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Let G be a simple, connected undirected graph with m vertices and n edges. Let ver-
tex coloring c of a graph G be a mapping c : V (G) → S, where |S| = k and it is
k-colorable. Vertex coloring is proper if none of the any two neighboring vertices receives
the similar color. An r-dynamic coloring is a proper coloring such that |c(Nbd(v))| ≥
min{r, degG(v)}, for each v ∈ V (G). The r-dynamic chromatic number of a graph G is
the minutest coloring k of G which is r-dynamic k-colorable and denoted by χr(G). By
a simple view, we exhibit that χr(G) ≤ χr+1(G), howbeit χr+1(G) − χr(G) cannot be
arbitrarily small. Thus, finding the result of χr(G) is useful. This study gave the result
of r-dynamic chromatic number for the central graph, Line graph, Subdivision graph,
Line of subdivision graph, Splitting graph and Mycielski graph of the Flower graph Fn

denoted by C(Fn), L(Fn), S(Fn), L(S(Fn)), S(Fn) and μ(Fn), respectively.

Keywords: r-dynamic coloring; central graph; line graph; subdivision graph; line of sub-
division graph; splitting graph; Mycielski graph.

Mathematics Subject Classification 2020: 05C15

1. Introduction

In this paper, the graphs [4] are considered simplistic, finite with δ(minimum)(G),
Δ(maximum)(G) and χ(chromatic number)(G). Montgomery was the first person
who brought out the r-dynamic coloring [10]. An r-dynamic k-coloring is a mapping
c from the vertex set V (G) to the set of colors {1, 2, . . . , k} such that (i) if uv ∈ E(G),

¶Corresponding author.
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then c(u) �= c(v) and (ii) |c(Nbd(v))| ≥ min{r, degG(v)}, for each v ∈ V (G), where
Nbd(v) is the set of all vertices adjacent to v, degG(v) is the degree of the vertex and
r is the positive integer. The premier one is the adjacency condition and the paired
one is the couple-adjacency condition. The r-dynamic coloring is the minimum
coloring of the graph which is denoted as χr(G). When r = 1, then 1-dynamic
chromatic number is same as the chromatic number of the graph G and if r is
equal to two, it is a dynamic chromatic number. The following authors have also
investigated on r-dynamic coloring [1, 7, 12]. Lai et al. [9] explained upper bounds
of χr(G) in the pursuing lemma.

Lemma 1. χr(G) ≥ min{r, Δ(G)} + 1.

The upper bounds and lower bounds of r-dynamic chromatic number of some graphs
have been explained in many research papers. Dafik et al. [5] studied the lower
bounds of r-dynamic coloring for some graphs and gave an open problem to find
the sharp lower bound for the connected graph. Alishahi [2] established that all
graph G with χ(G) ≥ 4, χ2(G) ≤ χ(G) + γ(G), where γ(G) is the domination
number G and also showed, for k-regular graph, χ(G) ≥ 4, χ2(G) ≤ χ(G) + α(G2),
where α is the independence number. For d-regular graph, the bounds for dynamic
chromatic number in terms of independence number χd(G) ≤ χ(G)+2log2α(G)+3
were proved in [6]. In this work, the bounds of r-dynamic chromatic number are
examined which gives an easier study on r-dynamic coloring.

Flower graph [3] is obtained from Helm graph Hn by joining the pendent edge to
the hub vertex and it has 2n+1 vertices and 4n edges and denoted by Fn. Figure 1
illustrate the flower graph F4.

Fig. 1. Flower graph F4.

2150097-2
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Central graph [13] is obtained from adding a new vertex to each edge at once and
connects the non-adjacency vertices of the given graph.

Line graph [7] is obtained from the original graph and the vertices are adjacent if
the edges of the given graph are proximity.

Subdivision graph [14] is a graph obtained by inserting a new vertex with the
degree 2 for each edge of the given graph.

Line graph of Subdivision graph [14] is a graph with vertices that are acquired
from the edges of the subdivision graph and the vertices are adjacent if the corre-
sponding edges are in proximity. It is also known as Paraline graph.

