1)) = (n + 1)t + 1. [

Advances in Computer Science Research, volume 96

To obtain the exactly of the minimum coprime number
for amalgamation of odd wheel W, we consider two
cases, namely for ether n=1(mod4) or n=
3 (mod 4).

Theorem 2.4 Let v, be the central vertex of wheel IW/,.
For each integer t>1 and n=1(mod4), the
minimum coprime number for amalgamation of odd
whed W, is pr(Amal(Wn,vo, t)) =Mn+Dt+ 1.

Proof. Let n and t be positive integers where n =
1 (mod 4). By Lemma 2.3, we have

pr(Amal(Wn, vo,t)) >Mn+ Dt + 1.

We now show that pr(Amal(W,,v,,t)) < (n+
1)t + 1 by defined a coprime labeling of a graph
Amal(W,,, vy, t) as below. We define
fV(Amal(Wy,, vy, t)) — {1,2,...,(n + 1)t + 1} where

flvy) =1 and for i=1,2,..,t¢t
+1
(n+1)i—(n—)),for 1SanT.
+3
f(v,-j)= (n+1)l+1, fOI‘j:nT,

n+3 n+5
k(n+1)i+(T—j),for > <js<n

Next, we show that the greatest common divisor of every
|abels of two adjacent vertices are one. We consider three
cases below.

st gea(F (o) f (rezn) ) =
ged <(n +1)i — ("T*),(n +1)i+ 1) = k.
n =1 (mod 4), then (n+1)i— ("T‘l) =
1 <mod (%“)) is even, while (n+1)i+1=

Since

1 (mod (%“)) is odd. So k # ™ must be odd. Let
(m+Di— () =kx ad (n+1Di+1=ky.
Thenk(y — x) = "T“ Soit must be k = 1. Therefore

labels of ‘Ul.(n_+1) and v, (2 arerelatively prime.
2 2

¢ Now, consider the labels of vertex Ui(n_+3) and Ui(n_+-5).
2 2

Suppose that gcd (f (vi(n_m)),f (vl(n_m))) =
2 2

gcd((n +1Di+1,(n+1)i— 1) = k. Sincen isodd,
(n+1)i + 1isodd. By applying Lemma 2.2, we get

ged((n+ i+ 1L, (n+1Di—-1)=1
e Last, we consider the vertex v;; and v;,,. We suppose
that ged(f (v, f(vi)) = ged (0 + Di = (n =
D, @+ Di+ (22)) = k. Since n=1(mod 4),
(n+1)i— (n—1)iseven, and (n + i + () is
n+1

odd, but both are in 2 <mod (nTH» Hence k # =~
must be odd. Wenextconsider (n + 1)i — (n — 1) =
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kx and (n + 1)i + (3‘7") = ky. So, k(y —x) ="
Thereforek = 1. It means v;; and v;, have relatively
prime labels.

We have shown that every label of two adjacent vertices
is relatively prime. Therefore, the function f is a
minimum coprime labeling with the largest label being
pr(Amal(Wn, Vo, t)) =(m+Dt+1. ]

For example, a minimum coprime labeling of
Amal(Ws,v,,4) can be seen in Figure 1, where
pr(Amal(Ws,v0,4)) = 25.

Figure 1 A coprime labelling of Amal(Ws, vy, 4)

We abserve now an Amal(W,, vy, t) for n = 3(mod 4).
For this case, we have not got the minimum coprime
labeling in general. Therefore, we give it for some
positive integer n.

Proposition 2.5 Let v, bethe central vertex of wheel W;.
The minimum coprime number for amalgamation of W
is pr(Amal(W;,v,,t)) =4t + 1, for any positive
integer t.

Proof. According to Lemma 2.3, we left prove that
pr(Amal(Ws, vy, t)) = 4t + 1, by defining a labeling
on the Amal(W3,v,, t). Define f:V(Amal(W3,v0,t))
-{1,2,..,4t +1} where f(vy)=1 and for i=
1,2,..,¢,

2i, forj =1,
f(vij) =44i—1, forj =2,
4i+1, forj = 3.

Now, we show that the greatest common divisor of every
two labels of adjacent verticesis one.
e First, gcd(f(vil),f(viz)) = (2i,4i—1) =1, since

thereexistsx = 2 and y = —1 so that (2i)x + (4i —
1)y = 1 and applying Theorem 2.1.

Advances in Computer Science Research, volume 96

o Suppose ged(f(vip), f(vi3)) = (4i—1,4i+1) =
k.Since4i —1isodd, and |(4i — 1) — (4i+1)| =
2, by Lemma2.1, ged(4i — 1,4i + 1) = 1.

e Suppose gcd(f(vil),f(vlg)) =gcd(2i,4i + 1) = k.
There exists x = -2 and y =1 so that (2i)x +
(4i + 1)y = 1. By Theorem 2.1, we get gcd(2i, 4i +
1) =1.

Thus every label of adjacent vertices is relatively prime.
Hence the function f isaminimum coprime labeling and
pr(Amal(W3,v0,t)) =4t + 1. [

Proposition 2.6 Let v, bethe central vertex of wheel W.,.
For a positive integer t < 47, an Amal(W,, v,,t) has a
minimum coprime labeling with the largest label being
8t + 1.

