DISCRETE MATHEMATICS, ALGORITHMS AND APPLICATIONS

Editors-in-Chiet

Ding-Zhu Du
University of Taxas at Dallas, USA

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent
to the use of our cookies. Learn More I Agree

Editorial Board

Co-Editors-in-Chief

Ding-Zhu Du
University of Texas at Dallas, USA
dzdu@utdallas.edu
Jinlong Shu
East China Normal University, Shanghai, China
jlshu@admin.ecnu.edu.cn

Advisory Editors

Tetsuo Asano (Japan Advanced Institute of Science and Technology, Japan)
Fan Chung Graham (University of California at San Diego, USA)
R.L. Graham (University of California at San Diego, USA)
D.J. Kleitman (Massachusetts Institute of Technology, Cambridge, USA)

Zhi-Ming Ma (Chinese Academy of Sciences, Beijing, China)
F.S. Roberts (Rutgers University, Piscataway, NJ, USA)

Frances Foong Yao (City University of Hong Kong, Hong Kong)

Associate Editors

Jean-Claude Bermond (CNRS-UNSA, France)
Annalisa De Bonis (Università degli Studi di Salerno, Italy)
Zhipeng Cai (Georgia State University, USA)
Chiuyuan Chen (National Chiao Tong University, Taiwan)
C.J. Colbourn (Arizona State University, Tempe, USA)

Bhaskar Dasgupt (University of Illinois at Chicago, USA)
M. Deza (Ecole Normale Supérieure, Paris, France)

Zhenhua Duan (Xidian University, China)
Hung-Lin Fu (National Chiaotong University, Taiwan)
Suogang Gao (Hebei Normal University, Shijiazhuang, China)
Xiaofeng Gao (Shanghai Jiao Tong University, China)
Xiaodong Hu (Chinese Academy of Sciences, Beijing, China)
Sun-Yuan Hsieh (Cheng Kung Univesity, Taiwan)
Liying Kang (Shanghai University, China)
Donghyun Kim (Kennesaw State University, USA)
Evangelos Kranakis (Carleton University, Canada)
Deying Li (Renmin University, Beijing, China)
Quan-Lin Li (Beijing University of Technology, China)
Xueliang Li (Nankai University, Tianjin, China)
Xiwen Lu (East China University of Science and Technology, China)
Zaixin Lu (Washington State University, USA)
Panos M. Pardalos (University of Florida, USA)
Joseph Tonien (University of Wollongong, Australia)
Alexey A. Tuzhilin (Moscow State University, Russia)
Jose C. Valverde (University of Castilla-La Mancha, Spain)
Wei Wang (Xi'an Jiaotong University, China)
Guanghui Wang (School of Mathematics, China)
Weifan Wang (Zhejiang Normal University, China)
Weili Wu (The University of Texas at Dallas, USA)
Dachuan Xu (Beijing University of Technology, China)
Boting Yang (University of Regina, Canada)
Cunquan Zhang (West Virginia University, West Virginia, USA)
Xianchao Zhang (Dalian University of Technology, China)
Xiaodong Zhang (Shanghai Jiao Tong University, China)
Zhao Zhang (Xinjiang University, Wulumuqi, China)

Privacy policy
© 2020 World Scientific Publishing Co Pte Ltd
Powered by Atypon® Literatum

Home

About Us>

DISCRETE
MATHEMATICS, ALGORITHMS AND APPLICATIONS

Submit an article

viscrete iviatnematics, Aıgorıtnms and Appiscations

ISSN (print): 1793-8309 | ISSN (online): 1793-8317
\nsim Tools \longleftarrow Share \square Recommend to Library

Subscribe

Volume 14, Issue 01 (January 2022)

Research Papers

No Access
Mixed covering arrays on graphs of small treewidth
Soumen Maity and Charles J. Colbourn
2150085
https://doi.org/10.1142/S1793830921500853

Abstract | PDF/EPUB
\checkmark Preview Abstract

Research Papers

No Access
, Preview Abstract

Research Papers

No Access

On $\delta^{(k)}$-coloring of generalized Petersen graphs

Merlin Thomas Ellumkalayil and Sudev Naduvath
2150096
https://doi.org/10.1142/S1793830921500968

Abstract PDF/EPUB

\checkmark Preview Abstract

Research Papers

No Access
On r-dynamic vertex coloring of some flower graph families
C. S. Gomathi, N. Mohanapriya, Arika Indah Kristina and Dafik

2150097
https://doi.org/10.1142/S179383092150097X

Abstract PDF/EPUB

\checkmark Preview Abstract

Research Papers

No Access
Equality co-neighborhood domination in graphs

Ahmed A. Omran, Manal N. Al-Harere and Sahib Sh. Kahat
2150098
https://doi.org/10.1142/S1793830921500981

Abstract PDF/EPUB
\checkmark Preview Abstract

Research Papers

On r-dynamic vertex coloring of some flower graph families

C. S. Gomathi*, ${ }^{*}$, N. Mohanapriya ${ }^{*, \llbracket}$, Arika Indah Kristina ${ }^{\dagger, \ddagger, \|}$ and Dafik ${ }^{\dagger, \ddagger, * *}$
${ }^{*} P G$ and Research Department of Mathematics Kongunadu Arts and Science College Tamil Nadu, India
${ }^{\dagger}$ CGANT University of Jember, Indonesia
${ }^{\ddagger}$ Mathematics Education Department
University of Jember, Indonesia
§gomathi9319@gmail.com
\mathbb{I}^{n} n.mohanamaths@gmail.com
\|arika.fkip@unej.ac.id
**d.dafik@unej.ac.id

Received 1 May 2020
Revised 15 November 2020
Accepted 12 January 2021
Published 3 March 2021

Let G be a simple, connected undirected graph with m vertices and n edges. Let vertex coloring c of a graph G be a mapping $c: V(G) \rightarrow S$, where $|S|=k$ and it is k-colorable. Vertex coloring is proper if none of the any two neighboring vertices receives the similar color. An r-dynamic coloring is a proper coloring such that $|c(N b d(v))| \geq$ $\min \left\{r, \operatorname{deg}_{G}(v)\right\}$, for each $v \in V(G)$. The r-dynamic chromatic number of a graph G is the minutest coloring k of G which is r-dynamic k-colorable and denoted by $\chi_{r}(G)$. By a simple view, we exhibit that $\chi_{r}(G) \leq \chi_{r+1}(G)$, howbeit $\chi_{r+1}(G)-\chi_{r}(G)$ cannot be arbitrarily small. Thus, finding the result of $\chi_{r}(G)$ is useful. This study gave the result of r-dynamic chromatic number for the central graph, Line graph, Subdivision graph, Line of subdivision graph, Splitting graph and Mycielski graph of the Flower graph F_{n} denoted by $C\left(F_{n}\right), L\left(F_{n}\right), S\left(F_{n}\right), L\left(S\left(F_{n}\right)\right), S\left(F_{n}\right)$ and $\mu\left(F_{n}\right)$, respectively.

