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ABSTRACT 

Optimization problems have become interesting problems to discuss, including the knapsack problem. There are many 

types and variations of knapsack problems. In this paper, the authors introduce a new hybrid metaheuristic algorithm to 

solve the modified bounded knapsack problem with multiple constraints we call it modified bounded knapsack problem 

with multiple constraints (MBKP-MC). Authors combine two popular metaheuristic algorithms, Particle Swarm 

Optimization (PSO) and Cat Swarm Optimization (CSO). The algorithm is named Hybrid Cat-Particle Swarm 

Optimization (HCPSO). The results of the implementation of the algorithm are compared with PSO and CSO 

algorithms. Based on the experimental results, it is known that the HCPSO algorithm is suitable and can reach to good-

quality solution within a reasonable computation time. In addition, the new proposed algorithm performs better than the 

PSO and CSO on all MBKP-MC data used. 

Keywords: Hybrid cat-particle swarm optimization, Metaheuristic, Modified bounded knapsack problem.  

1. INTRODUCTION 

The knapsack problem is one of the optimization 

problems that are very interesting to be discussed. 

According to [1], the knapsack problem is defined as a 

problem that we have to determine some items to be put 

into storage media, where each item has weight and 

profit. The total weight must not exceed the capacity of 

the storage media used. The items must be selected such 

that the total profit can be maximized. Knapsack Problem 

(KP) has some types based on the problem, which are 0-

1 knapsack, bounded knapsack, and unbounded knapsack 

[2]. Based on the objective, a number of constraints, and 

a number of storage media, the knapsack problem is 

divided into variations: single objective knapsack, multi-

objective knapsack, multidimensional knapsack, multiple 

constraints knapsack, and quadratic knapsack [3].  There 

are some researches discuss the combination of the type 

and variation of the knapsack problem, such as multiple 

constraints 0-1 knapsack problem [4] [5], 

multidimensional 0-1 knapsack problem [6], 

multidimensional 0-1 knapsack problem with multiple 

constraints [7, 8], multidimensional bounded knapsack 

problem [9, 10], multiple constraints bounded knapsack 

problem [11]. In this study, we will discuss a new hybrid 

metaheuristic algorithm. In Bounded Knapsack Problem 

(BKP), there is a maximum number of each item. In 

Modified Bounded Knapsack Problem (MBKP), we add 

a minimum number of each item that should be put into 

the storage media. And then, in this algorithm that we will 

discuss, we use three main constraints, weight, volume, 

and price. The total weight and volume must not exceed 

the capacity of the storage media, and the total price 

should not be greater than the capital. The optimization 

problem, included the knapsack problem, can be solved 

by some methods or algorithms. According to [12], a 

metaheuristic algorithm is an algorithm designed to solve 

optimization problems through an approach process that 

is inspired by nature, such as biology, physic, or 

ethology.  

There are some metaheuristic algorithms that often 

used by some researchers, such as Particle Swarm 

Optimization (PSO) [13], Cat Swarm Optimization 

(CSO) [14], Genetic Algorithm (GA) [15, 16], Simulated 

Annealing (SA) [17, 18], Artificial Immune System 

(AIS) [19, 20], Ant Colony Optimization (ACO) [21, 22] 

and Tabu Search (TS) [23 – 25]. In this paper, we will 

focus on PSO and CSO algorithms. The PSO algorithm 

is known as the metaheuristic algorithm introduced by 

Eberhart and Kennedy in 1995, which is inspired by the 
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behavior of bird or fish swarm [13]. The PSO algorithm 

was first used to solve function optimization. After that, 

there are many other optimization problems solved using 

PSO algorithm, such as dynamic systems [26], pattern-

matching task [21], traveling salesman problem [23], 

hybrid flow-shop scheduling [9], nonlinear differential 

equations [12], vehicle routing problem [3], vehicle 

routing problem with time windows [23]. The CSO 

algorithm was first proposed by Chu, et al. in 2006 [14] 

