
Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/

Hybrid Cat-Particle Swarm Optimization Algorithm

on Bounded Knapsack Problem with Multiple

Constraints

Kiswara Agung Santoso*, Muhammad Bagus Kurniawan, Ahmad Kamsyakawuni,

Abduh Riski

Department of Mathematics, FMIPA, University of Jember
*Corresponding author. Email: kiswaras@gmail.com

ABSTRACT

Optimization problems have become interesting problems to discuss, including the knapsack problem. There are many

types and variations of knapsack problems. In this paper, the authors introduce a new hybrid metaheuristic algorithm to

solve the modified bounded knapsack problem with multiple constraints we call it modified bounded knapsack problem

with multiple constraints (MBKP-MC). Authors combine two popular metaheuristic algorithms, Particle Swarm

Optimization (PSO) and Cat Swarm Optimization (CSO). The algorithm is named Hybrid Cat-Particle Swarm

Optimization (HCPSO). The results of the implementation of the algorithm are compared with PSO and CSO

algorithms. Based on the experimental results, it is known that the HCPSO algorithm is suitable and can reach to good-

quality solution within a reasonable computation time. In addition, the new proposed algorithm performs better than the

PSO and CSO on all MBKP-MC data used.

Keywords: Hybrid cat-particle swarm optimization, Metaheuristic, Modified bounded knapsack problem.

1. INTRODUCTION

The knapsack problem is one of the optimization

problems that are very interesting to be discussed.

According to [1], the knapsack problem is defined as a

problem that we have to determine some items to be put

into storage media, where each item has weight and

profit. The total weight must not exceed the capacity of

the storage media used. The items must be selected such

that the total profit can be maximized. Knapsack Problem

(KP) has some types based on the problem, which are 0-

1 knapsack, bounded knapsack, and unbounded knapsack

[2]. Based on the objective, a number of constraints, and

a number of storage media, the knapsack problem is

divided into variations: single objective knapsack, multi-

objective knapsack, multidimensional knapsack, multiple

constraints knapsack, and quadratic knapsack [3]. There

are some researches discuss the combination of the type

and variation of the knapsack problem, such as multiple

constraints 0-1 knapsack problem [4] [5],

multidimensional 0-1 knapsack problem [6],

multidimensional 0-1 knapsack problem with multiple

constraints [7, 8], multidimensional bounded knapsack

problem [9, 10], multiple constraints bounded knapsack

problem [11]. In this study, we will discuss a new hybrid

metaheuristic algorithm. In Bounded Knapsack Problem

(BKP), there is a maximum number of each item. In

Modified Bounded Knapsack Problem (MBKP), we add

a minimum number of each item that should be put into

the storage media. And then, in this algorithm that we will

discuss, we use three main constraints, weight, volume,

and price. The total weight and volume must not exceed

the capacity of the storage media, and the total price

should not be greater than the capital. The optimization

problem, included the knapsack problem, can be solved

by some methods or algorithms. According to [12], a

metaheuristic algorithm is an algorithm designed to solve

optimization problems through an approach process that

is inspired by nature, such as biology, physic, or

ethology.

There are some metaheuristic algorithms that often

used by some researchers, such as Particle Swarm

Optimization (PSO) [13], Cat Swarm Optimization

(CSO) [14], Genetic Algorithm (GA) [15, 16], Simulated

Annealing (SA) [17, 18], Artificial Immune System

(AIS) [19, 20], Ant Colony Optimization (ACO) [21, 22]

and Tabu Search (TS) [23 – 25]. In this paper, we will

focus on PSO and CSO algorithms. The PSO algorithm

is known as the metaheuristic algorithm introduced by

Eberhart and Kennedy in 1995, which is inspired by the

Advances in Computer Science Research, volume 96

Proceedings of the International Conference on Mathematics, Geometry, Statistics, and

Computation (IC-MaGeStiC 2021)

Copyright © 2022 The Authors. Published by Atlantis Press International B.V.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 244