Keywords: r-dynamic coloring; central graph; line graph; subdivision graph; line of subdivision graph; splitting graph; Mycielski graph.

Mathematics Subject Classification 2020: 05C15

1. Introduction

In this paper, the graphs [4] are considered simplistic, finite with $\delta($ minimum $)(G)$, Δ (maximum) (G) and χ (chromatic number) (G). Montgomery was the first person who brought out the r-dynamic coloring [10]. An r-dynamic k-coloring is a mapping c from the vertex set $V(G)$ to the set of colors $\{1,2, \ldots, k\}$ such that (i) if $u v \in E(G)$,

[^0]then $c(u) \neq c(v)$ and (ii) $|c(N b d(v))| \geq \min \left\{r, \operatorname{deg}_{G}(v)\right\}$, for each $v \in V(G)$, where $\operatorname{Nbd}(v)$ is the set of all vertices adjacent to $v, \operatorname{deg}_{G}(v)$ is the degree of the vertex and r is the positive integer. The premier one is the adjacency condition and the paired one is the couple-adjacency condition. The r-dynamic coloring is the minimum coloring of the graph which is denoted as $\chi_{r}(G)$. When $r=1$, then 1-dynamic chromatic number is same as the chromatic number of the graph G and if r is equal to two, it is a dynamic chromatic number. The following authors have also investigated on r-dynamic coloring [1, 7, 12, Lai et al. (9] explained upper bounds of $\chi_{r}(G)$ in the pursuing lemma.

Lemma 1. $\chi_{r}(G) \geq \min \{r, \Delta(G)\}+1$.
The upper bounds and lower bounds of r-dynamic chromatic number of some graphs have been explained in many research papers. Dafik et al. [5] studied the lower bounds of r-dynamic coloring for some graphs and gave an open problem to find the sharp lower bound for the connected graph. Alishahi [2] established that all graph G with $\chi(G) \geq 4, \chi_{2}(G) \leq \chi(G)+\gamma(G)$, where $\gamma(G)$ is the domination number G and also showed, for k-regular graph, $\chi(G) \geq 4, \chi_{2}(G) \leq \chi(G)+\alpha\left(G^{2}\right)$, where α is the independence number. For d-regular graph, the bounds for dynamic chromatic number in terms of independence number $\chi_{d}(G) \leq \chi(G)+2 \log _{2} \alpha(G)+3$ were proved in [6. In this work, the bounds of r-dynamic chromatic number are examined which gives an easier study on r-dynamic coloring.

Flower graph [3] is obtained from Helm graph H_{n} by joining the pendent edge to the hub vertex and it has $2 n+1$ vertices and $4 n$ edges and denoted by F_{n}. Figure \square illustrate the flower graph F_{4}.

Fig. 1. Flower graph F_{4}.

Central graph [13] is obtained from adding a new vertex to each edge at once and connects the non-adjacency vertices of the given graph.

Line graph [7] is obtained from the original graph and the vertices are adjacent if the edges of the given graph are proximity.

Subdivision graph [14] is a graph obtained by inserting a new vertex with the degree 2 for each edge of the given graph.

Line graph of Subdivision graph [14] is a graph with vertices that are acquired from the edges of the subdivision graph and the vertices are adjacent if the corresponding edges are in proximity. It is also known as Paraline graph.

Splitting graph [8] is a graph, for each vertex $V=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of G, take a new vertex $V^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$. Join each vertex of v_{i}^{\prime} to v_{j} if and only if the vertex v_{j} is adjacent to v_{i}.

Mycielski graph [11] is a graph which has two conditions; (i) add a vertex as given in splitting graph (ii) add another common vertex z and join the common vertex z to all points of V^{\prime}.

2. Some Results on Flower Graph Families

Lemma 2. Let $C\left(F_{n}\right)$ be the central graph of a flower graph F_{n}. The lower bound for r-dynamic chromatic number of the central graph of flower graph is

$$
\chi_{r}\left[C\left(F_{n}\right)\right] \geq \begin{cases}n & 1 \leq r \leq \delta-1 \\ \Delta+1 & \delta \leq r \leq \Delta-1 \\ \Delta+3 & r \geq \Delta\end{cases}
$$

Proof. $V\left(F_{n}\right)=\{v\} \cup\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}: 1 \leq i \leq n\right\}$. The order of the graph is $\left|V\left(C\left(F_{n}\right)\right)\right|=6 n+1$. The edge sets $\left\{v_{i} u_{i}, v v_{i}, v u_{i}, v_{i} v_{i+1}(1 \leq i \leq n-1), v_{n} v_{1}\right\}$ can be subdivided by $\left\{e_{i}, w_{i}^{\prime}, e_{i}^{\prime}, w_{i}, w_{n}\right\}$ and the size of the graph is $\left|E\left(C\left(F_{n}\right)\right)\right|=$ $13 n+1$. For $1 \leq r \leq \delta-1$, the vertices $V=v_{i}, e_{i}$ persuade a clique with order n in $C\left(F_{n}\right)$. Hence, $\chi_{r}\left[C\left(F_{n}\right)\right] \geq n$. For $\delta \leq r \leq \Delta-1$ based on Lemma 1, $\chi_{r}(G) \geq$ $\min \{r, \Delta(G)\}+1$. Thus, $\chi_{r}\left[C\left(F_{n}\right)\right] \geq \min \left\{r, \Delta\left[C\left(F_{n}\right)\right]\right\}+1=\Delta+1$. For $r \geq \Delta$ based on Lemma 1, $\chi_{r}\left[C\left(F_{n}\right)\right] \geq \min \left\{r, \Delta\left[C\left(F_{n}\right)\right]\right\}+1=\Delta+3$. Thus, it completes the proof.

