ISSN: 1412-033X E-ISSN: 2085-4722

# BIODIVERSITAS Journal of Biological Diversity Volume 23 - Number 2 - February 2022



Front cover: Lepidotrigona terminata (Smith, 1878) (Photo: Chris Kirby-Lambert)

**Published monthly** 

## **PRINTED IN INDONESIA**

ISSN: 1412-033X

E-ISSN: 2085-4722









ISSN/E-ISSN: 1412-033X (printed edition), 2085-4722 (electronic)

## **EDITORIAL BOARD:**

 Abdel Fattah N.A. Rabou (Palestine), Agnieszka B. Najda (Poland), Ajay Kumar Gautam (India), Alan J. Lymbery (Australia), Annisa (Indonesia), Bambang H. Saharjo (Indonesia), Daiane H. Nunes (Brazil), Darlina Md. Naim (Malaysia), Ghulam Hassan Dar (India), Hassan Pourbabaei (Iran), Joko R. Witono (Indonesia), Kartika Dewi (Indonesia), Katsuhiko Kondo (Japan), Kusumadewi Sri Yulita (Indonesia), Livia Wanntorp (Sweden), M. Jayakara Bhandary (India), Mahdi Reyahi-Khoram (Iran), Mahendra K. Rai (India), Mahesh K. Adhikari (Nepal), Maria Panitsa (Greece), Mochamad A. Soendjoto (Indonesia), Mohamed M.M. Najim (Srilanka), Mohib Shah (Pakistan), Nurhasanah (Indonesia),
 Praptiwi (Indonesia), Rasool B. Tareen (Pakistan), Seyed Aliakbar Hedayati (Iran), Seyed Mehdi Talebi (Iran), Shahabuddin (Indonesia), Shahir Shamsir (Malaysia), Shri Kant Tripathi (India), Subhash C. Santra (India), Sugeng Budiharta (Indonesia), Sugiyarto (Indonesia), Taufiq Purna Nugraha (Indonesia), Yosep S. Mau (Indonesia)

#### EDITOR-IN-CHIEF: Sutarno

#### **EDITORIAL MEMBERS:**

English Editors: **Graham Eagleton** (grahameagleton@gmail.com), **Suranto** (surantouns@gmail.com); Technical Editor: **Solichatun** (solichatun\_s@yahoo.com), **Artini Pangastuti** (pangastuti\_tutut@yahoo.co.id); Distribution & Marketing: **Rita Rakhmawati** (oktia@yahoo.com); Webmaster: **Ari Pitoyo** (aripitoyo@yahoo.com)

#### **MANAGING EDITORS:**

Ahmad Dwi Setyawan (unsjournals@gmail.com)

#### **PUBLISHER:**

The Society for Indonesian Biodiversity

### **CO-PUBLISHER:**

Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta

**ADDRESS:** 

Jl. Ir. Sutami 36A Surakarta 57126. Tel. +62-271-7994097, Tel. & Fax.: +62-271-663375, email: editors@smujo.id

**ONLINE:** 

biodiversitas.mipa.uns.ac.id; smujo.id/biodiv



Society for Indonesia Biodiversity



Sebelas Maret University Surakarta

Published by Smujo International for The Society for Indonesian Biodiversity and Sebelas Maret University Surakarta

## Digital Repository Universitas Jember GUIDANCE FOR AUTHORS

Aims and Scope *Biodiversitas, Journal of Biological Diversity* or *Biodiversitas* encourages submission of manuscripts dealing with all aspects of biodiversity including plants, animals and microbes at the level of the gene, species, and ecosystem. Ethnobiology papers are also considered.

Article types The journal seeks original full-length: (1) Research papers, (2) Reviews, and (3) Short communications. Original research manuscripts are limited to 8,000 words (including tables and picture), or proportional with articles in this publication number. Review articles are also limited to 8,000 words, while Short communications should be less than 2,000 words, except for pre-study.