Digital Repository Universitas JemberDigital Repository Universitas Jember

mailto:kiswaras@gmail.com
http://repository.unej.ac.id/
http://repository.unej.ac.id/

behavior of bird or fish swarm [13]. The PSO algorithm

was first used to solve function optimization. After that,

there are many other optimization problems solved using

PSO algorithm, such as dynamic systems [26], pattern-

matching task [21], traveling salesman problem [23],

hybrid flow-shop scheduling [9], nonlinear differential

equations [12], vehicle routing problem [3], vehicle

routing problem with time windows [23]. The CSO

algorithm was first proposed by Chu, et al. in 2006 [14]

that is based on cat behaviors. There are two modes in the

CSO algorithm for exploration and exploitation, that is

seeking and tracing. Some researchers applied the CSO

algorithm in many fields, such as function optimization

[14], clustering [3], reliability-oriented task allocation

[12], unconstrained optimization [5], artificial neural

networks [16], 0-1 knapsack [11], workflow scheduling

[18], non-unicast set covering [19]. Besides those two

algorithms, many researchers have combined some

algorithms as a hybrid. According to [20], the hybrid

algorithm is more efficient for solving large-scale

problems. A hybrid algorithm is also able to balance the

exploration and exploitation, and able to balance the

execution time and the quality of the final result.

In this paper, we will combine PSO and CSO

algorithms as Hybrid Cat-Particle Swarm Optimization

(HCPSO) algorithm. The algorithm will be tested for

solving MBKP-MC. The performance of the algorithms

is also compared with the results of the PSO and CSO

algorithms.

2. MODIFIED BOUNDED KNAPSACK

The Bounded Knapsack Problem (BKP) [3] is defined

as follows. A set of items j = {1, 2, …, n} where each

item has a weight wj and a profit pj. The problem that

must be solved is how to choose items with some

constrain so that the total profit can be maximized. The

models which describe this problem can be written as

formula below (BKP)

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ∑ 𝒑𝒋𝒙𝒋

𝒏

𝒋=𝟏
 (1)

𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛 ∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝐶 (2)

0 ≤ 𝑥𝑗 ≤ 𝑏𝑗, 𝑥𝑗 integer, j = 1, 2, …, n (3)

In this paper, we use Modified Bounded Knapsack

Problem with Multiple Constraints (MBKP-MC).

Besides the maximum number 𝑏𝑗 of the identical copies

of item 𝑗, we consider the minimum number 𝑎𝑗 of each

item type that should be selected. We also use three main

constraints, which are weight (𝑤𝑗), volume (𝑣𝑗), and buy

price/cost (𝑐𝑗). The total weight and volume must not

exceed the capacity of the storage media, and the total

price should not be greater than the capital. Therefore, the

problem is formalized as follows.

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ∑ 𝒑𝒋𝒙𝒋

𝒏

𝒋=𝟏
 (4)

 ∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝐶 (5)

∑ 𝑣𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝑆 (6)

∑ w𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝑀 (7)

0 ≤ 𝑥𝑗 ≤ 𝑏𝑗 , 𝑥𝑗 integer, j = 1, 2, …, n (8)

where 𝐶, 𝑆 and 𝑀 are the weight capacity, space/volume

capacity and capital respectively.

3. THE PROPOSED ALGORITHM

3.1 The PSO Algorithm

The Particle Swarm Optimization (PSO) algorithm is

one of the metaheuristic algorithms first introduced by

Russell Eberhart and James Kennedy in 1995 [13]. The

PSO algorithm is based on a swarm of birds or fish in

nature. The PSO algorithm has been applied in most

optimization areas, intelligent computation, and

design/scheduling [21]. In the PSO algorithm, there are N

particles and each particle represents a candidate of

solution. The PSO algorithm generates the initial

position, and velocity for every particle randomly in

search space. Every iteration, each particle updates their

velocity and position based on their own best position 𝑃𝑖

and global best position 𝑃𝑔. According to the Invalid

source specified, the particle’s velocity is updated using

Equation (9), and then the position is updated using

Equation (10).

𝑉𝑖(𝑡 + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝑟1 (𝑃𝑔(𝑡)−𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝑃𝑖(𝑡)−𝑋𝑖(𝑡)) (9)

where 𝑐1, 𝑐2 are coefficient of acceleration in the interval

[0, 2]; 𝑟1, 𝑟2 are random variables with uniform

distribution in the interval [0, 1]; 𝜔 is inertia weight used

to balance the global and local search; and 𝑡, 𝑡 + 1 are

current and next iteration respectively.