Theorem 1. For $n \geq 4$, let $C\left(F_{n}\right)$ be the central graph of a Flower graph F_{n}. Then,

$$
\chi_{r}\left[C\left(F_{n}\right)\right]= \begin{cases}n & r=1 \\ 2 n+1 & \text { for } \delta=2 \leq r \leq 2 n-1 \\ 2 n+3 & \text { for } r=\Delta=2 n, \quad n \text { is even } \\ 2 n+4 & \text { for } r=\Delta=2 n, \quad n \text { is odd }\end{cases}
$$

Proof. The r-dynamic coloring of $C\left(F_{n}\right)$ is explained in the following cases:
Case 1. When $r=1$.
Based on the Lemma 2 the lower bound of $\chi_{r}\left[C\left(F_{n}\right)\right] \geq n$. The upper bound can be found out from the following coloring:

- Color the hub vertex v with color 1 .
- Color the vertices v_{i} and u_{i} with i colors for $(1 \leq i \leq n)$.
- Color the vertices w_{i} and e_{i} for $(2 \leq i \leq n)$ with $i-1$ colors and w_{1}, e_{1} with color n. Thus, $2 n-2$ vertices are colored.
- Color the vertices e_{i}^{\prime}, w_{i}^{\prime} for $(1 \leq i \leq n-1)$ with color n and $e_{n}^{\prime}, w_{n}^{\prime}$ with color 2. Hence, couple-adjacency condition is fulfilled and therefore, $\chi_{r}\left[C\left(F_{n}\right)\right] \leq n$. Hence, $\chi_{r}\left[C\left(F_{n}\right)\right]=n$.

Case 2. When $\delta=2 \leq r \leq n-1$.
According to Lemma 2, the lower bound of $\chi_{r}\left[C\left(F_{n}\right)\right] \geq \Delta+1$. The r-dynamic $(2 n+1)$ coloring is justify to find the upper bound of $C\left(F_{n}\right)$:

- Assign the color i for the vertices v_{i} and e_{i}^{\prime} for $(1 \leq i \leq n)$.
- Color the vertices u_{i} and w_{i}^{\prime} with $n+1, n+2, \ldots, 2 n$ colors for $(1 \leq i \leq n)$.
- Assign the color $2 n+1$ to the hub vertex v. Figure 2 illustrate the central graph of flower graph F_{4}.

Fig. 2. Central graph of Flower graph F_{4}.

- Color the vertex e_{1} with color n and color the remaining vertices of e_{i} for $(2 \leq$ $i \leq n$) with $1,2, \ldots, n-1$ colors. Thus, $2 n$ colors are used. To satisfy the coupleadjacency coloring, we need one color. So, the coloring for the remaining n vertices is as follows:
(1) When n is odd, color the vertices w_{i}, for $(i=1,3, \ldots, n-2)$ with $2 n+1$ color. To attain r-coloring, color the left over vertices w_{n-1} and w_{n} with color 1 and color 2.
(2) As n is even, color the vertices w_{i} for $(1 \leq i \leq n)$ with $2 n+1$ color.

Thus, the condition of couple-adjacency coloring is satisfied and we obtain $\chi_{r}\left[C\left(F_{n}\right)\right] \leq \Delta+1$. Hence, $\chi_{r}\left[C\left(F_{n}\right)\right]=\Delta+1=2 n+1$.

Case 3. When $r=\Delta=2 n$.
Based on Lemma 2, the lower bound of $\chi_{r}\left[C\left(F_{n}\right)\right] \geq \Delta+3$. The r-dynamic $(2 n+1)$ coloring is given in the following to find the upper bound of $C\left(F_{n}\right)$:

- Color the vertices $v, u_{i}, w_{i}^{\prime}, v_{i}$ and e_{i}^{\prime} for $(1 \leq i \leq n)$ with the colors as given in case- 2 and color the vertices e_{i} with $2 n+1$ color for $(1 \leq i \leq n)$.
(1) As n is even, color the vertices w_{i} with $2 n+2$ color, for $(i=1,3, \ldots, n-1)$ and the vertices w_{i} with $2 n+3$ color for $(i=2,4, \ldots, n)$. Hence, $\chi_{r}\left[C\left(F_{n}\right)\right] \leq$ $\Delta+3$. Therefore, $\chi_{r}\left[C\left(F_{n}\right)\right]=\Delta+3=2 n+3$.
(2) As n is odd, to satisfy the couple-adjacency condition one must add one color. So, color the vertices w_{i} with color $2 n+2$ for $(i=1,3, \ldots, n-2)$ and for $(i=2,4,6, \ldots, n-1)$ with color $2 n+3$. Therefore, to obtain couple-adjacency condition, color the vertex w_{n} with $2 n+4$ color. Thus, $\chi_{r}\left[C\left(F_{n}\right)\right] \leq \Delta+4$. Hence, $\chi_{r}\left[C\left(F_{n}\right)\right]=2 n+4$.