Submission The journal only accepts online submission, through open journal system (https://smujo.id/biodiv/about/submissions) or email to the editors at unsjournals@gmail.com. Submitted manuscripts should be the original works of the author(s). Please ensure that the manuscript is submitted the Biodiversitas template, which can he found using at (https://biodiversitas.mipa.uns.ac.id/D/guidance.htm). The manuscript must be accompanied by a cover letter containing the article title, the first name and last name of all the authors, a paragraph describing the claimed novelty of the findings versus current knowledge. Please also provide a list of five potential reviewers in your cover letter. Submission of a manuscript implies that the submitted work has not been published before (except as part of a thesis or report, or abstract); and is not being considered for publication elsewhere. When a manuscript written by a group, all authors should read and approve the final version of the submitted manuscript and its revision; and agree the submission of manuscripts for this journal. All authors should have made substantial contributions to the concept and design of the research, acquisition of the data and its analysis; drafting of the manuscript and correcting of the revision. All authors must be responsible for the quality, accuracy, and ethics of the work.

Ethics Author(s) must obedient to the law and/or ethics in treating the object of research and pay attention to the legality of material sources and intellectual property rights.

**Copyright** If the manuscript is accepted for publication, the author(s) still hold the copyright and retain publishing rights without restrictions. Authors are allowed to reproduce articles as long as they are not used for commercial purposes. For the new invention, authors are suggested to manage its patent before published.

**Open access** The journal is committed to free-open access that does not charge readers or their institutions for access. Readers are entitled to read, download, copy, distribute, print, search, or link to the full texts of articles, as long as not for commercial purposes. The license type is CC-BY-NC-SA.

Acceptance Only articles written in U.S. English are accepted for publication. Manuscripts will be reviewed by editors and invited reviewers (double blind review) according to their disciplines. Authors will generally be notified of acceptance, rejection, or need for revision within 1 to 2 months of receipt. Manuscripts will be rejected if the content does not in line with the journal scope, does not meet the standard quality, is in an inappropriate format, contains complicated grammar, dishonesty (i.e. plagiarism, duplicate publications, fabrication of data, citations manipulation, etc.), or ignoring correspondence in three months. The primary criteria for publication are scientific quality and biological significance. **Uncorrected proofs** will be sent to the corresponding author by email as .doc or .docx files for checking and correcting of typographical errors. To avoid delay in publication, corrected proofs should be returned in 7 days. The accepted papers will be published online in a chronological order at any time, but printed in January, April, July and October.

A charge Starting on January 1, 2017, publishing costs waiver is granted to foreign (non-Indonesian) authors who first publish the manuscript in this journal, especially for graduate students from developing countries. However, other authors are charged USD 250 (IDR 3,500,000).

**Reprints** The sample journal reprint is only available by special request. Additional copies may be purchased when ordering by sending back the uncorrected proofs by email. Manuscript preparation Manuscript is typed on A4 (210x297 mm<sup>2</sup>) paper size, in a single column, single space, 10-point (10 pt) Times New Roman font. The margin text is 3 cm from the top, 2 cm from the bottom, and 1.8 cm from the left and right. Smaller lettering size can be applied in presenting table and figure (9 pt). Word processing program or additional software can be used, however, it must be PC compatible, use the Biodiversitas template, and Microsoft Word based (.doc or .rtf; not .docx). Scientific names of species (incl. subspecies, variety, etc.) should be written in italics, except in italicised sentences. Scientific names (Genus, species, author), and cultivar or strain should be mentioned completely for the first time mentioning it in the body text, especially for taxonomic manuscripts. The Genus name can be shortened after first mention, except where this may generate confusion. Name of the author can be eliminated after first mentioning. For example, Rhizopus oryzae L. UICC 524, hereinafter can be written as R. oryzae UICC 524. Using trivial names should be avoided. Biochemical and chemical nomenclature should follow the order of the IUPAC - IUB. For DNA sequence, it is better used Courier New font. Standard chemical abbreviations can be applied for common and clear used, for example, completely written butilic hydroxyl toluene (BHT) to be BHT hereinafter. Metric measurements should use IS denominations, and other system should use equivalent values with the denomination of IS mentioned first. Abbreviations like g, mg, mL, etc. should not be followed by a dot. Minus index (m-2, L-1, h-1) suggested to be used, except in things like "perplant" or "per-plot". **Mathematical equations** can be written down in one column with text, in that case can be written separately. **Numbers** one to ten are written in words, except if it relates to measurement, while values above them written in number, except in early sentence. The fraction should be expressed in decimal. In the text, it should be used "%" rather than "percent". Avoid expressing ideas with complicated sentence and verbiage, and used efficient and effective sentence.