Proof. Let t be positive integer and t < 47. Define
f:V(Amal(W,,vo, 1)) — {1,2,...,8t + 1}, where
f(vy) =1 and for i =1,2,..,47, we consider two
cases, namely

Fori # 6 (mod 7),

f(vij)=[
8i+1,
whilefor i = 6 (mod 7),

8 i+1 for i = 1
(). o=,

8i+j—7forj=23,..,6,
8i+1, forj=7.

8i+j—7forj=12,..,6,

forj =7,

fviy) =

Now, we show that the greatest common divisor of every
label of two adjacent vertices are one.

e By Lemma 2.2, we obtain gcd(f(vi), f(vi7)) =
8i—1,8i+1)=1.

e Now, we consider the vertex v;; and v;,. For i =
6 (mod 7), namely i =6,13,20,27,34,41,

gcd (f(vil),f(vl-7)) = gcd (8 (#), 8i + 1) =1.
For i # 6 (mod 7), suppose for a contradiction,
gcd(f(vil),f(vi7)) =gcd(8i—6,8i+1) =k # 1.
We know that 8i — 6 = 2 (mod 4) is even and 8i +
1 =1 (mod 4) is odd. So k must be odd. Let 8i —
6=kx and 8i+1=ky. We get k(y —x)=7.
Therefore k = 7. Consequently, i = 6 (mod 7), a
contradiction. Thusged(8i — 6,8i + 1) = 1.

e Fori=6(mod7),namelyi=6,13,20,27,34,41,
we can easily count that ged(f(viy), f(vi)) =

ged (8(2),81-5) = 1.

Thus, every label of two adjacent vertices is relatively
prime. Thus any integer t < 47, the Amal(W,, vy, t) has
a minimum coprime labeling with the largest label being
pr(Amal(W7, vo,t)) =8t + 1. [
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For an illustration, a minimum coprime labeling for
Amal(Ws,v,,3) and Amal(W,,v,,6) as depicted in
Figure 2 and Figure 3, respectively.

Figure 3. A coprime labeling of Amal(W,, vy, 6)

Proposution 2.7 Let v, be the central vertex of wheel
W,,. For each integer t > 1, the minimum coprime
number for amagamation of t copies of W,
ispr(Amal(Wn,vo, t)) =12t + 1.

Proof. According to Lemma 2.1, we left prove that
pr(Amal(Wll,vo,t)) > 12t + 1, by defining a
labeling on the Amal(W;y,ve,t). Define
f:V(Amal(Wyy,v6,8)) = {1,2,..., 12t + 1} where

f(we) =1

12i — (11— ), for j =1,2,...9,
flvi;) = {121' +1, for j = 10,

12i — 1, for j = 11.

Now, we show that the greatest common divisor of every
label of any two adjacent verticesis one.

Advances in Computer Science Research, volume 96

Suppose  that  ged(f (vio), f (vi10)) = ged(12i —
2,12i +1) = k. We know that 12i — 2 is even,
12i + 1 isodd, but both of them arein 1(mod 3). So
k+3. Let 12i —2=kx and 12i + 1 = ky. Then
k(y —x) =3 =1-3.Hencek = 1. Therefore labels
of v,y and v;;, arerelatively prime.

e By applying Lemma 22, we obtain
ged(f (vizo), f Win1)) =ged(12i + 1,12i — 1) = 1.

e Last, supposethat ged(f (vi1), f (vi11)) = ged(12i —
10,12i — 1) = k. We know that 12i — 10 is even,
and 12i —1 is odd, but both of them are in
2 (mod 3). So, k # 3.Suppose 12i — 10 = kx and
12i—1=ky. Then k(y—x)=9=1-9. Since
neither 12i — 10 nor 12i — 1 is not in 0 (mod 9),
then it must be k = 1. Thus f(v;;) and f(v;,,) are
relatively prime, that isged(12i — 10,12i — 1) = 1.

Due to any two adjacent vertices having the relatively
prime labels, the function f is a minimum coprime
labeling with the  largest label being
pr(Amal(Wll,vo, t)) =12t + 1. [

For anillustration, a coprime labeling for amalgamation
of 3 copies of W,, can be seenin Figure 4.

Figure 4. A coprime labeling of Amal(W 14, v,, 3)

3. CONCLUDING REMARKS

We conclude this paper by providing severa open
questions regarding minimum coprime numbers.

Question 1. Let v, be the vertex of degree 7 in W,. Can
the minimum coprime labeling be defined for
amalgamation of wheel W,, Amal(W,,v,,t), for any
positive integer t?

Question 2. Let v, be the vertex of degree n in W, and
t be a positive integer. Can the minimum coprime
labeling be defined generally for amalgamation of odd
wheel W, Amal(W,,, v,,t) whenn = 3 (mod 4)?

Question 3. Can the minimum coprime number be
determined for amalgamation of complete graph,
Amal(K,,v,t)?
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