
 

 

 

 

 

 

 

R



 

 

 

 

 

 

 

 

 

 

 

 

R



 

 

 

 

 

 

 

 

R



 

 

 

 

R



 

R



 

 

 

 

 

 

R



 

 

 

 

 

R



 

 

 

On Ramsey Minimal Graphs  
for a 3-Matching Versus a Path on Five Vertices 

 

Kristiana Wijaya1,*, Edy Tri Baskoro2, Asep Iqbal Taufik3, Denny Riama Silaban3 

 

1Graph, Combinatorics, and Algebra Research Group, Department of Mathematics, FMIPA, Universitas Jember 
2Combinatorial Mathematics Research Group, FMIPA, Institut Teknologi Bandung 
3Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424 
*Corresponding author. Email: kristiana.fmipa@unej.ac.id  

ABSTRACT  
Let 𝐺, 𝐻, and 𝐹 be simple graphs. The notation 𝐹 ⟶ (𝐺, 𝐻) means that any red-blue coloring of all edges of 𝐹 contains 
a red copy of 𝐺 or a blue copy of 𝐻. The graph 𝐹 satisfying this property is called a Ramsey (𝐺, 𝐻)-graph. A Ramsey 
(𝐺, 𝐻)-graph is called minimal if for each edge 𝑒 ∈ 𝐸(𝐹), there exists a red-blue coloring of 𝐹 − 𝑒 such that 𝐹 − 𝑒 
contains neither a red copy of 𝐺 nor a blue copy of 𝐻.  In this paper, we construct some Ramsey (3𝐾2, 𝑃5)-minimal 
graphs by subdivision (5 times) of one cycle edge of a Ramsey (2𝐾2, 𝑃5)-minimal graph. Next, we also prove that for 
any integer 𝑚 ≥ 3, the set 𝑅(𝑚𝐾2, 𝑃5) contains no connected graphs with circumference 3.   

Keywords: Ramsey minimal graph, 3-matching, Path. 

1. INTRODUCTION  

Given simple graphs 𝐺 and 𝐻, any red-blue coloring 
of the edges of F is called a (𝐺, 𝐻)-coloring if it has 
neither red copy of 𝐺 nor blue copy of 𝐻. The notation 
𝐹 → (𝐺, 𝐻)  means that in any red-blue coloring of 𝐹 
there exists a red copy of 𝐺  or a blue copy of 𝐻  as a 
subgraph. A graph 𝐹  is said to be a Ramsey (𝐺, 𝐻) -
minimal if 𝐹 → (𝐺, 𝐻) but for any 𝑒 ∈ 𝐸(𝐹) there exists 
a (𝐺, 𝐻)-coloring on graph 𝐹 − 𝑒. The set of all Ramsey 
(𝐺, 𝐻) -minimal graphs is denoted by R (𝐺, 𝐻).  Burr, 
Erdős, Faudree, and Schelp [1] proved that if 𝐻  is an 
arbritary graph then 𝑅(𝑚𝐾2, 𝐻)  is a finite set . One of 
challenging problems in Ramsey Theory is to 
characterize all graphs in the set 𝑅(𝑚𝐾2, 𝐻) for a given 
graph H. As usual, 𝐾𝑛 , 𝐶𝑛, and 𝑃𝑛  denote a complete 
graph, a cycle, and a path on 𝑛 vertices, respectively. For 
any connected graph 𝐺 , and 𝑚 ≥ 2,  the notation 𝑚𝐺 
means a disjoint union of m copies of a graph G. A 𝑡-
matching, denoted by 𝑡𝐾2, is a graph with 𝑡 components 
where every component is a graph 𝐾2.   