The **Title** of the article should be written in compact, clear, and informative sentence, preferably not more than 20 words. Author name(s) should be completely written. Name and institution address should also be completely written with street name and number (location), postal code, telephone number, facsimile number, and email address. Manuscripts written by a group, author for correspondence along with address is required. First page of the manuscript is used for writing above information.

The **Abstract** should not be more than 200 words. Include between five and eight **Keywords**, using both scientific and local names (if any), research themes, and special methods which used; and sorted from A to Z. All important **abbreviations** must be defined at their first mention. Running title is about five words. The **Introduction** is about 400-600 words, covering the background and aims of the research. **Materials and Methods** should emphasize on the procedures and data analysis. **Results and Discussion** should be written as a series of connecting sentences, however, for manuscript with long discussion should be divided into subtitles. Thorough discussion represents the causal effect mainly explains for why and how the results of the research were taken place, and do not only re-express the mentioned results in the form of sentences. A **Conclusion** should be given at the end of the discussion. **Acknowledgments** are expressed in brief; all sources of institutional, private and corporate financial support for the work must be fully acknowledged, and any potential conflicts of interest must be noted.

**Figures and Tables** of three pages maximum should be clearly presented. Include a label below each figure, and a label above each table (see example). Colored figures can only be accepted if the information in the manuscript can lose without those images; chart is preferred to use black and white images. Author could consign any picture or photo for the front cover, although it does not print in the manuscript. All images property of others should be mentioned source. There is no **Appendix**, all data or data analysis are incorporated into Results and Discussions. For broad data, supplementary information can be provided on the website.

**References** In the text give the author names followed by the year of publication and arrange from oldest to newest and from A to Z. In citing an article written by two authors, both of them should be mentioned, however, for three and more authors only the first author is mentioned followed by et al., for example: Saharjo and Nurhayati (2006) or (Boonkerd 2003a, b, c; Sugiyarto 2004; El-Bana and Nijs 2005; Balagadde et al. 2008; Webb et al. 2008). Extent citation as shown with word "cit" should be avoided. Reference to unpublished data and personal communication should not appear in the list but should be cited in the text only (e.g., Rifai MA 2007, pers. com. (personal communication); Setyawan AD 2007, unpublished data). In the reference list, the references should be listed in an alphabetical order. Names of journals should be abbreviated. Always use the standard abbreviation of a journal's (www.issn.org/2- 22661-LTWA-online.php). Please include DOI links for journal papers. The following examples are for guidance.

Journal:

Saharjo BH, Nurhayati AD. 2006. Domination and composition structure change at hemic peat natural regeneration following burning; a case study in Pelalawan, Riau Province. Biodiversitas 7: 154-158. DOI: 10.13057/biodiv/d070213

#### Book:

Rai MK, Carpinella C. 2006. Naturally Occurring Bioactive Compounds. Elsevier, Amsterdam.

#### Chapter in book:

Webb CO, Cannon CH, Davies SJ. 2008. Ecological organization, biogeography, and the phylogenetic structure of rainforest tree communities. In: Carson W, Schnitzer S (eds) Tropical Forest Community Ecology. Wiley-Blackwell, New York.

#### Abstract:

Assaeed AM. 2007. Seed production and dispersal of Rhazya stricta. 50th annual symposium of the International Association for Vegetation Science, Swansea, UK, 23-27 July 2007.