that is based on cat behaviors. There are two modes in the 

CSO algorithm for exploration and exploitation, that is 

seeking and tracing. Some researchers applied the CSO 

algorithm in many fields, such as function optimization 

[14], clustering [3], reliability-oriented task allocation 

[12], unconstrained optimization [5], artificial neural 

networks [16], 0-1 knapsack [11], workflow scheduling 

[18], non-unicast set covering [19]. Besides those two 

algorithms, many researchers have combined some 

algorithms as a hybrid. According to [20], the hybrid 

algorithm is more efficient for solving large-scale 

problems. A hybrid algorithm is also able to balance the 

exploration and exploitation, and able to balance the 

execution time and the quality of the final result.  

In this paper, we will combine PSO and CSO 

algorithms as Hybrid Cat-Particle Swarm Optimization 

(HCPSO) algorithm. The algorithm will be tested for 

solving MBKP-MC. The performance of the algorithms 

is also compared with the results of the PSO and CSO 

algorithms.  

2. MODIFIED BOUNDED KNAPSACK  

The Bounded Knapsack Problem (BKP) [3] is defined 

as follows. A set of items j = {1, 2, …, n} where each 

item has a weight wj and a profit pj. The problem that 

must be solved is how to choose items with some 

constrain so that the total profit can be maximized. The 

models which describe this problem can be written as 

formula below (BKP) 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ∑ 𝒑𝒋𝒙𝒋

𝒏

𝒋=𝟏
   (1) 

𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛 ∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝐶  (2) 

0 ≤ 𝑥𝑗 ≤ 𝑏𝑗, 𝑥𝑗 integer, j = 1, 2, …, n  (3) 

In this paper, we use Modified Bounded Knapsack 

Problem with Multiple Constraints (MBKP-MC). 

Besides the maximum number 𝑏𝑗 of the identical copies 

of item 𝑗, we consider the minimum number 𝑎𝑗 of each 

item type that should be selected. We also use three main 

constraints, which are weight (𝑤𝑗), volume (𝑣𝑗), and buy 

price/cost (𝑐𝑗). The total weight and volume must not 

exceed the capacity of the storage media, and the total 

price should not be greater than the capital. Therefore, the 

problem is formalized as follows.  

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ∑ 𝒑𝒋𝒙𝒋

𝒏

𝒋=𝟏
   (4) 

 ∑ 𝑤𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝐶                               (5) 

∑ 𝑣𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝑆                                  (6) 

∑ w𝑗𝑥𝑗

𝑛

𝑗=1
≤ 𝑀                                  (7) 

0 ≤ 𝑥𝑗 ≤ 𝑏𝑗 , 𝑥𝑗 integer, j = 1, 2, …, n      (8) 

where 𝐶, 𝑆 and 𝑀 are the weight capacity, space/volume 

capacity and capital respectively. 

3. THE PROPOSED ALGORITHM 

3.1 The PSO Algorithm 

The Particle Swarm Optimization (PSO) algorithm is 

one of the metaheuristic algorithms first introduced by 

Russell Eberhart and James Kennedy in 1995 [13]. The 

PSO algorithm is based on a swarm of birds or fish in 

nature. The PSO algorithm has been applied in most 

optimization areas, intelligent computation, and 

design/scheduling [21]. In the PSO algorithm, there are N 

particles and each particle represents a candidate of 

solution. The PSO algorithm generates the initial 

position, and velocity for every particle randomly in 

search space. Every iteration, each particle updates their 

velocity and position based on their own best position 𝑃𝑖 

and global best position 𝑃𝑔. According to the Invalid 

source specified, the particle’s velocity is updated using 

Equation (9), and then the position is updated using 

Equation (10). 

𝑉𝑖(𝑡 + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝑟1 (𝑃𝑔(𝑡)−𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝑃𝑖(𝑡)−𝑋𝑖(𝑡)) (9) 

where 𝑐1, 𝑐2 are coefficient of acceleration in the interval 

[0, 2]; 𝑟1, 𝑟2 are random variables with uniform 

distribution in the interval [0, 1]; 𝜔 is inertia weight used 

to balance the global and local search; and 𝑡, 𝑡 + 1 are 

current and next iteration respectively. 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)  (10) 

The inertia weight 𝜔 is linearly decreased  

 

𝜔 = 𝜔𝑚𝑎𝑥 − 𝑡 ∗
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑁𝑢𝑚𝐼𝑡𝑒𝑟
  (11) 

where 𝜔𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛, respectively, are maximum and 

minimum weight, and 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 is a number of iterations. 