In general, it is difficult to characterize all graphs 
belonging to 𝑅(𝑚𝐾2, 𝐻). However, for some particular 
graph H, this set 𝑅(𝑚𝐾2, 𝐻)  has been known. For 
instance, Burr, Erdős, Faudree, and Schelp [1] showed 
that 𝑅(2𝐾2, 2𝐾2) = {𝐶5, 3𝐾2} and 𝑅(2𝐾2, 𝐾3) =
{𝐾5, 2𝐾3, 𝐺1}, where 𝐺1 is a graph having the vertex-set 

𝑉(𝐺1) = {𝑐, 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖  | 𝑖 = 1,2} and the edge-set 𝐸(𝐺1) 
=  {𝑐𝑢𝑖 , 𝑐𝑣𝑖 , 𝑐𝑤𝑖  | 𝑖 = 1,2}  ∪  {𝑢1𝑢2, 𝑣1𝑣2, 𝑤1𝑤2}  ∪ 
{𝑢1𝑣1, 𝑢1𝑤1 , 𝑣1𝑤1}.  Burr et al. [2] showed that 
𝑅(2𝐾2, 𝑃3) = {𝐶4, 𝐶5, 2𝑃3}.  Baskoro and Yulianti [3] 
proved that 𝑅(2𝐾2, 𝑃4) = {𝐶5, 𝐶6, 𝐶7, 2𝑃4, 𝐶4

+}, where 𝐶4
+ 

is a graph formed by a cycle on 4 vertices 𝐶4 and two 
pendants vertices so that two vertices of degree 3 in the 
cycle 𝐶4 are adjacent. Furthermore, they [3] also proved 
that 𝑅(2𝐾2, 𝑃5) = {𝐶6, 𝐶7, 𝐶8, 𝐶9, 2𝑃5} ∪ {𝐴𝑖| 𝑖 ∈ [1, 7]}, 
where 𝐴𝑖s are the graphs depicted in Figure 1. Wijaya, 
Baskoro, Assiyatun, and Suprijanto [4] showed that the 
cycle 𝐶𝑠 belongs to 𝑅(𝑚𝐾2, 𝑃𝑛) if and only if 𝑠 ∈ [𝑚𝑛 −
𝑛 + 1 ≤ 𝑠 ≤ 𝑚𝑛 − 1].  Other results on characterizing 
all Ramsey minimal graphs for the pair of a matching 
versus a path can be seen in [5 – 8]. 

 

Figure 1  Some Ramsey (2𝐾2, 𝑃5)-minimal graphs. 
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In [1], Burr, Erdős, Faudree, and Schelp gave a family 

of 
(𝑛+1)

2
 non-isomorphic graphs in 𝑅(2𝐾2, 𝐾𝑛) for 𝑛 ≥ 4. 

These graphs are constructed from a complete graph 
𝐾𝑛+1.  In the same paper, Burr, Erdős, Faudree, and 
Schelp also gave a family of (𝑛 − 2)  non-isomorphic 
graphs belonging to 𝑅(2𝐾2, 𝐾1,𝑛).  Motivated by them, 
Wijaya, Baskoro, Assiyatun, and Suprijanto [9] 
constructed some graphs in 𝑅(𝑚𝐾2, 𝑃3) by subdivision 
(3 times) on any non-pendant edge of a connected graph 
in 𝑅((𝑚 − 1)𝐾2, 𝑃3).  Furthermore, Wijaya, Baskoro, 
Assiyatun, and Suprijanto [10] constructed a family of 
Ramsey (𝑚𝐾2, 𝑃4)  minimal graphs from any Ramsey 
((𝑚 − 1)𝐾2, 𝑃4)  minimal graph by the subdivision 
process on any cycle-edge (4 times).      

In this paper, we focus on constructing Ramsey 
(3𝐾2, 𝑃5) minimal graphs for 3-matching versus a path 
with five vertices. We also prove that there is no graph 
with circumference 3 belonging to 𝑅(𝑚𝐾2, 𝑃5) for any 
integer 𝑚 ≥ 3.  A circumference of a graph is the length 
of the longest cycle in that graph.  

The following two lemmas provide the necessary and 
sufficient conditions for any graph in 𝑅(3𝐾2, 𝐻) for any 
graph H.    