#### Proceeding:

Alikodra HS. 2000. Biodiversity for development of local autonomous government. In: Setyawan AD, Sutarno (eds.) Toward Mount Lawu National Park; Proceeding of National Seminary and Workshop on Biodiversity Conservation to Protect and Save Germplasm in Java Island. Universitas Sebelas Maret, Surakarta, 17-20 July 2000. [Indonesian]

Thesis, Dissertation:

Sugiyarto. 2004. Soil Macro-invertebrates Diversity and Inter-Cropping Plants Productivity in Agroforestry System based on Sengon. [Dissertation]. Universitas Brawijaya, Malang. [Indonesian]

Information from internet: Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L. 2008. A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 4:187. www.molecularsystembiology.com

THIS PAGE INTENTIONALLY LEFT BLANK



**BIODIVERSITAS** Volume 23, Number 2, February 2022 Pages: 663-670

## Morphological and molecular identification of multi-antibiotic resistant bacteria in the wound site of diabetic ulcers

WIDAYANTI RISQIYAH<sup>1,2</sup>, ERLIA NARULITA<sup>1,2,</sup>, AFIFATUR ROFIQOH<sup>1,2</sup>, ACHMAD SYAIFUL LUDFI<sup>3</sup>, MOCHAMMAD IQBAL<sup>1</sup>

<sup>1</sup>Program of Biology Education, Universitas Jember. Jl. Kalimantan No. 37, Tegalboto, Jember 68121, East Java, Indonesia. Tel./fax.: +62-331-330224, ♥email: erlia.fkip@unej.ac.id

<sup>2</sup>Center for Development of Advanced Sciences and Technology, Universitas Jember. Jl. Kalimantan No. 37, Tegalboto,

Jember 68121, East Java, Indonesia

<sup>3</sup>Internal Medicine Department, RSD dr. Soebandi Jember. Jl. DR. Soebandi No. 124, Jember 68111, East Java, Indonesia

Manuscript received: 23 October 2021. Revision accepted: 14 January 2022

**Abstract.** *Risqiyah W, Narulita E, Rofiqoh A, Ludfi AS, Iqbal M. 2021. Morphological and molecular identification of multi-antibiotic resistant bacteria in the wound site of diabetic ulcers. Biodiversitas 23: 663-670.* The study aimed to determine the characteristics of diverse species of bacteria found in diabetic ulcers and the inhibition of antibiotics against these bacteria. The method used is Gram staining for morphological characterization, identification using 16S rRNA gene, and pour plate for antibiotic resistance test. The morphological characterization result showed that the colonies had white color, circular shape, flat elevation, entire edge, small size, and basil shape with Gram negative type of bacteria. Another result showed yellow, greenish, pellucid, and green color, irregular shape, raised elevation, undulate and lobate edge, medium size, coccus and Gram positive type of bacteria. Query cover of molecular identification showed 73-100% and 77.61-96.77% for the result of similarity identification and antibiotic resistance testing showed that the bacterial species found in diabetic ulcers was *A. faecalis* strain NRBC 13111, which was resistant to all tested antibiotics, except *A. faecalis* strain NRBC 13111 from the UB 2.3K and *A. faecalis* strain NRBC 13111 from the sample UB 3.4M. *Enterococcus faecalis* strain ATCC 19433 was resistant to ceftriaxone, ceftazidime, clindamycin and metronidazole, intermediates to cefoperazone, and sensitive to ciprofloxacin. *Proteus mirabilis* strain JCM 1669 was resistant to clindamycin and metronidazole, sensitive to ceftriaxone and ciprofloxacin, intermediates to ceftazidime and cefoperazone. *Proteus mirabilis* strain ATCC 29906, *A. seohaensis* strain SW-100 and *S. flexneri* strain ATCC 29903 were resistant to all tested antibiotics.