Lemma 3. Let $L\left(F_{n}\right)$ be the line graph of flower graph. The lower bound for r-dynamic chromatic number of the line graph of flower graph is

$$
\chi_{r}\left[L\left(F_{n}\right)\right] \geq \begin{cases}2 n & 1 \leq r \leq \Delta-3 \\ \Delta+1 & r=\Delta-2 \\ \Delta+3 & \Delta-1 \leq r \leq \Delta\end{cases}
$$

Proof. Let the line graph of flower graph be $L\left(F_{n}\right)$. The vertices of $L\left(F_{n}\right)$ are nothing but the edges of $\left(F_{n}\right)$; they are $\left\{w_{i}, w_{i}^{\prime}, e_{i}, e_{i}^{\prime}\right\}$, for $(1 \leq i \leq n)$. The order of the graph $L\left(F_{n}\right)$ is $\left|V\left(L\left(F_{n}\right)\right)\right|=4 n$ and the size of the graph $L\left(F_{n}\right)$ is $\left|E\left(L\left(F_{n}\right)\right)\right|=$ $2 n+3$. For $1 \leq r \leq \Delta-3$, the vertices e_{i}^{\prime}, w_{i}^{\prime} persuade a clique of order $2 n$ in $L\left(F_{n}\right)$. Thus, $\chi_{r}\left[L\left(F_{n}\right)\right] \geq 2 n$. For $r=\Delta-2$ based on Lemma 1, $\chi_{r}(G) \geq \min \{r, \Delta(G)\}+1$ which implies $\chi_{r}\left[L\left(F_{n}\right)\right] \geq \min \left\{r, \Delta\left[L\left(F_{n}\right)\right]\right\}+1=\Delta+1$. For $\Delta-1 \leq r \leq \Delta$ based on Lemma 1, $\chi_{r}\left[L\left(F_{n}\right)\right] \geq \min \left\{r, \Delta\left[L\left(F_{n}\right)\right]\right\}+1=\Delta+3$. Hence, it completes the proof.

Theorem 2. For $n \geq 5$, let $L\left(F_{n}\right)$ be the line graph of a Flower graph F_{n}. Then,

$$
\chi_{r}\left[L\left(F_{n}\right)\right]= \begin{cases}2 n, & \text { for } 1 \leq r \leq 2 n-1, \\ 2 n+2, & \text { for } r=2 n \quad \text { and } n \text { is even }, \\ 2 n+3, & \text { for } r=2 n \quad \text { and } n \text { is odd, } \\ 2 n+5, & \text { for } 2 n+1 \leq r \leq 2 n+2=\triangle, \\ & \text { and } n \equiv 0 \quad(\bmod 6) \text { and } n=5, \\ 2 n+6, & \text { for } 2 n+1 \leq r \leq 2 n+2=\triangle, \quad \text { and } \quad n \not \equiv 0 \quad(\bmod 6) .\end{cases}
$$

Proof. The r-dynamic coloring of $L\left(F_{n}\right)$ is explained in the following.
Case 1. When $1 \leq r \leq 2 n-1$.
According to the Lemma 3, the lower bound of $\chi_{r}\left[L\left(F_{n}\right)\right] \geq 2 n$. To find the upper bound color the vertices w_{i}^{\prime}, for $(1 \leq i \leq n)$ orderly with colors i and e_{i}^{\prime}, for $(1 \leq i \leq n)$ with the colors $n+m$ for $(1 \leq m \leq n)$. Next, the vertex w_{2} is with color n, w_{1} with $n-1$ color and the left over vertices of w_{i} for $(3 \leq i \leq n)$ are with $1,2, \ldots, n-2$ color. At last, the n vertices of e_{i} are uncolored. Hence, color the vertices e_{i}, for $(3 \leq i \leq n)$ with $n+m$ colors, where $1 \leq m \leq n-2$ and color the vertices e_{1} and e_{2} with the colors $2 n-1$ and $2 n$. Thus, $\chi_{r}\left[L\left(F_{n}\right)\right] \leq 2 n$. Hence, $\chi_{r}\left[L\left(F_{n}\right)\right]=2 n$. Figure 3 illustrate the line graph of flower graph F_{4}.

Fig. 3. Line graph of Flower graph F_{4}.

Case 2. When $r=2 n$.
From Lemma 3, the lower bound of $\chi_{r}\left[L\left(F_{n}\right)\right] \geq \Delta+1$. The upper bound of $L\left(F_{n}\right)$ can be considered from the following coloring;

- Color the vertices w_{i}^{\prime} and e_{i}^{\prime} as given in Case 1. Next, color the vertices w_{i} for $(3 \leq i \leq n)$ with $n+m$ colors where, $1 \leq m \leq n-2$ and then color the other vertices w_{2} and w_{1} with $2 n$ color and $2 n-1$ color.
(1) As n is even, the vertices e_{i} are with the color $2 n+1$ and $2 n+2$ alternatively. Hence, r-coloring has been obtained and $\chi_{r}\left[L\left(F_{n}\right)\right] \leq 2 n+2$. Therefore, $\chi_{r}\left[L\left(F_{n}\right)\right]=2 n+2$.
(2) As n is odd, color the vertices e_{i} for $(1 \leq i \leq n-1)$ with $2 n+1$ and $2 n+2$ colors alternatively. In order to get the result, color the remaining vertex e_{n} with $2 n+3$ color. Hence, the couple-adjacency condition is checked out and $\chi_{r}\left[L\left(F_{n}\right)\right] \leq 2 n+3$. Therefore, $\chi_{r}\left[L\left(F_{n}\right)\right]=2 n+3$.

Case 3. When $2 n+1 \leq r \leq 2 n+2=\triangle$.
According to Lemma 3, the lower bound of $\chi_{r}\left[L\left(F_{n}\right)\right] \geq \Delta+3$. The upper bounds of $L\left(F_{n}\right)$ are demonstrated from the following way:

- The vertices w_{i}^{\prime} and e_{i}^{\prime} are colored in order as given in Case 1. The remaining $2 n$ vertices of w_{i} and e_{i} remain uncolored, so color these vertices in the following way to attain the couple-adjacency condition:
(1) If $n=5$, color the vertices w_{i} for $(1 \leq i \leq n)$ with $2 n+m$ color where $(m=1,2, \ldots, n)$. Next, color the vertices e_{n} and e_{n-1} with $2 n+1$ and $2 n+2$ color and color the left over vertices of e_{i} for $(1 \leq i \leq n-2)$ with $2 n+m$ color where, $(m=3,4, \ldots, n)$. Therefore, $2 n+5$ colors are obtained and $\chi_{r}\left[L\left(F_{n}\right)\right] \leq \Delta+3$. Thus, $\chi_{r}\left[L\left(F_{n}\right)\right]=2 n+5$.
(2) If $n \equiv 0(\bmod 6)$, then color the first $3 t$ vertices of w_{i} with $2 n+1,2 n+2$ and $2 n+3$ color in sequence, where t is the largest positive integer and $3 t \leq n$. At last, remaining n vertices are uncolored. So to get $(2 n+5)$ colors, color the vertices of e_{i}, with $2 n+4$ and $2 n+5$ color alternatively for $(1 \leq i \leq n)$. Hence, the couple-adjacency condition is satisfied and $\chi_{r}\left[L\left(F_{n}\right)\right] \leq \Delta+3$. Thus, $\chi_{r}\left[L\left(F_{n}\right)\right]=2 n+5$.
(3) In this case $n \not \equiv 0(\bmod 6)$, assign the colors $2 n+1,2 n+3$ and $2 n+2$ in sequence to the vertices w_{i} for $(1 \leq i \leq n-2)$. But, two vertices of w_{i} are uncolored. So, to obtain the result, color the vertex w_{n-1} with $2 n+4$ color if n is odd else, with $2 n+5$ color and color the vertex w_{n} with $2 n+6$ color. Next, color the vertex e_{1} with $2 n+2$ color and the remaining vertices of e_{i} for ($2 \leq i \leq n-2$) with $2 n+4$ and $2 n+5$ colors alternatively. Finally, two vertices of e_{i} are to be colored.
(a) the vertex e_{n-1} are colored with $2 n+2$ color for $n=7,10, \ldots, m+1$, where m is divisible by 3 and $m \geq 6$.
(b) Color the vertex e_{n-1} with $2 n+1$ color for $n=8,11, \ldots, m-1$, where m is divisible by 3 and $m \geq 9$.
(c) Color the vertex e_{n-1} with $2 n+3$ color for $n=9,15, \ldots, m+3$, where $m \equiv 0(\bmod 6)$.
(4) If n is even, color the vertex e_{n} with $2 n+4$ color and if n is odd then use $2 n+5$ color.

Therefore, the results are obtained for the line graph of flower graph by using r-dynamic coloring and hence, $\chi_{r}\left[L\left(F_{n}\right)\right] \leq 2 n+6$. Therefore, $\chi_{r}\left[L\left(F_{n}\right)\right]=2 n+6$.

Theorem 3. For $n \geq 5$, let $S\left(F_{n}\right)$ be the subdivision graph of a Flower graph F_{n}. Then,

$$
\chi_{r}\left[S\left(F_{n}\right)\right]= \begin{cases}2 & \text { for } r=1 \\ n+1 & \text { for } \delta=2 \leq r \leq n \\ r+1 & \text { for } n+1 \leq r \leq \Delta=2 n\end{cases}
$$

Proof. The vertices of $S\left(F_{n}\right)$ are $v, v_{i}, u_{i}, w_{i}, w_{i}^{\prime}, e_{i}$ and e_{i}^{\prime}, for $(1 \leq i \leq n)$ where the vertices $e_{i}, e_{i}^{\prime}, w_{i}^{\prime}$ are corresponding to the edge $u_{i} v_{i}, v u_{i}, v v_{i}$, the vertex w_{i} are corresponding to the edge $v_{i} v_{i+1}$ for $(1 \leq i \leq n-1)$ and the vertex w_{n} is corresponding to the edge $v_{n} v_{1}$. The order of graph $S\left(F_{n}\right)$ is $\left|V\left(S\left(F_{n}\right)\right)\right|=6 n+1$ and the size of the graph $S\left(F_{n}\right)$ is $\left|E\left(S\left(F_{n}\right)\right)\right|=7 n$. The r-dynamic coloring of $S\left(F_{n}\right)$ is as follows:

Case 1. when $r=1$.
Assign color 1 to the vertices v_{i}, u_{i} and v for $(1 \leq i \leq n)$ and the leftover vertices $e_{i}, e_{i}^{\prime}, w_{i}^{\prime}$ and w_{i} for $(1 \leq i \leq n)$ with color 2 . Hence, the couple-adjacency condition n be obtained and $\chi_{r}\left[S\left(F_{n}\right)\right]=2$. If $\chi_{r}\left[S\left(F_{n}\right)\right]<2$, then the couple-adjacency condition is not satisfied.

Case 2. When $\delta=2 \leq r \leq n$.

- Assign the color i for the vertices v_{i} and e_{i}^{\prime} where $(1 \leq i \leq n)$.
- Color the vertices u_{i} and w_{i}^{\prime} for $(1 \leq i \leq n-1)$ with $2,3, \ldots, n$ colors and the vertices u_{n} and w_{n}^{\prime} with the color 1 .
- The vertex e_{1} is colored with color n and the vertices e_{i} for $(2 \leq i \leq n)$ with $1,2, \ldots, n-1$ colors.
- Thus, $n+1$ vertices are uncolored. So, for $(1 \leq i \leq n-3)$ color the vertices w_{i} with the color $4,5, \ldots, n$ and the remaining vertices w_{n-2} with color $1, w_{n-1}$ with color 2 and w_{n} with color 3 . To satisfy the couple-adjacency condition, the hub vertex v is colored with $n+1$ color. Hence, $\chi_{r}\left[S\left(F_{n}\right)\right]=n+1$. If $\chi_{r}\left[S\left(F_{n}\right)\right]<n+1$, then the couple-adjacency condition is not fulfilled.

Case 3. When $n+1 \leq r \leq \Delta=2 n$.

Fig. 4. Subdivision graph of Flower graph F_{4}.

Figure $\mathbb{4}$ illustrate the subdivision graph of flower graph F_{4}. Color the vertices $v, v_{i}, u_{i}, w_{i}, w_{i}^{\prime}$ and e_{i} for $(1 \leq i \leq n)$ as given in Case 2. In order, to maintain the couple-adjacency condition, $r+1$ colors are needed. When $r=n+1$, assign the color $n+2$ to the vertices e_{1}^{\prime} and e_{i}^{\prime} for $(2 \leq i \leq n)$ with colors $2,3, \ldots, n$. By continuing the coloring, for $r=2 n$ color the vertices e_{i}^{\prime} with $n+2, n=3, \ldots, 2 n+1$ colors for $(1 \leq i \leq n)$. Therefore, for $r \geq n, \chi_{r}\left[S\left(F_{n}\right)\right]=r+1$. If $\chi_{r}\left[S\left(F_{n}\right)\right]<r+1$, then the couple-adjacency condition is not fulfilled.