3.2 The CSO Algorithm 

Hunting ability to survive, but a house cat has a strong 

instinct interest in moving things. Although cats spend a 

lot of time sleeping, they have high alertness. They keep 

paying attention around to know if there is food or 

danger. Based on those two behaviors, the CSO algorithm 

is divided into two modes, seeking mode and tracing 

mode. The algorithm uses a mixture ratio (𝑀𝑅) to split 

the cats into seeking mode or tracing mode. 
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The seeking mode is used to model the situation while 

cats are sleeping.  In seeking mode, there are four factors 

defined, seeking memory pool (𝑆𝑀𝑃), seeking ranger of 

selected dimension (𝑆𝑅𝐷), counts of dimension to change 

(𝐶𝐷𝐶), and self-position considering (𝑆𝑃𝐶).  

𝑆𝑀𝑃 represents the size of the searching memory of 

each cat. Every cat will choose a new position in memory 

using Roulette Wheel. 𝑆𝑅𝐷 is used to control changes in 

values of the selected dimension, which do not exceed the 

range. 𝐶𝐷𝐶 is used to determine the number of 

dimensions to change. 𝑆𝑃𝐶 is a Boolean variable.  If the 

cat is the fittest individual, then 𝑆𝑃𝐶 is true (1), 

otherwise, 𝑆𝑃𝐶 is false (0). If 𝑆𝑃𝐶 is true (1), the cat will 

create 𝑗 copies new candidate position, where 𝑗 = 𝑆𝑀𝑃, 

but if 𝑆𝑃𝐶 is false (0), then the cat creates 𝑗 = 𝑆𝑀𝑃 one 

copies and one candidate is the current position. 

The tracing mode is used in the model cases where 

cats trace the target or prey. Every cat in tracing mode 

updated their position based on the velocity. In the CSO 

algorithm, the velocity of cats is updated based on the 

best position. The procedure of the CSO algorithm is 

described into eight steps as follows. 

1. Generate initial position and velocity of 𝑁 cats in 

search space. 

2. Evaluate the fitness value and save the best position as 

𝑥𝑏𝑒𝑠𝑡. 

3. Divide the cats into seeking and tracing mode. 

4. If the cat is in seeking mode, create a new candidate 

position using Equation (12), and then choose one to 

replace the current position using Roulette Wheel. 

𝑥′𝑗,𝑑 = 𝑥𝑗,𝑑 ± 𝑆𝑅𝐷 ∗ 𝑟 ∗ 𝑥𝑗,𝑑  (12) 

where 𝑟 is a random number and 𝑥𝑗,d, 𝑥’𝑗,d are current 

and new values of dimension 𝑑 respectively. 

5. If the cat is in tracing mode, update the velocity using 

Equation (13), and then update the position using 

Equation (14) 

    𝑣𝑘,𝑑(𝑡 + 1) = 𝑣𝑘,𝑑(𝑡) + 𝑐1𝑟1 (𝑥𝑏𝑒𝑠𝑡,𝑑(𝑡)−𝑥𝑘,𝑑(𝑡))  (13) 

    𝑥𝑘,𝑑(𝑡 + 1) = 𝑥𝑘,𝑑(𝑡) + 𝑣𝑘,𝑑(𝑡 + 1)   (14)     

𝑑 = 1, 2, … , 𝐷 

where 𝑐1 is acceleration coefficient; 𝑟1 is a random 

number; 𝑣𝑘,𝑑(𝑡), 𝑣𝑘,𝑑(𝑡 + 1), respectively are current and 

new velocity; and 𝑥𝑘,𝑑(𝑡), 𝑥𝑘,𝑑(𝑡 + 1) are current and 

new position respectively. 