Splitting graph [8] is a graph, for each vertex V = (v1, v2, . . . , vn) of G, take a
new vertex V ′ = (v′1, v

′
2, . . . , v

′
n). Join each vertex of v′i to vj if and only if the vertex

vj is adjacent to vi.

Mycielski graph [11] is a graph which has two conditions; (i) add a vertex as given
in splitting graph (ii) add another common vertex z and join the common vertex z

to all points of V ′.

2. Some Results on Flower Graph Families

Lemma 2. Let C(Fn) be the central graph of a flower graph Fn. The lower bound
for r-dynamic chromatic number of the central graph of flower graph is

χr[C(Fn)] ≥

⎧⎪⎪⎨
⎪⎪⎩

n 1 ≤ r ≤ δ − 1,

Δ + 1 δ ≤ r ≤ Δ − 1,

Δ + 3 r ≥ Δ.

Proof. V (Fn) = {v} ∪ {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤ n}. The order of the graph
is |V (C(Fn))| = 6n +1. The edge sets {viui, vvi, vui, vivi+1(1 ≤ i ≤ n− 1), vnv1}
can be subdivided by {ei, w

′
i, e

′
i, wi, wn} and the size of the graph is |E(C(Fn))| =

13n + 1. For 1 ≤ r ≤ δ − 1, the vertices V = vi, ei persuade a clique with order n

in C(Fn). Hence, χr[C(Fn)] ≥ n. For δ ≤ r ≤ Δ − 1 based on Lemma 1, χr(G) ≥
min{r, Δ(G)} + 1. Thus, χr[C(Fn)] ≥ min{r, Δ[C(Fn)]} + 1 = Δ + 1. For r ≥ Δ
based on Lemma 1, χr[C(Fn)] ≥ min{r, Δ[C(Fn)]}+1 = Δ+3. Thus, it completes
the proof.

Theorem 1. For n ≥ 4, let C(Fn) be the central graph of a Flower graph Fn. Then,

χr[C(Fn)] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n r = 1,

2n + 1 for δ = 2 ≤ r ≤ 2n − 1,

2n + 3 for r = Δ = 2n, n is even,

2n + 4 for r = Δ = 2n, n is odd.

2150097-3
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Proof. The r-dynamic coloring of C(Fn) is explained in the following cases:

Case 1. When r = 1.

Based on the Lemma 2 the lower bound of χr[C(Fn)] ≥ n. The upper bound can
be found out from the following coloring:

• Color the hub vertex v with color 1.
• Color the vertices vi and ui with i colors for (1 ≤ i ≤ n).
• Color the vertices wi and ei for (2 ≤ i ≤ n) with i−1 colors and w1, e1 with color

n. Thus, 2n− 2 vertices are colored.
• Color the vertices e′i, w

′
i for (1 ≤ i ≤ n − 1) with color n and e′n, w′

n with color
2. Hence, couple-adjacency condition is fulfilled and therefore, χr[C(Fn)] ≤ n.
Hence, χr[C(Fn)] = n.

Case 2. When δ = 2 ≤ r ≤ n − 1.

According to Lemma 2, the lower bound of χr[C(Fn)] ≥ Δ + 1. The r-dynamic
(2n + 1) coloring is justify to find the upper bound of C(Fn):

• Assign the color i for the vertices vi and e′i for (1 ≤ i ≤ n).
• Color the vertices ui and w′

i with n + 1, n + 2, . . . , 2n colors for (1 ≤ i ≤ n).
• Assign the color 2n + 1 to the hub vertex v. Figure 2 illustrate the central graph

of flower graph F4.

Fig. 2. Central graph of Flower graph F4.
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• Color the vertex e1 with color n and color the remaining vertices of ei for (2 ≤
i ≤ n) with 1, 2, . . . , n− 1 colors. Thus, 2n colors are used. To satisfy the couple-
adjacency coloring, we need one color. So, the coloring for the remaining n vertices
is as follows:

(1) When n is odd, color the vertices wi, for (i = 1, 3, . . . , n−2) with 2n+1 color.
To attain r-coloring, color the left over vertices wn−1 and wn with color 1
and color 2.