Lemma 1.1 [9, 10] For any fixed graph H, the graph 
𝐹 ⟶ (3𝐾2, 𝐻)  holds if and only if the following four 
conditions are satisfied: (i) 𝐹 −  {𝑢, 𝑣}  ⊇ 𝐻  for each 
𝑢, 𝑣 ∈ 𝑉(𝐹) , (ii) 𝐹 − {𝑢} − 𝐸(𝐾3)  ⊇ 𝐻  for each 𝑢 ∈
𝑉(𝐹) and a triangle 𝐾3 in 𝐹,  (iii) 𝐹 −  𝐸(2𝐾3)  ⊇ 𝐻 for 
every two triangles in 𝐹, (iv) 𝐹 −  𝐸(𝑆5)  ⊇ 𝐻 for every 
induced subgraph with 5 vertices 𝑆 in 𝐹.   ∎ 

Lemma 1.2  [9, 10]  Let 𝐻 be a simple graph. Suppose 𝐹 
is a Ramsey (3𝐾2, 𝐻)-graph. 𝐹 is said to be minimal if 
for each 𝑒 ∈ 𝐸(𝐹) satisfies (𝐹 − 𝑒)  ↛  (3𝐾2, 𝐻), that is, 
(i) (𝐹 − 𝑒) − {𝑢, 𝑣}  ⊉ 𝐻 for each 𝑢, 𝑣 ∈ 𝑉(𝐹), (ii) 𝐹 −
 {𝑢} − 𝐸(𝐾3)  ⊉ 𝐻 for each 𝑢 ∈ 𝑉(𝐹) and a triangle 𝐾3 
in 𝐹,  (iii) 𝐹 −  𝐸(2𝐾3)  ⊉ 𝐻 for every two triangles in 
𝐹, (iv) 𝐹 −  𝐸(𝑆5)  ⊉ 𝐻 for every induced subgraph with 
5 vertices 𝑆 in 𝐹.            ∎ 

Any graph satisfying all conditions stated in Lemmas 1 
and 2 is a Ramsey (3𝐾2, 𝐻) -minimal graph. The 
condition stated in Lemma 1.2 is called the minimality 
property of a graph in 𝑅(3𝐾2, 𝐻).   

Next theorem is one of the important properties of a 
Ramsey (𝑚𝐾2, 𝐻)-minimal graph. 

Theorem 1.3 [9] Let 𝐻  be a graph and 𝑚 > 1  be an 
integer. If 𝐹 ∈ (𝑚𝐾2, 𝐻),  then for any 𝑣 ∈ 𝑉(𝐹)  and  
𝐾3 ⊆ 𝐹, both graphs  𝐹 − {𝑣}  and  𝐹 − 𝐸(𝐾3)  contain a  

Ramsey ((𝑚 − 1)𝐾2, 𝐻)-minimal graph.        ∎ 

2. MAIN RESULTS 

In this section, we give some graphs belonging to 
𝑅(3𝐾2, 𝑃5). We construct these graphs by the subdivision 
process on any cycle edge of a connected graph in 
𝑅(2𝐾2, 𝑃5) depicted in Figure 1. Before doing this, first 
we show that a graph 𝐹1,  depicted in Figure 2, is a 
Ramsey (3𝐾2, 𝑃5)-minimal graph. The vertex set of a 
graph 𝐹1 is 𝑉(𝐹1) = {𝑣1, 𝑣2, … , 𝑣11} and the edge set of a 
graph 𝐹1  is 𝐸(𝐹1) = {𝑣𝑖𝑣𝑖+1| 𝑖 = 1,2, … ,10}  ∪ 
{𝑣2𝑣9, 𝑣3𝑣10}. 

 

Figure 2 A graph 𝐹1 and some red-blue colorings of 𝐹1 
so that 𝐹1 contains no red 3𝐾2 but it contains a blue 𝑃5. 

Proposition 2.1  Let 𝐹1 be a graph on 11 vertices and 12 
edges as depicted in Figure 2. The graph 𝐹1 is a Ramsey 
(3𝐾2, 𝑃5)-minimal graph.  