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (10)

The inertia weight 𝜔 is linearly decreased

𝜔 = 𝜔𝑚𝑎𝑥 − 𝑡 ∗
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑁𝑢𝑚𝐼𝑡𝑒𝑟
 (11)

where 𝜔𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛, respectively, are maximum and

minimum weight, and 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 is a number of iterations.

3.2 The CSO Algorithm

Hunting ability to survive, but a house cat has a strong

instinct interest in moving things. Although cats spend a

lot of time sleeping, they have high alertness. They keep

paying attention around to know if there is food or

danger. Based on those two behaviors, the CSO algorithm

is divided into two modes, seeking mode and tracing

mode. The algorithm uses a mixture ratio (𝑀𝑅) to split

the cats into seeking mode or tracing mode.

Advances in Computer Science Research, volume 96

245

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/

The seeking mode is used to model the situation while

cats are sleeping. In seeking mode, there are four factors

defined, seeking memory pool (𝑆𝑀𝑃), seeking ranger of

selected dimension (𝑆𝑅𝐷), counts of dimension to change

(𝐶𝐷𝐶), and self-position considering (𝑆𝑃𝐶).

𝑆𝑀𝑃 represents the size of the searching memory of

each cat. Every cat will choose a new position in memory

using Roulette Wheel. 𝑆𝑅𝐷 is used to control changes in

values of the selected dimension, which do not exceed the

range. 𝐶𝐷𝐶 is used to determine the number of

dimensions to change. 𝑆𝑃𝐶 is a Boolean variable. If the

cat is the fittest individual, then 𝑆𝑃𝐶 is true (1),

otherwise, 𝑆𝑃𝐶 is false (0). If 𝑆𝑃𝐶 is true (1), the cat will

create 𝑗 copies new candidate position, where 𝑗 = 𝑆𝑀𝑃,

but if 𝑆𝑃𝐶 is false (0), then the cat creates 𝑗 = 𝑆𝑀𝑃 one

copies and one candidate is the current position.

The tracing mode is used in the model cases where

cats trace the target or prey. Every cat in tracing mode

updated their position based on the velocity. In the CSO

algorithm, the velocity of cats is updated based on the

best position. The procedure of the CSO algorithm is

described into eight steps as follows.

1. Generate initial position and velocity of 𝑁 cats in

search space.

2. Evaluate the fitness value and save the best position as

𝑥𝑏𝑒𝑠𝑡.

3. Divide the cats into seeking and tracing mode.

4. If the cat is in seeking mode, create a new candidate

position using Equation (12), and then choose one to

replace the current position using Roulette Wheel.

𝑥′𝑗,𝑑 = 𝑥𝑗,𝑑 ± 𝑆𝑅𝐷 ∗ 𝑟 ∗ 𝑥𝑗,𝑑 (12)

where 𝑟 is a random number and 𝑥𝑗,d, 𝑥’𝑗,d are current

and new values of dimension 𝑑 respectively.

5. If the cat is in tracing mode, update the velocity using

Equation (13), and then update the position using

Equation (14)

 𝑣𝑘,𝑑(𝑡 + 1) = 𝑣𝑘,𝑑(𝑡) + 𝑐1𝑟1 (𝑥𝑏𝑒𝑠𝑡,𝑑(𝑡)−𝑥𝑘,𝑑(𝑡)) (13)

 𝑥𝑘,𝑑(𝑡 + 1) = 𝑥𝑘,𝑑(𝑡) + 𝑣𝑘,𝑑(𝑡 + 1) (14)

𝑑 = 1, 2, … , 𝐷

where 𝑐1 is acceleration coefficient; 𝑟1 is a random

number; 𝑣𝑘,𝑑(𝑡), 𝑣𝑘,𝑑(𝑡 + 1), respectively are current and

new velocity; and 𝑥𝑘,𝑑(𝑡), 𝑥𝑘,𝑑(𝑡 + 1) are current and

new position respectively.

6. Merge the cats from seeking and tracing mode.

7. Evaluate the fitness value and update the best position.

8. Check the termination criterion. If the criterion is

reached, then the algorithm is stopped; else, back to

step 3.