Lemma 4. Let $L\left[S\left(F_{n}\right)\right]$ be the paraline graph of flower graph. The lower bound for r-dynamic chromatic number of the paraline graph of flower graph is

$$
\chi_{r} L\left[S\left(F_{n}\right)\right] \geq \begin{cases}2 n & 1 \leq r \leq \Delta-1 \\ \Delta+1 & r=\Delta\end{cases}
$$

Proof. The vertices of $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right)$ are a_{i}, b_{i}, c_{i} and d_{i}, which are the edges of subdivision graph $S\left(F_{n}\right)$. The order of the graph is $\left|V\left(L\left[S\left(F_{n}\right)\right]\right)\right|=8 n$ and the size of the graph is $\left|E\left(L\left[S\left(F_{n}\right)\right]\right)\right|=2 n(n+5)$. For $1 \leq r \leq \Delta-1$ the vertices b_{i}, d_{i} for $i=$ $2,4, \ldots, 2 n$ persuade a clique of order $2 n$ in $\left(L\left[S\left(F_{n}\right)\right]\right)$. Thus, $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right) \geq 2 n$. For $r=\Delta$ based on Lemma 1, $\chi_{r}(G) \geq \min \{r, \Delta(G)\}+1$ such that $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right) \geq$ $\min \left\{r, \Delta\left(L\left[S\left(F_{n}\right)\right]\right)\right\}+1=\Delta+1$. Thus, the proof is complete.

Theorem 4. For $n \geq 3$, let $L\left[S\left(F_{n}\right)\right]$ be the paraline graph of a Flower graph F_{n}. Then,

$$
\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right)= \begin{cases}2 n & \text { for } 1 \leq r \leq 2 n-1, \\ 2 n+1 & \text { for } r=2 n=\Delta\end{cases}
$$

Fig. 5. Paraline graph of Flower graph F_{4}.

Figure 5 illustrate the paraline graph of flower graph F_{4}.
Proof. The r-dynamic coloring for paraline graph of flower graph is as follows:
Case 1. When $1 \leq r \leq 2 n-1$.
From Lemma 4, the lower bound of $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right) \geq 2 n$. However, one cannot find the sharpest lower bound. But, $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right)=2 n$ has been considered. The upper bound can be found from coloring of $\left(L\left[S\left(F_{n}\right)\right]\right)$ which is as follows:

- Color b_{i} for $i=1,3, \ldots, 2 n-1$ with color 4 . Color the vertices b_{i} for $i=2,4, \ldots, 2 n$ with different colors to satisfy the couple-adjacency condition, so color the vertex b_{2} with color $2, b_{4}$ with color 1 and b_{6} with color 3 and the remaining vertices of b_{i} for $i=8,10, \ldots, 2 n$ with $5,6, \ldots, n+1$ colors.
- Since, the vertices c_{i} are with least degree δ, color the vertices c_{i} for $i=$ $1,3, \ldots, 2 n-1$ with color 2,1 and 3 in sequence and the other vertices c_{2}, c_{4} are with color 5 and c_{6} are with color 6 . Then, the leftover vertices c_{i} for $i=8,10, \ldots, 2 n$ with color 5 .
- Color the vertices d_{i} for $i=1,3, \ldots, 2 n-1$ with color 3,2 and 1 alternatively. Since the vertices d_{i} for $i=2, \ldots, 2 n$ form a cycle $\left(C_{n-1}\right)$, color the vertices d_{2} with color 4 and the other vertices d_{i} for $i=4,6, \ldots, 2 n$ with colors $n+2, n+3, \ldots, 2 n$.
- At last, $2 n$ vertices of a_{i} are uncolored. Hence, the coloring of the vertices a_{i} is as follows:
(1) When $n \equiv 0(\bmod 3)$, color the vertices a_{i} for $(1 \leq i \leq 2 n)$ with colors 1,2 and 3 alternatively.
(2) When $n=4,7,10, \ldots, m+1$, where $m \equiv 0(\bmod 3)$, color the vertices a_{i} for $(1 \leq i \leq 2 n-2)$ with colors 1,2 and 3 in sequence and color the vertex $a_{2 n-1}$ with color 6 and $a_{2 n}$ with color 7 .
(3) When $n=5,8,11, \ldots, m-1$, where $m \equiv 0(\bmod 3)$ and $m \geq 6$, color the vertices a_{i} for $(1 \leq i \leq 2 n-1)$ with colors 1,2 and 3 in sequence and color the vertex $a_{2 n}$ with color 6 . Hence, the couple-adjacency condition is fulfilled and $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right) \leq 2 n$. Therefore, $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right)=2 n$.

Case 2. When $r=2 n$.
Based on the Lemma 4, the lower bound of $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right) \geq \Delta+1$. However, one cannot find the sharpest lower bound. But, $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right)=\Delta+1$ has been considered. To find the upper bound, color the vertices a_{i}, b_{i} and c_{i} for $(1 \leq i \leq n)$ which is given in case 1 . Color d_{i} for $i=1,3, \ldots, 2 n-1$ with color 4 and the leftover vertices d_{i} for $i=2,4, \ldots, 2 n$ with $n+2, n+3, \ldots, 2 n+1$ colors in order. Therefore, the couple-adjacency condition is satisfied and $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right) \leq \Delta+1$ and $\chi_{r}\left(L\left[S\left(F_{n}\right)\right]\right)=2 n+1$.