(2) As n is even, color the vertices wi for (1 ≤ i ≤ n) with 2n + 1 color.

Thus, the condition of couple-adjacency coloring is satisfied and we obtain
χr[C(Fn)] ≤ Δ + 1. Hence, χr[C(Fn)] = Δ + 1 = 2n + 1.

Case 3. When r = Δ = 2n.

Based on Lemma 2, the lower bound of χr[C(Fn)] ≥ Δ+3. The r-dynamic (2n+1)
coloring is given in the following to find the upper bound of C(Fn):

• Color the vertices v, ui, w
′
i, vi and e′i for (1 ≤ i ≤ n) with the colors as given in

case-2 and color the vertices ei with 2n + 1 color for (1 ≤ i ≤ n).

(1) As n is even, color the vertices wi with 2n + 2 color, for (i = 1, 3, . . . , n − 1)
and the vertices wi with 2n+3 color for (i = 2, 4, . . . , n). Hence, χr[C(Fn)] ≤
Δ + 3. Therefore, χr[C(Fn)] = Δ + 3 = 2n + 3.

(2) As n is odd, to satisfy the couple-adjacency condition one must add one color.
So, color the vertices wi with color 2n + 2 for (i = 1, 3, . . . , n − 2) and for
(i = 2, 4, 6, . . . , n−1) with color 2n+3. Therefore, to obtain couple-adjacency
condition, color the vertex wn with 2n + 4 color. Thus, χr[C(Fn)] ≤ Δ + 4.

Hence, χr[C(Fn)] = 2n + 4.

Lemma 3. Let L(Fn) be the line graph of flower graph. The lower bound for
r-dynamic chromatic number of the line graph of flower graph is

χr[L(Fn)] ≥

⎧⎪⎪⎨
⎪⎪⎩

2n 1 ≤ r ≤ Δ − 3,

Δ + 1 r = Δ − 2,

Δ + 3 Δ − 1 ≤ r ≤ Δ.

Proof. Let the line graph of flower graph be L(Fn). The vertices of L(Fn) are
nothing but the edges of (Fn); they are {wi, w

′
i, ei, e

′
i}, for (1 ≤ i ≤ n). The order of

the graph L(Fn) is |V (L(Fn))| = 4n and the size of the graph L(Fn) is |E(L(Fn))| =
2n+3. For 1 ≤ r ≤ Δ−3, the vertices e′i, w

′
i persuade a clique of order 2n in L(Fn).

Thus, χr[L(Fn)] ≥ 2n. For r = Δ−2 based on Lemma 1, χr(G) ≥ min{r, Δ(G)}+1
which implies χr[L(Fn)] ≥ min{r, Δ[L(Fn)]}+1 = Δ+1. For Δ−1 ≤ r ≤ Δ based
on Lemma 1, χr[L(Fn)] ≥ min{r, Δ[L(Fn)]} + 1 = Δ + 3. Hence, it completes the
proof.

2150097-5



January 20, 2022 12:4 WSPC/S1793-8309 257-DMAA 2150097

C. S. Gomathi et al.

Theorem 2. For n ≥ 5, let L(Fn) be the line graph of a Flower graph Fn. Then,

χr[L(Fn)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n, for 1 ≤ r ≤ 2n − 1,

2n + 2, for r = 2n and n is even,

2n + 3, for r = 2n and n is odd,

2n + 5, for 2n + 1 ≤ r ≤ 2n + 2 = �,

and n ≡ 0 (mod 6) and n = 5,

2n + 6, for 2n + 1 ≤ r ≤ 2n + 2 = �, and n �≡ 0 (mod 6).

Proof. The r-dynamic coloring of L(Fn) is explained in the following.

Case 1. When 1 ≤ r ≤ 2n − 1.