3.3 The HCPSO Algorithm

The Hybrid Cat-Particle Swarm Optimization

(HCPSO) algorithm is the new hybrid algorithm we

propose in this paper. We combine the CSO and PSO that

are known as good metaheuristic algorithms. In the

HCPSO algorithm, we use the full CSO scheme process

with some additions and modifications. The algorithm

saves the global best position and local best position like

the PSO algorithm. And then, in the tracing mode, we

apply the movement formula of PSO. Besides that, in the

seeking mode, we use a modification of the value of the

selected dimension based on the best position, and then

we choose the best new candidate to replace the current

position. This hybridization aims to get a better algorithm

with a better convergence, and the execution time does

not increase. All steps of the HCSPO algorithm to solve

MBKP-MC are described as follows.

1. Generate initial position (𝑋) of 𝑁 individuals in search

space ([0, 1]) and generate velocity (𝑉).

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝐷

𝑥21 𝑥22 ⋯ 𝑥2𝐷

⋮
𝑥𝑁1

⋮
𝑥𝑁2

⋱ ⋮
⋯ 𝑥𝑁𝐷

] , 𝑥𝑘𝑑 ∈ [0,1] (15)

𝑉 = [

𝑣11 𝑣12 ⋯ 𝑣1𝐷

𝑣21 𝑣22 ⋯ 𝑣2𝐷

⋮
𝑣𝑁1

⋮
𝑣𝑁2

⋱ ⋮
⋯ 𝑣𝑁𝐷

] (16)

where 𝐷 is the number of items types.

2. Convert the position (𝑋) into MBKP-MC solution term

(𝑌) using Equation (18).

𝑌 = [

𝑦11 𝑦12 ⋯ 𝑦1𝐷

𝑦21 𝑦22 ⋯ 𝑦2𝐷

⋮
𝑦𝑁1

⋮
𝑦𝑁2

⋱ ⋮
⋯ 𝑦𝑁𝐷

] (17)

𝑦𝑘𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑥𝑘𝑑 ∗ (𝑏𝑑 − 𝑎𝑑)) (18)

3. Check all the constraints. Make sure that all the

solutions are an infeasible area which means all the

solutions must meet the MBKP-MC constraints.

4. Evaluate the fitness value (total profit) of all solutions.

5. Save the best position of each individual as 𝐶𝑘 and the

best global solution as 𝐶𝑔.

6. Divide the individuals into seeking and tracing modes.

7. If individuals are in seeking mode. Create copies based

on their own the best position 𝐶𝑘 Equation (19) and

modify the selected dimension based on the best

global solution 𝐶𝑔 Equation (20).

𝑥′
𝑗,𝑑 = 𝐶𝑘,𝑑 , 𝑑 = 1,2, … , 𝐷 (19)

𝑥′𝑗,𝑑 = 𝐶𝑔,𝑑 ± 𝑆𝑅𝐷 ∗ 𝑟 ∗ 𝐶𝑔,𝑑 (20)

8. If individuals are in tracing mode. Update the velocity

and position based on PSO movement as formulated

in Equation (21) - Equation (22)

𝑉𝑖(𝑡 + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝑟1 (𝐶𝑔(𝑡)−𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝐶𝑖(𝑡)−𝑋𝑖(𝑡)) (21)

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (22)

9. Merge the cats from seeking and tracing mode and

ensure all the positions do not exceed search space [0,

1]. If the solution exceeds the search space, then the

solution must be transformed using Equation (23).

Advances in Computer Science Research, volume 96

246

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/

𝑥𝑘 = {

𝑥𝑘−min(𝑥𝑘)

max(𝑥𝑘)−min(𝑥𝑘)
 , 𝑖𝑓 min(𝑥𝑘) < 0

𝑥𝑘

max(𝑥𝑘)
, 𝑖𝑓 max(𝑥𝑘) > 1

 (23)

10. Convert the new position (𝑋) into the MBKP-MC

solution term (𝑌). Check all the constraints and then

evaluate the fitness value.

11. Update the best individual position 𝐶𝑘 and the best

global position 𝐶𝑔.

12. Check the termination criterion. If the criterion is

reached, then the algorithm is stopped and the final

solution is 𝐶𝑔 in MBKP-MC solution term. But, if

the criterion is not reached, go back to step 6.