Theorem 5. For $n \geq 4$, let $S\left[F_{n}\right]$ be the splitting graph of Flower graph F_{n}. Then,

$$
\chi_{r}\left(S\left[F_{n}\right]\right)= \begin{cases}3 & \text { for } 1 \leq r \leq 2=\delta, \quad n \text { is even } \\ 4 & \text { for } 1 \leq r \leq 2=\delta, \quad n \text { is odd } \\ 5 & \text { for }(r \equiv 0 \bmod 3) \quad \text { and } r \leq 5 \\ 7 & \text { for } 4 \leq r \leq 5 \\ r+2 & 6 \leq r \leq 4 n=\Delta\end{cases}
$$

Proof. The vertices of $S\left[F_{n}\right]$ are $v, v_{i}, u_{i}, v^{\prime}, v_{i}^{\prime}, u_{i}^{\prime}$ for $(1 \leq i \leq n)$. The order of the graph is $\left|V\left(S\left[F_{n}\right]\right)\right|=4 n+2$ and the size of the graph $E\left(S\left[F_{n}\right]\right) \mid=12 n$. The coloring of splitting graph of flower graph is as follows:

Case 1. When $1 \leq r \leq 2$.

- Color the hub vertex v and v^{\prime} with color 3 .
(1) As n is even, assign the color 1 and 2 to the vertices v_{i} and v_{i}^{\prime} for $(1 \leq i \leq n)$ consecutively. Next, color the vertices u_{i} and u_{i}^{\prime} with color 2 and 1 cyclically for $(1 \leq i \leq n)$. Hence, $\chi_{r}\left(S\left[F_{n}\right]\right) \leq 3$. If $\chi_{r}\left(S\left[F_{n}\right]\right)<3$, then the coupleadjacency condition is not fulfilled. Therefore, $\chi_{r}\left(S\left[F_{n}\right]\right)=3$.
(2) When n is odd, the vertices v_{i} and v_{i}^{\prime} for $(1 \leq i \leq n-1)$ are with color 1 and color 2 consecutively and color the vertex v_{n} and v_{n}^{\prime} with color 4 . Color the vertices u_{i} and u_{i}^{\prime} for $(1 \leq i \leq n-1)$ with color 2 and color 1 consecutively and color the remaining vertex u_{n} and u_{n}^{\prime} with color 1 . Hence, $\chi_{r}\left(S\left[F_{n}\right]\right) \leq 4$. If $\chi_{r}\left(S\left[F_{n}\right]\right)<4$, then the couple-adjacency condition cannot be verified. Thus, $\chi_{r}\left(S\left[F_{n}\right]\right)=4$.

Fig. 6. Splitting graph of Flower graph F_{4}.

Case 2. When $(r \equiv 0 \bmod 3)$ and $r \leq 5$. Figure 6 illustrate the spliting graph of flower graph F_{4}.

- Color the hub vertex v and the vertex v^{\prime} with color 3 and color 4 .
(1) When n is odd, the vertices v_{i} and v_{i}^{\prime} for $(1 \leq i \leq n-1)$ are with color 1 and color 2 cyclically and color the vertex v_{n} and v_{n}^{\prime} with color 5 . Color the vertices u_{i} and u_{i}^{\prime} with color 5 for $(1 \leq i \leq n-1)$. Next, the vertex u_{n} and u_{n}^{\prime} are colored with color 1 .
(2) When n is even, the vertices v_{i} and v_{i}^{\prime} for $(1 \leq i \leq n)$ are with color 1 and color 2 cyclically. Color the vertices u_{i} and u_{i}^{\prime} for $(1 \leq i \leq n)$ with color 5 .

Hence, $\chi_{r}\left(S\left[F_{n}\right]\right) \leq 5$. If $\chi_{r}\left(S\left[F_{n}\right]\right)<5$, then the couple-adjacency condition is not fulfilled. Then, $\chi_{r}\left(S\left[F_{n}\right]\right)=5$.
Case 3. When $4 \leq r \leq 5$.
To satisfy the couple-adjacency condition for $r=4$ one must need 7 colors. Hence, $\chi_{r=4}\left(S\left[F_{n}\right]\right) \leq 7$ for any n. If $\chi_{r=4}\left(S\left[F_{n}\right]\right)<7$, the couple-adjacency condition is not satisfied. Therefore, $\chi_{r=4}\left(S\left[F_{n}\right]\right)=7$. Similarly, it also satisfies the 5 -dynamic coloring. Hence, $\chi_{r=4,5}\left(S\left[F_{n}\right]\right)=7$ for any n.

Case 4. When $6 \leq r \leq 4 n=\Delta$.
For any $n, \chi_{r=6}\left(S\left[F_{n}\right]\right)=8$. If $\chi_{r=6}\left(S\left[F_{n}\right]\right) \leq 8$ the couple-adjacency condition is not fulfilled. Similarly, $\chi_{r=7}\left(S\left[F_{n}\right]\right)=9$. Thus, one must need $r+2$ colors. Therefore, for any $n \chi_{r}\left(S\left[F_{n}\right]\right)=r+2$.

Theorem 6. For $n \geq 4$, let $\mu\left[F_{n}\right]$ be the mycielski graph of Flower graph F_{n}. Then,

$$
\chi_{r}\left(\mu\left[F_{n}\right]\right)= \begin{cases}4 & \text { for } 1 \leq r \leq 2=\delta, \quad n \text { is even } \\ 5 & \text { for } 1 \leq r \leq 2=\delta, \quad n \text { is odd } \\ r+2 & \text { for } r \equiv 0 \quad(\bmod 3) \quad \text { and } n \text { is even } \\ r+3 & \text { otherwise }\end{cases}
$$

Proof. The vertices of $\mu\left[F_{n}\right]$ are $z, v, v_{i}, u_{i}, v^{\prime}, v_{i}^{\prime}, u_{i}^{\prime}$ for $(1 \leq i \leq n)$. The order of the graph is $\left|V\left(\mu\left[F_{n}\right]\right)\right|=4 n+3$ and size of the graph is $\left|E\left(\mu\left[F_{n}\right]\right)\right|=14 n+1$. The coloring of mycielski graph of flower graph is as follows:

Case 1. When $1 \leq r \leq 2$.
Color the vertices u_{i} and u_{i}^{\prime} for $(1 \leq i \leq n)$ with color 2 and color 1 orderly.