6. Merge the cats from seeking and tracing mode. 

7. Evaluate the fitness value and update the best position. 

8. Check the termination criterion. If the criterion is 

reached, then the algorithm is stopped; else, back to 

step 3. 

3.3 The HCPSO Algorithm 

The Hybrid Cat-Particle Swarm Optimization 

(HCPSO) algorithm is the new hybrid algorithm we 

propose in this paper. We combine the CSO and PSO that 

are known as good metaheuristic algorithms. In the 

HCPSO algorithm, we use the full CSO scheme process 

with some additions and modifications. The algorithm 

saves the global best position and local best position like 

the PSO algorithm. And then, in the tracing mode, we 

apply the movement formula of PSO. Besides that, in the 

seeking mode, we use a modification of the value of the 

selected dimension based on the best position, and then 

we choose the best new candidate to replace the current 

position. This hybridization aims to get a better algorithm 

with a better convergence, and the execution time does 

not increase. All steps of the HCSPO algorithm to solve 

MBKP-MC are described as follows. 

1. Generate initial position (𝑋) of 𝑁 individuals in search 

space ([0, 1]) and generate velocity (𝑉). 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝐷

𝑥21 𝑥22 ⋯ 𝑥2𝐷

⋮
𝑥𝑁1

⋮
𝑥𝑁2

⋱ ⋮
⋯ 𝑥𝑁𝐷

] , 𝑥𝑘𝑑 ∈ [0,1] (15) 

𝑉 = [

𝑣11 𝑣12 ⋯ 𝑣1𝐷

𝑣21 𝑣22 ⋯ 𝑣2𝐷

⋮
𝑣𝑁1

⋮
𝑣𝑁2

⋱ ⋮
⋯ 𝑣𝑁𝐷

] (16) 

where 𝐷 is the number of items types. 

2. Convert the position (𝑋) into MBKP-MC solution term 

(𝑌) using Equation (18). 

𝑌 = [

𝑦11 𝑦12 ⋯ 𝑦1𝐷

𝑦21 𝑦22 ⋯ 𝑦2𝐷

⋮
𝑦𝑁1

⋮
𝑦𝑁2

⋱ ⋮
⋯ 𝑦𝑁𝐷

] (17) 

𝑦𝑘𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑥𝑘𝑑 ∗ (𝑏𝑑 − 𝑎𝑑)) (18) 

3. Check all the constraints. Make sure that all the 

solutions are an infeasible area which means all the 

solutions must meet the MBKP-MC constraints. 

4. Evaluate the fitness value (total profit) of all solutions. 

5.  Save the best position of each individual as 𝐶𝑘 and the 

best global solution as 𝐶𝑔. 

6. Divide the individuals into seeking and tracing modes. 

7. If individuals are in seeking mode. Create copies based 

on their own the best position 𝐶𝑘 Equation (19) and 

modify the selected dimension based on the best 

global solution 𝐶𝑔 Equation (20). 

𝑥′
𝑗,𝑑 = 𝐶𝑘,𝑑 , 𝑑 = 1,2, … , 𝐷  (19) 

𝑥′𝑗,𝑑 = 𝐶𝑔,𝑑 ± 𝑆𝑅𝐷 ∗ 𝑟 ∗ 𝐶𝑔,𝑑  (20) 

8. If individuals are in tracing mode. Update the velocity 

and position based on PSO movement as formulated 

in Equation (21) - Equation (22) 

𝑉𝑖(𝑡 + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝑟1 (𝐶𝑔(𝑡)−𝑋𝑖(𝑡)) + 𝑐2𝑟2(𝐶𝑖(𝑡)−𝑋𝑖(𝑡))  (21) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)  (22) 

9. Merge the cats from seeking and tracing mode and 

ensure all the positions do not exceed search space [0, 

1]. If the solution exceeds the search space, then the 

solution must be transformed using Equation (23). 