Keywords: Alcaligenes faecalis, antibiotics, diabetic ulcers, resistance

**Abbreviations:** CAX: Ceftriaxone; CAZ: Ceftazidime; CDM: Clindamycin; CFP: Cefoperazone; CLSI: Clinical and Laboratory Standards Institute; CP: Ciprofloxacin; E: EMBA/Eosin Methylene Blue Agar; GN: Gram-negative bacteria; GP: Gram-positive bacteria, I: Intermediate, R: Resistant; K (-): negative control; K: King's B media; M: MSA/Maltose Salt Agar; MTZ: Metronidazole; S: Sensitive; UB x.yZ (UB: Bacterial Ulcers; x: sample number; y: colony number; Z: growth medium)

## **INTRODUCTION**

Diabetes is characterized by a state of hyperglycemia that can occur due to decreased insulin secretion or impaired insulin activity. Diabetes mellitus is classified into type 1 diabetes mellitus, known as insulin dependent, in which the pancreas fails to produce insulin characterized by a lack of insulin production and type 2 diabetes mellitus, known as non insulin dependent, due to the body's inability to effectively use the insulin produced by the pancreas. Diabetes mellitus which accounts for 90% of cases worldwide is type 2 diabetes which is known as non-insulin dependent (Sudoyo et al. 2007). The number of people with diabetes in the world was 463 million in 2019, Indonesia ranks seventh in the world with around 10.7 million people with diabetes and is predicted to increase to 16.2 million in 2045 (International Diabetes Federation 2019). East Java Province ranks the ninth highest diabetes prevalence in Indonesia (Kominfo 2015). One of the districts with quite high cases of diabetes 2 is Jember district as evidenced by

data on the number of patient visits in 2015 (Dinkes Jember 2015) and increased from January to December 2016, reaching 10,941 (Sasmita et al. 2019). The prevalence of diabetes continues to increase in several districts in the district of Besuki (Riskesdas 2018). The highest number of diabetes mellitus cases was at the Patrang Public Health Center which had 371 cases (Sasmita et al. 2019). It is known that the prevalence of diabetes mellitus in Banyuwangi Regency from 2013-2018 has increased, from 1.5% to 2%. Bondowoso Regency also increase from 1% in 2013 to 1 .5% in 2018. Meanwhile, Situbondo Regency increased from 2% in 2013 to 3% in 2018 (Riskesdas 2018). This triggers an increasing number of patients makes an ulcer complications of peripheral neuropathy complications and it causes a damage to nerve cells and blood vessels (Ghotasiou et al. 2018). One of the contributing factors is its control against bacterial infections (Rahmadiliyani and Muhlisin 2008). Bacterial infections occur due to high glucose levels which are strategic places for various bacteria to breed (Sri and Setyawati 2016), such

BIODIVERSITAS 23 (2): 663-670, February 2022

*Staphylococcus* aureus and non-haemolytic as Staphylococcus sp. (Donastin et al. 2019). Control of bacterial growth in diabetic ulcer patients is generally given empirically (Donastin et al. 2019). One thing that needs to be considered in choosing empiric therapy is the type of bacteria (Katarnida 2014). The type of antibiotic used to treat infection must be appropriate and wise because the microorganisms that infect patients with diabetic ulcers are very diverse. The precise use of antibiotics in treatment will provide better therapeutic results, reduce the number of antibiotic resistance, reduce the incidence of amputations, and reduce mortality rates (Sari et al. 2018). Therefore, there is a need for further studies on bacterial resistance found in diabetic ulcer patients to antibiotics commonly prescribed by doctors such as ceftriaxone (Agistia et al. 2017), ceftazidime, cefoperazone, metronidazole, ciprofloxacin (Sari et al. 2018) and clindamycin (Sugiyono and Padmasari 2019) to determine their inhibition against bacteria. Hence, identifying macro and micro is very necessary to know the characteristics and species of bacteria (Rinanda 2011). The present study deals with morphological and molecular identification of multiantibiotic resistant bacteria in the wound site of diabetic ulcers.