- When n is even, the vertices v_{i} and v_{i}^{\prime} for $(1 \leq i \leq n)$ are colored with colors 1 and 2 alternatively and color the vertices u_{i} and u_{i}^{\prime} for $(1 \leq i \leq n)$ with colors 2 and 1 in order. Color the hub vertex v and the vertex v^{\prime} with color 3 and the common vertex z with color 4 . Therefore, $\chi_{r}\left(\mu\left[F_{n}\right]\right) \leq 4$. If $\chi_{r}\left(\mu\left[F_{n}\right]\right)<4$, the couple-adjacency condition is not fulfilled. Hence, $\chi_{r}\left(\mu\left[F_{n}\right]\right)=4$.
- When n is odd, the vertices v_{i} and v^{\prime} for $(1 \leq i \leq n-1)$ are colored with colors 1 and 2 orderly and color the vertex v_{n} and v_{n}^{\prime} with color 3 . Figure \square illustrate the Mycielski graph of flower graph F_{4}. Color the hub vertex v and the vertex v^{\prime} with color 4 and the common vertex z with color 5 . Hence, $\chi_{r}\left(\mu\left[F_{n}\right]\right)=5$. If $\chi_{r}\left(\mu\left[F_{n}\right]\right)<5$, the couple-adjacency condition is not fulfilled.

Fig. 7. Mycielski graph of Flower graph F_{4}.

Case 2. When $r \equiv 0(\bmod 3)$ and n is even.

- Color the vertices v_{i} and v_{i}^{\prime} with colors 1 and 2 alternatively for $(1 \leq i \leq n)$.
- Color the vertices u_{i} for $(1 \leq i \leq n)$ with color 5 and the vertices u_{i}^{\prime} for $(1 \leq i \leq n)$ are colored with colors 2 and 1 alternatively.
- Color the hub vertex v with color 3 and the vertex v^{\prime} with color 4 and the common vertex z with color 5 . Thus, $\chi_{r}\left(\mu\left[F_{n}\right]\right) \leq r+2$. If $\chi_{r}\left(\mu\left[F_{n}\right]\right)<r+2$, the couple-adjacency condition is not fulfilled. Hence, $\chi_{r}\left(\mu\left[F_{n}\right]\right)=r+2$.

Case 3. otherwise.

- When $r \equiv 0(\bmod 3)$ and n is odd, color the vertices u_{i} and u_{i}^{\prime} for $(1 \leq i \leq n)$ which is given in case 1 . Color the vertices v_{i} for $(1 \leq i \leq n-1)$ with colors 1 and 2 alternatively and color the vertex v_{n} with color 3 . Color the vertices v_{i}^{\prime} with color 6 for $(1 \leq i \leq n)$. At last, color hub vertex v and assign the color 4 for the vertex v^{\prime} and the common vertex z with color 5 . Thus, $\chi_{r}\left(\mu\left[F_{n}\right]\right)=$ $r+3$. If $\chi_{r}\left(\mu\left[F_{n}\right]\right)<r+3$, the couple-adjacency condition is not verified. Hence, $\chi_{r}\left(\mu\left[F_{n}\right]\right)=r+3$.
- When $4 \leq r \leq 4 n=\Delta$, the r-dynamic chromatic number for $\chi_{r}\left(\mu\left[F_{n}\right]\right) \leq r+3$ for any n. If $\chi_{r}\left(\mu\left[F_{n}\right]\right)<r+3$, the couple-adjacency condition is not fulfilled. So, one must need $r+3$ colors. Hence, for any n, $\chi_{r}\left(\mu\left[F_{n}\right]\right)=r+3$.

3. Conclusion

Thus, the lower bound of the r-dynamic chromatic number of some flower graph families has been found and also some exact results have been determined. Further studies of distance graphs may give an additional insight to the r-dynamic coloring problem.

Acknowledgment

We gratefully acknowledge the support from Kongunadu Arts and Science College, Tamil Nadu, India and CGANT Research group, University of Jember, Indonesia.

References

[1] I. H. Agustin, D. Dafik and A. Y. Hatsya, On r-dynamic coloring of some graph operation, Int. J. Combinat. 2(1) (2016) 22-30.
[2] M. Alishahi, Dynamic chromatic number of regular graphs, Discrete Appl. Math. 160(15) (2012) 2098-2103.
[3] R. Arundhadhi and K. Thirusangu, Star coloring of middle, total and line graph of flower graph, Int. J. Pure Appl. Math. 101(5) (2015) 691-699.
[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications (Macmillan Press, New York, 1976).
[5] D. Dafik, D. E. W. Meganingtyas, K. D. Purnomo, M. D. Tarmidzi and I. H. Agustin, Several classes of graphs and their r-dynamic chromatic numbers, IOP Conf. Ser. J. Phys. 855 (2017) 012011.
[6] A. Dehghan and A. Ahadi, Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number, Discrete Appl. Math. 160(15) (2012) 21422146.
[7] H. Furmaczyk, J. Vernold Vivin and N. Mohanapriya, r-dynamic chromatic number of some line graphs, Indian J. Pure Appl. Math. 49(4) (2018) 591-600.
[8] J. A. Gallian, A dynamic survey of graph labeling, The Electron. J. Combinat. 17 (2014) 60-62.
[9] H. Lai, B. Montgomery and H. Poon, Upper bounds of dynamic chromatic number, Ars Combinat. 68(3) (2003) 193-201.
[10] B. Montgomery, Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI, Ph.D thesis, West Virginia University (2001).
[11] N. K. Sudev, K. P. Chithra, K. A. Germina, S. Satheesh and J. Kok, On certain coloring parameters of Mycielski graphs of some graphs, Discrete Math. Algorithms Appl. 10(3) (2018) 1850030.
[12] A. Taherkhani, On r-dynamic chromatic number of graphs, Discrete Appl. Math. 201 (2016) 222-227.
[13] J. Vernold Vivin, Harmonious coloring of total graphs, n-leaf, central graphs and circumdetic graphs, Bharathiar University, Ph.D thesis, Coimbatore, India (2007).
[14] X. Zhang, Z. Zahid, S. Zafar, M. R. Farahani and M. F. Nadeem, Study of the para-line graphs of certain polyphenyl chains using topological indices, Int. J. Adv. Biotechnol. Res. 8(3) (2017) 2435-2442.

[^0]: ${ }^{\text {a }}$ Corresponding author.