Proof. First, we prove that for any red-blue coloring of 
𝐹1 there exists a red 3𝐾2 or a blue 𝑃5 in 𝐹1. We can see 
that 𝐹1 − {𝑣𝑖 , 𝑣𝑗} always contains a path 𝑃5 for any 1 ≤

𝑖, 𝑗 ≤ 11.  It can be verified that 𝐹1 −  𝐸(𝑆5)  ⊇ 𝐻  for 
every induced subgraph with 5 vertices 𝑆 in 𝐹1. Since 𝐹1 
has no triangle then by Lemma 1.1, 𝐹1 → (3𝐾2, 𝑃5) . 
Next, we prove the minimality property of 𝐹1. For any 
edge e we will show that (𝐹1 − 𝑒) ↛ (3𝐾2, 𝑃5). If e is 
one of dashed edges in Figure 2, then each red-blue 
coloring in Figure 2 provides a (3𝐾2, 𝑃5)  coloring on 
𝐹1 − 𝑒, namely a coloring that have neither red 3𝐾2 nor 
blue 𝑃5. Therefore 𝐹1 ∈ 𝑅(3𝐾2, 𝑃5).                                ∎                           

Next, we construct some Ramsey (3𝐾2, 𝑃5)-minimal 
graphs from previous known Ramsey (2𝐾2, 𝑃5)-minimal 
graphs by subdivision process. Consider each of Ramsey 
(2𝐾2, 𝑃5)-minimal graphs in Figure 1. By the subdivision 
(5 times) on any of its cycle-edges we produce Ramsey 
(3𝐾2, 𝑃5)-minimal graphs in Figure 3. In total, we obtain 
12 non-isomorphic graphs belonging to 𝑅(3𝐾2, 𝑃5). Two 
non-isomorphic graphs 𝐹2 and 𝐹3 are obtained from the 
subdivision of 𝐴1. Two non-isomorphic graphs 𝐹4 and 𝐹5 
are formed from 𝐴2. Two non-isomorphic graphs 𝐹6 and 
𝐹7 are obtained from 𝐴3. One graph called 𝐹8 is obtained 
from the graph 𝐴4. One graph 𝐹9 is formed from 𝐴5. Two 
non-isomorphic graphs 𝐹10 and 𝐹11 are obtained from the 
graph 𝐴6. Last, two non-isomorphic graphs 𝐹12 and 𝐹13 
are formed from 𝐴7. In the following theorem, we will 
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prove that these graphs are Ramsey (3𝐾2, 𝑃5)-minimal 
graphs.  

Theorem 2.2   All the graphs 𝐹2, 𝐹3, … , 𝐹13 in Figure 3 
are Ramsey (3𝐾2, 𝑃5)-minimal graphs. 

 

Figure 3  Some graphs belong to 𝑅(3𝐾2, 𝑃5). 

Proof. Let 𝐹 be any graph in Figure 3. It is easy to see 
that 𝐹 satisfies all the conditions in Lemma 1.1. Then, 
𝐹 ⟶ (3𝐾2, 𝑃5) holds. Now, we will show the minimality 
property of F. Let e be any edge in F. If e is one of dashed 
edges, then a (3𝐾2, 𝑃5)-coloring on 𝐹 − 𝑒 is provided in 
Figures 4 and 5 for all cases of F and e.   ∎  

 

 

Figure 4  The (3𝐾2, 𝑃5)-colorings on 𝐹𝑖 − 𝑒  if e is one 
of dashed edges and for 𝑖 ∈ [2, 7].  

Actually, there are two non-isomorphic graphs 
obtained by the subdivision (5 vertices) on any cycle edge 
of 𝐴5 (see Figure 1). One of these two graphs is 𝐹10 and 
the other is obtained by subdivision (5 vertices) on the 
edge incident with a vertex of degree 4 and a vertex of 
degree 3. The last graph is a Ramsey-(3𝐾2, 𝑃5) graph but 

not minimal since it contains a graph 𝐹1 ∈ 𝑅(3𝐾2, 𝑃5) (in 
Figure 2).  

 

 

Figure 5  The (3𝐾2, 𝑃5) -colorings on 𝐹𝑖 − 𝑒  for 𝑖 ∈
[8, 13] if e is one of dashed edges.  

In the following theorem, we will give a property of 
graphs belonging to 𝑅(𝑚𝐾2, 𝑃5). 

Theorem 2.3 There is no Ramsey (𝑚𝐾2, 𝑃5)-minimal 
graph with circumference 3 for any integer 𝑚 ≥ 2. 

Proof.  We will prove the theorem by induction on 𝑚. If 
𝑚 = 2 then it has been shown that there is no (2𝐾2, 𝑃5)-
minimal graph with circumference 3 (see [3]).  