According to the Lemma 3, the lower bound of χr[L(Fn)] ≥ 2n. To find the upper
bound color the vertices w′

i, for (1 ≤ i ≤ n) orderly with colors i and e′i, for
(1 ≤ i ≤ n) with the colors n + m for (1 ≤ m ≤ n). Next, the vertex w2 is with
color n, w1 with n − 1 color and the left over vertices of wi for (3 ≤ i ≤ n) are
with 1, 2, . . . , n − 2 color. At last, the n vertices of ei are uncolored. Hence, color
the vertices ei, for (3 ≤ i ≤ n) with n + m colors, where 1 ≤ m ≤ n − 2 and color
the vertices e1 and e2 with the colors 2n− 1 and 2n. Thus, χr[L(Fn)] ≤ 2n. Hence,
χr[L(Fn)] = 2n. Figure 3 illustrate the line graph of flower graph F4.

Fig. 3. Line graph of Flower graph F4.
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Case 2. When r = 2n.

From Lemma 3, the lower bound of χr[L(Fn)] ≥ Δ + 1. The upper bound of L(Fn)
can be considered from the following coloring;

• Color the vertices w′
i and e′i as given in Case 1. Next, color the vertices wi for

(3 ≤ i ≤ n) with n + m colors where, 1 ≤ m ≤ n − 2 and then color the other
vertices w2 and w1 with 2n color and 2n − 1 color.

(1) As n is even, the vertices ei are with the color 2n+1 and 2n+2 alternatively.
Hence, r-coloring has been obtained and χr[L(Fn)] ≤ 2n + 2. Therefore,
χr[L(Fn)] = 2n + 2.

(2) As n is odd, color the vertices ei for (1 ≤ i ≤ n − 1)with 2n + 1 and 2n + 2
colors alternatively. In order to get the result, color the remaining vertex en

with 2n + 3 color. Hence, the couple-adjacency condition is checked out and
χr[L(Fn)] ≤ 2n + 3. Therefore, χr[L(Fn)] = 2n + 3.

Case 3. When 2n + 1 ≤ r ≤ 2n + 2 = �.

According to Lemma 3, the lower bound of χr[L(Fn)] ≥ Δ + 3. The upper bounds
of L(Fn) are demonstrated from the following way:

• The vertices w′
i and e′i are colored in order as given in Case 1. The remaining

2n vertices of wi and ei remain uncolored, so color these vertices in the following
way to attain the couple-adjacency condition:

(1) If n = 5, color the vertices wi for (1 ≤ i ≤ n) with 2n + m color where
(m = 1, 2, . . . , n). Next, color the vertices en and en−1 with 2n+1 and 2n+2
color and color the left over vertices of ei for (1 ≤ i ≤ n − 2) with 2n + m

color where, (m = 3, 4, . . . , n). Therefore, 2n + 5 colors are obtained and
χr[L(Fn)] ≤ Δ + 3. Thus, χr[L(Fn)] = 2n + 5.

(2) If n ≡ 0 (mod 6), then color the first 3t vertices of wi with 2n+1, 2n+2 and
2n + 3 color in sequence, where t is the largest positive integer and 3t ≤ n.
At last, remaining n vertices are uncolored. So to get (2n + 5) colors, color
the vertices of ei, with 2n + 4 and 2n + 5 color alternatively for (1 ≤ i ≤ n).
Hence, the couple-adjacency condition is satisfied and χr[L(Fn)] ≤ Δ + 3.
Thus, χr[L(Fn)] = 2n + 5.

(3) In this case n �≡ 0 (mod 6), assign the colors 2n + 1, 2n + 3 and 2n + 2 in
sequence to the vertices wi for (1 ≤ i ≤ n − 2). But, two vertices of wi are
uncolored. So, to obtain the result, color the vertex wn−1 with 2n + 4 color
if n is odd else, with 2n + 5 color and color the vertex wn with 2n + 6 color.
Next, color the vertex e1 with 2n + 2 color and the remaining vertices of ei

for (2 ≤ i ≤ n − 2) with 2n + 4 and 2n + 5 colors alternatively. Finally, two
vertices of ei are to be colored.

(a) the vertex en−1 are colored with 2n + 2 color for n = 7, 10, . . . , m + 1,
where m is divisible by 3 and m ≥ 6.
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(b) Color the vertex en−1 with 2n + 1 color for n = 8, 11, . . . , m − 1, where
m is divisible by 3 and m ≥ 9.