## **MATERIALS AND METHODS**

#### Isolation of bacteria

Bacteria were isolated from sample of patients with diabetic ulcers at Dr. Soebandi Hospital and Diabetics Clinic at Jember, East Java, Indonesia and performed wound care with inclusion criteria, having ulcer grade I or II. Isolated bacteria were grown onto nutrient agar (NA) plate, then continued grown onto maltose salt agar (MSA), eosin methylene blue agar (EMBA) and King's B medium (Table 1). Observations on macro and micro characteristics was determined based on color, colony shape, elevation, edge, size, and shape/type of Gram bacteria (Table 2). ests for antibiotic resistance of bacteria isolated from diabetic ulcers were carried out using disk paper, six antibiotics with 3 replications, and ddH2O as a negative control.

Based on the result of bacterial growth on three kinds of medium, sample UB 1.1- UB 5.8 grow well on maltose salt agar, eosin methylene blue agar and King's B agar, and the other samples grow on two or one kind of medium with different colors each on medium.

#### Isolation and extraction of Bacterial DNA

The bacteria were grown in nutrient broth (NB) medium for 24 hours at 37°C which then 1000 µL aliquot was retrieved and centrifuged at 4°C, 1500 rpm for 10 minutes. The obtained supernatant contained DNA transferred to other eppendorf tubes, added with 180µL

digestion buffer,  $20\mu$ L proteinase K and mixed by vortex. Two hundred microliters lysis/binding buffer was added then. Five hundred microliters volumes of cold absolute ethanol and washing buffer were added, then centrifuged for 1 minute in 1000 g. The pellet was dried and resuspended in 25-200  $\mu$ L elution buffer (Zimbro et al. 2009).

#### **DNA** amplification and quantification

The 16S rRNA genes were amplified by using the universal primer of 27F 5'- GAG AGT TTG ATC CTG GCT CAG -3' and 1495R 5'- CTA CGG CTA CCT TGT TAC GA -3'. The first PCR amplification process was conducted using gradient temperature to obtain optimum temperature for each primer pairs. The gradient temperature setting was based on melting temperature (Tm) of each primer at 5°C below of Tm with 35 cycles. The PCR condition was pre-denatured at 95°C for 1 minute, denaturation at 94°C for 45 seconds, followed by 35 cycles annealing temperature at 53°C for 30 seconds, and extension at 72°C for 2 minutes, and final extension at 72°C for 10 seconds (Sunar et al. 2014). The amplification products were separated on 1.2% agarose gel stained with 3 µg/mL ethidium bromide using 1kb DNA ladders as molecular-weight size marker (Tilahun et al. 2018).

 Table 1. Bacterial growth on maltose salt agar, eosin methylene

 blue agar, and King's B agar medium

| Sample   | Maltose salt<br>agar | Eosin methylene<br>blue agar | Kings' B agar |
|----------|----------------------|------------------------------|---------------|
| UB 1.1   | White                | Pink Purplish                | White         |
| UB 1.2   | White                | Pink Purplish                | Pellucid      |
| UB 2.3   | White                | Pink purplish                | Pellucid      |
| UB 3.4   | White                | Pink purplish                | White         |
| UB 4.5   | White                | Pink purplish                | White         |
| UB 4.6   | White                | Pink Purplish                | Pellucid      |
| UB 5.7   | White                | Pink Purplish                | Pellucid      |
| UB 5.8   | White                | Pink Purplish                | Pellucid      |
| UB 6.15  | White                | Pellucid                     | -             |
| UB 6.16  | 10 M 10 M 10 M       | - / /                        | Pellucid      |
| UB 7.17  | 100 M                | - /                          | Pellucid      |
| UB 7.18  | -                    | - / /                        | Pellucid      |
| UB 8.9   | Yellow               | -//                          | -             |
| UB 8.10  | Yellow               | -                            | -             |
| UB 9.11  | -                    | Purplish pink                | -             |
| UB 10.12 | -                    | Purplish pink                | -             |
| UB 11.13 | Putih                | Pellucid                     | -             |
| UB 12.14 | White                | Pellucid                     | -             |
| UB 13.19 | -                    | -                            | Pellucid      |
| UB 13.20 | -                    | -                            | Pellucid      |
| UB 14.21 | -                    | -                            | Pellucid      |
| UB 14.22 | -                    | -                            | Pellucid      |

Note: - (not growing).