Advances in Computer Science Research, volume 96

246

Digital Repository Universitas JemberDigital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


  

 

𝑥𝑘 = {
  

𝑥𝑘−min(𝑥𝑘)

max(𝑥𝑘)−min(𝑥𝑘)
 ,   𝑖𝑓 min(𝑥𝑘) < 0

𝑥𝑘

max(𝑥𝑘)
,                   𝑖𝑓 max(𝑥𝑘) > 1

  (23) 

10. Convert the new position (𝑋) into the MBKP-MC 

solution term (𝑌). Check all the constraints and then 

evaluate the fitness value. 

11. Update the best individual position 𝐶𝑘 and the best 

global position 𝐶𝑔. 

12. Check the termination criterion. If the criterion is 

reached, then the algorithm is stopped and the final 

solution is 𝐶𝑔 in MBKP-MC solution term. But, if 

the criterion is not reached, go back to step 6. 

4.  COMPUTATIONAL RESULTS  

Experimental Design 

In order to study the performance of the proposed 

algorithm of this paper, we generate 20 MBKP-MC 

Instances. The test instances involve different size of 

problem. The numbers of items types (𝑛) that we use are 

30, 40, 50, 75 and 100. We apply simplex method to 

know the optimal value of the generated Instances. In 

particular, we use the following parameter setting: 𝑁 = 

100, 𝑁𝑢𝑚𝐼𝑡𝑒𝑟 = 5000, 𝑀𝑅 = 0.5, 𝑆𝑀𝑃 = 5, 𝐶𝐷𝐶 = 0.2 

(30, 40, 50 items), 𝐶𝐷𝐶 = 0.1 (75 items), 𝐶𝐷𝐶 = 0.08 (100 

items), 𝑆𝑅𝐷 = 0.1, 𝑐1 = 0.5, 𝑐2 = 1.5, 𝜔𝑚𝑎𝑥 = 0.9 and 

𝜔𝑚𝑖𝑛 = 0.7. 

Table 1. The average results obtained 

The average results on Table 1, that the HCPSO 

algorithm is the best algorithm, followed by PSO and 

then CSO. The PSO algorithm has the shortest execution 

time. Although, the average execution time of the 

HCPSO algorithm is less than CSO on all problem sets. 

These results mean that the HCPSO algorithm is suitable 

and can reach to good-quality solution within a 

reasonable computation time. The formula (24) is used to 

calculate the percentage of deviation (PD) and evaluate 

the improvement rates of the approach. The smaller PD 

indicates a better result because it approaches the optimal 

value.   

𝑃𝐷 =
𝑂𝑝𝑡−𝑍

𝑂𝑝𝑡
𝑥100% (24) 

where 𝑂𝑝𝑡 is the optimal value and 𝑍 denotes the result 

of the algorithm.  

The percentage of deviation of the algorithms for each 

problem is shown in Table 2. 

 

Table 2. The percentage of deviation 

 

 

 

 

 

 

 

 

 

 

 

Based on the percentage of deviation as we can see in 

Table 2, the HCPSO algorithm has also the smallest 

average compared with PSO and CSO. We can also know 

that the larger problem set doesn’t affect the percentage 

of deviation HCPSO algorithm. It is different with PSO 

and CSO; the percentage of deviation of both algorithms 

increases on larger problem sets. Thus, we can use the 

Hybrid Cat-Particle Swarm Optimization to solve large-

sized modified bounded knapsack problems with 

multiple constraints. 

5. CONCLUSIONS 

In this paper, the Hybrid Cat-Particle Swarm 

Optimization (HCPSO) as a combination of Particle 

Swarm Optimization (PSO) and Cat Swarm Optimization 

(CSO) algorithms, has been proposed to solve modified 

bounded knapsack problem with multiple constraints 

(MBKP-MC). This hybridization aims to accelerate the 

convergence to the optimal value. The proposed 

algorithm has been applied to the MBKP-MC data and 

the results have been compared with the PSO and CSO 

algorithms. Based on the experimental results, it is known 

that the HCPSO algorithm provides better performance 

in the two mentioned algorithms on all problem sets. 

Thus, it makes the HCPSO algorithm convenient to use. 
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