(c) Color the vertex en−1 with 2n + 3 color for n = 9, 15, . . . , m + 3, where
m ≡ 0 (mod 6).

(4) If n is even, color the vertex en with 2n + 4 color and if n is odd then use
2n + 5 color.

Therefore, the results are obtained for the line graph of flower graph by using
r-dynamic coloring and hence, χr[L(Fn)] ≤ 2n + 6. Therefore, χr[L(Fn)] = 2n + 6.

Theorem 3. For n ≥ 5, let S(Fn) be the subdivision graph of a Flower graph Fn.
Then,

χr[S(Fn)] =

⎧⎪⎪⎨
⎪⎪⎩

2 for r = 1,

n + 1 for δ = 2 ≤ r ≤ n,

r + 1 for n + 1 ≤ r ≤ Δ = 2n.

Proof. The vertices of S(Fn) are v, vi, ui, wi, w
′
i, ei and e′i, for (1 ≤ i ≤ n) where

the vertices ei, e
′
i, w

′
i are corresponding to the edge uivi, vui, vvi, the vertex wi

are corresponding to the edge vivi+1 for (1 ≤ i ≤ n − 1) and the vertex wn is
corresponding to the edge vnv1. The order of graph S(Fn) is |V (S(Fn))| = 6n + 1
and the size of the graph S(Fn) is |E(S(Fn))| = 7n. The r-dynamic coloring of
S(Fn) is as follows:

Case 1. when r = 1.

Assign color 1 to the vertices vi, ui and v for (1 ≤ i ≤ n) and the leftover vertices
ei, e

′
i, w

′
i and wi for (1 ≤ i ≤ n) with color 2. Hence, the couple-adjacency condition

n be obtained and χr[S(Fn)] = 2. If χr[S(Fn)] < 2, then the couple-adjacency
condition is not satisfied.

Case 2. When δ = 2 ≤ r ≤ n.

• Assign the color i for the vertices vi and e′i where (1 ≤ i ≤ n).
• Color the vertices ui and w′

i for (1 ≤ i ≤ n − 1) with 2, 3, . . . , n colors and the
vertices un and w′

n with the color 1.

• The vertex e1 is colored with color n and the vertices ei for (2 ≤ i ≤ n) with
1, 2, . . . , n − 1 colors.

• Thus, n + 1 vertices are uncolored. So, for (1 ≤ i ≤ n − 3) color the vertices wi

with the color 4, 5, . . . , n and the remaining vertices wn−2 with color 1, wn−1 with
color 2 and wn with color 3. To satisfy the couple-adjacency condition, the hub
vertex v is colored with n+1 color. Hence, χr[S(Fn)] = n+1. If χr[S(Fn)] < n+1,
then the couple-adjacency condition is not fulfilled.

Case 3. When n + 1 ≤ r ≤ Δ = 2n.

2150097-8



January 20, 2022 12:4 WSPC/S1793-8309 257-DMAA 2150097

On r-dynamic vertex coloring of some flower graph families

Fig. 4. Subdivision graph of Flower graph F4.

Figure 4 illustrate the subdivision graph of flower graph F4. Color the vertices
v, vi, ui, wi, w

′
i and ei for (1 ≤ i ≤ n) as given in Case 2. In order, to maintain the

couple-adjacency condition, r + 1 colors are needed. When r = n + 1, assign the
color n + 2 to the vertices e′1 and e′i for (2 ≤ i ≤ n) with colors 2, 3, . . . , n. By
continuing the coloring, for r = 2n color the vertices e′i with n+2, n = 3, . . . , 2n+1
colors for (1 ≤ i ≤ n). Therefore, for r ≥ n, χr[S(Fn)] = r +1. If χr[S(Fn)] < r+1,
then the couple-adjacency condition is not fulfilled.

Lemma 4. Let L[S(Fn)] be the paraline graph of flower graph. The lower bound
for r-dynamic chromatic number of the paraline graph of flower graph is

χrL[S(Fn)] ≥
⎧⎨
⎩

2n 1 ≤ r ≤ Δ − 1,

Δ + 1 r = Δ.