4. COMPUTATIONAL RESULTS

Experimental Design

In order to study the performance of the proposed

algorithm of this paper, we generate 20 MBKP-MC

Instances. The test instances involve different size of

problem. The numbers of items types (𝑛) that we use are

30, 40, 50, 75 and 100. We apply simplex method to

know the optimal value of the generated Instances. In

particular, we use the following parameter setting: 𝑁 =

100, 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 = 5000, 𝑀𝑅 = 0.5, 𝑆𝑀𝑃 = 5, 𝐶𝐷𝐶 = 0.2

(30, 40, 50 items), 𝐶𝐷𝐶 = 0.1 (75 items), 𝐶𝐷𝐶 = 0.08 (100

items), 𝑆𝑅𝐷 = 0.1, 𝑐1 = 0.5, 𝑐2 = 1.5, 𝜔𝑚𝑎𝑥 = 0.9 and

𝜔𝑚𝑖𝑛 = 0.7.

Table 1. The average results obtained

The average results on Table 1, that the HCPSO

algorithm is the best algorithm, followed by PSO and

then CSO. The PSO algorithm has the shortest execution

time. Although, the average execution time of the

HCPSO algorithm is less than CSO on all problem sets.

These results mean that the HCPSO algorithm is suitable

and can reach to good-quality solution within a

reasonable computation time. The formula (24) is used to

calculate the percentage of deviation (PD) and evaluate

the improvement rates of the approach. The smaller PD

indicates a better result because it approaches the optimal

value.

𝑃𝐷 =
𝑂𝑝𝑡−𝑍

𝑂𝑝𝑡
𝑥100% (24)

where 𝑂𝑝𝑡 is the optimal value and 𝑍 denotes the result

of the algorithm.

The percentage of deviation of the algorithms for each

problem is shown in Table 2.

Table 2. The percentage of deviation

Based on the percentage of deviation as we can see in

Table 2, the HCPSO algorithm has also the smallest

average compared with PSO and CSO. We can also know

that the larger problem set doesn’t affect the percentage

of deviation HCPSO algorithm. It is different with PSO

and CSO; the percentage of deviation of both algorithms

increases on larger problem sets. Thus, we can use the

Hybrid Cat-Particle Swarm Optimization to solve large-

sized modified bounded knapsack problems with

multiple constraints.

5. CONCLUSIONS

In this paper, the Hybrid Cat-Particle Swarm

Optimization (HCPSO) as a combination of Particle

Swarm Optimization (PSO) and Cat Swarm Optimization

(CSO) algorithms, has been proposed to solve modified

bounded knapsack problem with multiple constraints

(MBKP-MC). This hybridization aims to accelerate the

convergence to the optimal value. The proposed

algorithm has been applied to the MBKP-MC data and

the results have been compared with the PSO and CSO

algorithms. Based on the experimental results, it is known

that the HCPSO algorithm provides better performance

in the two mentioned algorithms on all problem sets.

Thus, it makes the HCPSO algorithm convenient to use.

REFERENCES

[1] A. Gherboudj, A. Layeb and S. Chikhi, Solving 0-1

Knapsack Problem by A Discrete Binary Version of

Cuckoo Search Algorithm, International Journal of

Bio-Inspired Computation, 2012, vol. 4, no. 4, pp.

229-236.

[2] D. Pisinger, A Minimal Algorithm for the Multiple-

Knapsack Problem, European Journal of

Operational Research, 1995, vol. 83, no. 2, pp. 394-

410.

[3] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack

Problem, Berlin: Springer, 2003.

Advances in Computer Science Research, volume 96

247

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/

[4] D. K. Agrafiotis and W. Cedeno, Feature Selection

for Structure-Activity Correlation Using Binary

Particle Swarms, Journal of Medicinal Chemistry,

2002, vol. 45, no. 5, pp. 1098-1107.

[5] M. Clerc, Discrete Particle Swarm Optimization,

Illustrated by the Traveling Salesman Problem, in

New Optimization Technique in Engineering,

Berlin, Heidelberg, Springer, 2004, pp. 2019-239.

[6] C. T. Tseng and C. J. Liao, A Particle Swarm

Optimization Algorithm for Hybrid Flow-Shop

Scheduling with Multiprocessor Tasks,

International Journal of Production Research, 2008,

vol. 46, no. 17, pp. 4655-4670.

[7] M. Babaei, A General Approach to Approximate

Solutions of Nonlinear Differential Equations Using

Particle Swarm Optimization, Applied Soft

Computing, 2013, vol. 13, no. 7, pp. 3354-3365.