Assume that there is no (𝑡𝐾2, 𝑃5)-minimal graph with 
circumference 3 for any positive integer 𝑡 ≤ 𝑚 − 1. We 
will show that there is no (𝑚𝐾2, 𝑃5)-minimal graph with 
circumference 3. Suppose to the contrary that there exists 
a graph 𝐹 which is a Ramsey (𝑚𝐾2, 𝑃5)-minimal graph 
with circumference 3. Then, 𝐹 must be a unicyclic graph. 
Let 𝐶   be the cycle in 𝐹  with 𝑉(𝐶) = {𝑢1, 𝑢2, 𝑢3}. 
According to Theorem 1.3, 𝐹 − {𝑢𝑖} for every 𝑖 ∈ [1, 3] 
contains a graph 𝐺 ∈ 𝑅((𝑚 − 1)𝐾2, 𝑃5). By assumption, 
the set 𝑅((𝑚 − 1)𝐾2, 𝑃5)  has no graph with 
circumference 3. So, 𝐺  must be isomorphic to (𝑚 −
1)𝑃5. It forces that 𝐹 − 𝐸(𝐶) is a graph 𝑃𝑛1

∪ 𝑃𝑛2
∪ 𝑃𝑛3

 
where 𝑛1 + 𝑛2 + 𝑛3  ≥ 5𝑚 = 15.  It implies that 𝐹 
contains a graph 𝑚𝑃5.  Hence, 𝐹  is not minimal. 
Otherwise, without loss of generality, we consider 𝑛1 +

𝑛2 + 𝑛3 = 5𝑚 − 1 ≥ 14 and assume 𝑢1 ∈ 𝑉(𝑃𝑛1
), 𝑢2 ∈

𝑉(𝑃𝑛2
),  and 𝑢3 ∈ 𝑉(𝑃𝑛3

).  Suppose w.l.o.g. 𝑛1 ≥ 𝑛2 ≥

𝑛3  and 𝑉(𝑃𝑛1
) = {𝑢1, 𝑣𝑛1−1, 𝑣𝑛1−2, … , 𝑣2, 𝑣1}  where 𝑣1 

is the pendant vertex of a path 𝑃𝑛1
 and 𝐸(𝑃𝑛1

) =
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{𝑢1𝑣𝑛1−1, 𝑣𝑖𝑣𝑖+1| 𝑖 ∈ [1, 𝑛1 − 2]}.  Clearly 𝑛1 ≥ 5.  If 

𝑛1 > 5, we set the vertex 𝑣5 ∈ 𝑉(𝑃𝑛1
), then we obtain 

that 𝐹 − {𝑣5} does not contain a graph (𝑚 − 1)𝑃5, which 
would contradict Theorem 1.3. In the case of 𝑛1 = 5 we 
have 𝑛2 = 5  and 𝑛3 = 4.  We obtain 𝐹 − {𝑢1} ⊉ 2𝑃5,  a 
contradiction with Theorem 1.3. Thus, the proof is 
complete.                     ∎ 

3. CONCLUSION   

In this paper, we discuss on the construction of  
Ramsey (3𝐾2, 𝑃5)-minimal graphs. By the subdivision of 
any cycle edge of 7 Ramsey (2𝐾2, 𝑃5)-minimal graphs 
(in Figure 1) we obtain 13 non-isomorphic Ramsey 
(3𝐾2, 𝑃5)-minimal graphs.  We also show that there is no 
Ramsey (𝑚𝐾2, 𝑃5)-minimal graph circumference 3 for 
any integer 𝑚 ≥ 2.  

For a future work, we pose some open problems below. 

Open Problem 1. Characterize all graphs belonging to 
𝑅(3𝐾2, 𝑃5) by excluding all graphs resulted in this paper. 

Open Problem 2.  Are there any connected graphs with 
circumference 4 or 5 belonging to 𝑅(3𝐾2, 𝑃5)? 

Open Problem 3.  Is it true that the subdivision (5 times) 
on any cycle-edge of a connected Ramsey ((𝑚 −

1)𝐾2, 𝑃5)-minimal graph always produces a connected 
Ramsey (𝑚𝐾2, 𝑃5)- minimal graph?  
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