Proof. The vertices of χr(L[S(Fn)]) are ai, bi, ci and di, which are the edges of
subdivision graph S(Fn). The order of the graph is |V (L[S(Fn)])| = 8n and the size
of the graph is |E(L[S(Fn)])| = 2n(n+5). For 1 ≤ r ≤ Δ−1 the vertices bi, di for i =
2, 4, . . . , 2n persuade a clique of order 2n in (L[S(Fn)]). Thus, χr(L[S(Fn)]) ≥ 2n.

For r = Δ based on Lemma 1, χr(G) ≥ min{r, Δ(G)}+1 such that χr(L[S(Fn)]) ≥
min{r, Δ(L[S(Fn)])} + 1 = Δ + 1. Thus, the proof is complete.

Theorem 4. For n ≥ 3, let L[S(Fn)] be the paraline graph of a Flower graph Fn.
Then,

χr(L[S(Fn)]) =

{
2n for 1 ≤ r ≤ 2n − 1,

2n + 1 for r = 2n = Δ.

2150097-9



January 20, 2022 12:4 WSPC/S1793-8309 257-DMAA 2150097

C. S. Gomathi et al.

Fig. 5. Paraline graph of Flower graph F4.

Figure 5 illustrate the paraline graph of flower graph F4.

Proof. The r-dynamic coloring for paraline graph of flower graph is as follows:

Case 1. When 1 ≤ r ≤ 2n − 1.

From Lemma 4, the lower bound of χr(L[S(Fn)]) ≥ 2n. However, one cannot find
the sharpest lower bound. But, χr(L[S(Fn)]) = 2n has been considered. The upper
bound can be found from coloring of (L[S(Fn)]) which is as follows:

• Color bi for i = 1, 3, . . . , 2n−1 with color 4. Color the vertices bi for i = 2, 4, . . . , 2n

with different colors to satisfy the couple-adjacency condition, so color the vertex
b2 with color 2, b4 with color 1 and b6 with color 3 and the remaining vertices of
bi for i = 8, 10, . . . , 2n with 5, 6, . . . , n + 1 colors.

• Since, the vertices ci are with least degree δ, color the vertices ci for i =
1, 3, . . . , 2n − 1 with color 2, 1 and 3 in sequence and the other vertices c2, c4

are with color 5 and c6 are with color 6. Then, the leftover vertices ci for
i = 8, 10, . . . , 2n with color 5.

• Color the vertices di for i = 1, 3, . . . , 2n−1 with color 3, 2 and 1 alternatively. Since
the vertices di for i = 2, . . . , 2n form a cycle (Cn−1), color the vertices d2 with
color 4 and the other vertices di for i = 4, 6, . . . , 2n with colors n+2, n+3, . . . , 2n.

• At last, 2n vertices of ai are uncolored. Hence, the coloring of the vertices ai is
as follows:

(1) When n ≡ 0 (mod 3), color the vertices ai for (1 ≤ i ≤ 2n) with colors 1, 2
and 3 alternatively.
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(2) When n = 4, 7, 10, . . . , m + 1, where m ≡ 0 (mod 3), color the vertices ai for
(1 ≤ i ≤ 2n−2) with colors 1, 2 and 3 in sequence and color the vertex a2n−1

with color 6 and a2n with color 7.
(3) When n = 5, 8, 11, . . . , m − 1, where m ≡ 0 (mod 3) and m ≥ 6, color the

vertices ai for (1 ≤ i ≤ 2n − 1) with colors 1, 2 and 3 in sequence and color
the vertex a2n with color 6. Hence, the couple-adjacency condition is fulfilled
and χr(L[S(Fn)]) ≤ 2n. Therefore, χr(L[S(Fn)]) = 2n.

Case 2. When r = 2n.