[8] C. Pornsing, A Particle Swarm Optimization for

Vehicle Routing Problem, Rhode Island University

of Rhode Island, 2014.

[9] Z. M. Fatimah, Penerapan Algoritma Particle Swarm

Optimization untuk Vehicle Routing Problem with

Time Windows pada Kasus Pendistribusian Barang,

Universitas Jember, Jember, 2016.

[10] B. Santosa and M. K. Ningrum, Cat Swarm

Optimization for Clustering, International

Conference of Soft Computing and Pattern

Recognition, 2009, pp. 54-59.

[11] R. Shojaee, H. R. Faragardi, S. Alaee, and N.

Yazdani, "A New Cat Swarm Optimization based

Algorithm for Reliability-Oriented Task Allocation

in Distributed Systems," 6th International

Symposium on Telecommunications (IST), 2012,

pp. 861-866.

[12] I. Boussaid, J. Lepagnot, and P. Siarry, A Survey on

Optimization Metaheuristics, Information Sciences,

2013, vol. 237, pp. 82-117.

[13] R. Eberhart and J. Kennedy, Particle Swarm

Optimization, Proceeding of the IEEE International

Conference on Neural Networks, 195, vol. 4, pp.

1942-1948.

[14] S. C. Chu, P. W. Tsai, and J. S. Pan, Cat Swarm

Optimization, Pacific Rim International Conference

on Artificial Intelligence, 2006, pp. 854-858.

[15] P. C. Chu and J. E. Beasley, A Genetic Algorithm

for the Multi Dimension Knapsack Problem, Journal

of Heuristics, 1998, vol. 4, no. 1, pp. 63-86.

[16] L. V. Snyder and M. S. Daskin, A Random-Key

Genetic Algorithm for the Generalized Traveling

Salesman Problem, European Journal of Operational

Research, 2006, vol. 174, pp. 38-53.

[17] D. R. Din, Heuristic and Simulated Annealing

Algorithms for Wireless ATM Backbone Network

Design Problem, Journal of Information Science &

Engineering, 2008, vol. 24, no. 2.

[18] M. Andresen, H. Brasel, M. Morig, J. Tusch, F.

Werner and P. Willenius, Simulated Annealing and

Genetic Algorithms for Minimizing Mean Flow

Time in an Open Shop, Mathematical and Computer

Modelling, 2008, vol. 48, no. 7-8, pp. 1279-1293.

[19] O. Engin and A. Doyen, A New Approach to Solve

Hybrid Flow Shop Scheduling Problems by

Artificial Immune System, Future Generation

Computer Systems, 2004, vol. 20, pp. 10831095.

[20] C. A. C. Coello and N. C. Cortes, Solving

Multiobjective Optimization Problems Using an

Artificial Immune System, Genetic Programming

and Evolvable Machines, 2005, vol.6, pp.163-190.

[21] M. Kong, P. Tian, and Y. Kao, A New Ant Colony

Optimization Algorithm for the Multi Dimension

Knapsack Problem, Computers & Operations

Research, 2008, vol. 35, no. 8, pp. 2672-2683.

[22] M. Mavrovouniotis, F. M. Muller and S. Yang, Ant

Colony Optimization with Local Search for

Dynamic Traveling Salesman Problems, IEEE

Transactions on Cybernetics, 2016, vol. 47.

[23] V. Pureza and P. M. Franca, Vehicle Routing

Problems via Tabu Search Metaheuristic, Centre De

Recherche Sur Les Transports Publication, 1991.

[24] W. C. Chiang and R. A. Russell, A Reactive Tabu

Search Metaheuristic for the Vehicle Routing

Problem with Time Windows, INFORMS Journal

on Computing, 1997, vol.9, no. 4, pp. 417-430.

[25] F. Glover and M. Laguna, Tabu Search, in

Handbook of Combinatorial Optimization, Boston,

MA, Springer, 1998, pp. 2093-2229.

[26] X. Hu and R. C. Eberhart, Adaptive Particle Swarm

Optimization: Detection and Response to Dynamic

Systems, Proceedings of the 2002 Congress on

Evolutionary Computation, CEC'02 (Cat. No.

02TH8600), IEEE, 2002, vol. 2.

Advances in Computer Science Research, volume 96

248

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/