Based on the Lemma 4, the lower bound of χr(L[S(Fn)]) ≥ Δ + 1. However, one
cannot find the sharpest lower bound. But, χr(L[S(Fn)]) = Δ + 1 has been con-
sidered. To find the upper bound, color the vertices ai, bi and ci for (1 ≤ i ≤ n)
which is given in case 1. Color di for i = 1, 3, . . . , 2n − 1 with color 4 and the
leftover vertices di for i = 2, 4, . . . , 2n with n + 2, n + 3, . . . , 2n + 1 colors in order.
Therefore, the couple-adjacency condition is satisfied and χr(L[S(Fn)]) ≤ Δ + 1
and χr(L[S(Fn)]) = 2n + 1.

Theorem 5. For n ≥ 4, let S[Fn] be the splitting graph of Flower graph Fn. Then,

χr(S[Fn]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3 for 1 ≤ r ≤ 2 = δ, n is even,

4 for 1 ≤ r ≤ 2 = δ, n is odd,

5 for (r ≡ 0 mod 3) and r ≤ 5,

7 for 4 ≤ r ≤ 5,

r + 2 6 ≤ r ≤ 4n = Δ.

Proof. The vertices of S[Fn] are v, vi, ui, v
′, v′i, u

′
i for (1 ≤ i ≤ n). The order of

the graph is |V (S[Fn])| = 4n + 2 and the size of the graph E(S[Fn])| = 12n. The
coloring of splitting graph of flower graph is as follows:

Case 1. When 1 ≤ r ≤ 2.

• Color the hub vertex v and v′ with color 3.

(1) As n is even, assign the color 1 and 2 to the vertices vi and v′i for (1 ≤ i ≤ n)
consecutively. Next, color the vertices ui and u′

i with color 2 and 1 cyclically
for (1 ≤ i ≤ n). Hence, χr(S[Fn]) ≤ 3. If χr(S[Fn]) < 3, then the couple-
adjacency condition is not fulfilled. Therefore, χr(S[Fn]) = 3.

(2) When n is odd, the vertices vi and v′i for (1 ≤ i ≤ n − 1) are with color
1 and color 2 consecutively and color the vertex vn and v′n with color 4.
Color the vertices ui and u′

i for (1 ≤ i ≤ n − 1) with color 2 and color 1
consecutively and color the remaining vertex un and u′

n with color 1. Hence,
χr(S[Fn]) ≤ 4. If χr(S[Fn]) < 4, then the couple-adjacency condition cannot
be verified. Thus, χr(S[Fn]) = 4.
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Fig. 6. Splitting graph of Flower graph F4.

Case 2. When (r ≡ 0 mod 3) and r ≤ 5. Figure 6 illustrate the spliting graph of
flower graph F4.

• Color the hub vertex v and the vertex v′ with color 3 and color 4.

(1) When n is odd, the vertices vi and v′i for (1 ≤ i ≤ n − 1) are with color 1
and color 2 cyclically and color the vertex vn and v′n with color 5. Color the
vertices ui and u′

i with color 5 for (1 ≤ i ≤ n − 1). Next, the vertex un and
u′

n are colored with color 1.
(2) When n is even, the vertices vi and v′i for (1 ≤ i ≤ n) are with color 1 and

color 2 cyclically. Color the vertices ui and u′
i for (1 ≤ i ≤ n) with color 5.

Hence, χr(S[Fn]) ≤ 5. If χr(S[Fn]) < 5, then the couple-adjacency condition is not
fulfilled. Then, χr(S[Fn]) = 5.

Case 3. When 4 ≤ r ≤ 5.

To satisfy the couple-adjacency condition for r = 4 one must need 7 colors. Hence,
χr=4(S[Fn]) ≤ 7 for any n. If χr=4(S[Fn]) < 7, the couple-adjacency condition is
not satisfied. Therefore, χr=4(S[Fn]) = 7. Similarly, it also satisfies the 5-dynamic
coloring. Hence, χr=4,5(S[Fn]) = 7 for any n.

Case 4. When 6 ≤ r ≤ 4n = Δ.

For any n, χr=6(S[Fn]) = 8. If χr=6(S[Fn]) ≤ 8 the couple-adjacency condition is
not fulfilled. Similarly, χr=7(S[Fn]) = 9. Thus, one must need r+2 colors. Therefore,
for any n χr(S[Fn]) = r + 2.

2150097-12



January 20, 2022 12:4 WSPC/S1793-8309 257-DMAA 2150097

On r-dynamic vertex coloring of some flower graph families

Theorem 6. For n ≥ 4, let μ[Fn] be the mycielski graph of Flower graph Fn. Then,

χr(μ[Fn]) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4 for 1 ≤ r ≤ 2 = δ, n is even,

5 for 1 ≤ r ≤ 2 = δ, n is odd,

r + 2 for r ≡ 0 (mod 3) and n is even,

r + 3 otherwise.

Proof. The vertices of μ[Fn] are z, v, vi, ui, v
′, v′i, u

′
i for (1 ≤ i ≤ n). The order of

the graph is |V (μ[Fn])| = 4n + 3 and size of the graph is |E(μ[Fn])| = 14n+ 1. The
coloring of mycielski graph of flower graph is as follows:

Case 1. When 1 ≤ r ≤ 2.

Color the vertices ui and u′
i for (1 ≤ i ≤ n) with color 2 and color 1 orderly.

• When n is even, the vertices vi and v′i for (1 ≤ i ≤ n) are colored with colors 1
and 2 alternatively and color the vertices ui and u′

i for (1 ≤ i ≤ n) with colors
2 and 1 in order. Color the hub vertex v and the vertex v′ with color 3 and the
common vertex z with color 4. Therefore, χr(μ[Fn]) ≤ 4. If χr(μ[Fn]) < 4, the
couple-adjacency condition is not fulfilled. Hence, χr(μ[Fn]) = 4.

• When n is odd, the vertices vi and v′ for (1 ≤ i ≤ n − 1) are colored with colors
1 and 2 orderly and color the vertex vn and v′n with color 3. Figure 7 illustrate
the Mycielski graph of flower graph F4. Color the hub vertex v and the vertex
v′ with color 4 and the common vertex z with color 5. Hence, χr(μ[Fn]) = 5. If
χr(μ[Fn]) < 5, the couple-adjacency condition is not fulfilled.

Fig. 7. Mycielski graph of Flower graph F4.
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Case 2. When r ≡ 0 (mod 3) and n is even.

• Color the vertices vi and v′i with colors 1 and 2 alternatively for (1 ≤ i ≤ n).
• Color the vertices ui for (1 ≤ i ≤ n) with color 5 and the vertices u′

i for (1 ≤ i ≤ n)
are colored with colors 2 and 1 alternatively.

• Color the hub vertex v with color 3 and the vertex v′ with color 4 and the
common vertex z with color 5. Thus, χr(μ[Fn]) ≤ r + 2. If χr(μ[Fn]) < r +2, the
couple-adjacency condition is not fulfilled. Hence, χr(μ[Fn]) = r + 2.

Case 3. otherwise.

• When r ≡ 0 (mod 3) and n is odd, color the vertices ui and u′
i for (1 ≤ i ≤ n)

which is given in case 1. Color the vertices vi for (1 ≤ i ≤ n − 1) with colors
1 and 2 alternatively and color the vertex vn with color 3. Color the vertices v′i
with color 6 for (1 ≤ i ≤ n). At last, color hub vertex v and assign the color
4 for the vertex v′ and the common vertex z with color 5. Thus, χr(μ[Fn]) =
r + 3. If χr(μ[Fn]) < r + 3, the couple-adjacency condition is not verified. Hence,
χr(μ[Fn]) = r + 3.

• When 4 ≤ r ≤ 4n = Δ, the r-dynamic chromatic number for χr(μ[Fn]) ≤ r + 3
for any n. If χr(μ[Fn]) < r+3, the couple-adjacency condition is not fulfilled. So,
one must need r + 3 colors. Hence, for any n, χr(μ[Fn]) = r + 3.

3. Conclusion

Thus, the lower bound of the r-dynamic chromatic number of some flower graph
families has been found and also some exact results have been determined. Further
studies of distance graphs may give an additional insight to the r-dynamic coloring
problem.
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