RISQIYAH et al. - Identification of diabetic ulcers bacteria

#### Table 2. Macroscopic and microscopic bacterial morphological

| G         |          |              | Cell shape/type |          |        |                  |
|-----------|----------|--------------|-----------------|----------|--------|------------------|
| Sample    | Color    | Colony shape | Elevation       | Edge     | Size   | of gram bacteria |
| UB 1.1M   | Yellow   | Circular     | Flat            | Entire   | Small  | Coccus (GN)      |
| UB 1.1E   | White    | Circular     | Raised          | Entire   | Small  | Coccus (GN)      |
| UB 1.1K   | White    | Circular     | Raised          | Entire   | Small  | Basile (GN)      |
| UB 1.2M   | White    | Circular     | Raised          | Entire   | Medium | Basile (GN)      |
| UB 1.2E   | White    | Circular     | Flat            | Entire   | Medium | Coccus (GN)      |
| UB 1.2K   | White    | Irregular    | Flat            | Serrate  | Point  | Coccus (GN)      |
| UB 2.3M   | White    | Circular     | Flat            | Entire   | Medium | Coccus (GN)      |
| UB 2.3E   | White    | Circular     | Raised          | Entire   | Point  | Basile (GN)      |
| UB 2.3K   | White    | Circular     | Flat            | Entire   | Small  | Basile (GN)      |
| UB 3.4M   | White    | Circular     | Flat            | Entire   | Medium | Basile (GN)      |
| UB 3.4E   | White    | Circular     | Raised          | Entire   | Small  | Coccus (GN)      |
| UB 3.4K   | White    | Circular     | Flat            | Entire   | Small  | Basile (GN)      |
| UB 4.5M   | White    | Circular     | Flat            | Entire   | Medium | Basile (GN)      |
| UB 4.5E   | Greenish | Circular     | Raised          | Entire   | Small  | Basile (GN)      |
| UB 4.5K   | White    | Circular     | Raised          | Entire   | Medium | Basile (GN)      |
| UB 4.6M   | Yellow   | Circular     | Flat            | Entire   | Small  | Coccus (GP)      |
| UB 4.6E   | Yellow   | Circular     | Raised          | Entire   | Point  | Basile (GN)      |
| UB 4.6K   | White    | Irregular    | Flat            | Undulate | Point  | Basile (GN)      |
| UB 5.7M   | White    | Circular     | Flat            | Entire   | Point  | Basile (GN)      |
| UB 5.7E   | White    | Circular     | Flat            | Entire   | Medium | Basile (GN)      |
| UB 5.7K   | White    | Circular     | Flat            | Entire   | Small  | Basile (GP)      |
| UB 5.8M   | White    | Circular     | Flat            | Entire   | Small  | Coccus (GN)      |
| UB 5.8E   | White    | Circular     | Raised          | Entire   | Medium | Coccus (GP)      |
| UB 5.8K   | White    | Circular     | Flat            | Entire   | Small  | Basile (GN)      |
| UB 6.15M  | White    | Circular     | Raised          | Entire   | Small  | Basile (GN)      |
| UB 6.15E  | Pellucid | Circular     | Raised          | Entire   | Medium | Basile (GN)      |
| UB 6.16K  | White    | Circular     | Raised          | Entire   | Small  | Basile (GN)      |
| UB 7.17K  | White    | Circular     | Raised          | Entire   | Point  | Coccus (GP)      |
| UB 7.18K  | White    | Circular     | Raised          | Entire   | Medium | Basile (GN)      |
| UB 8.9M   | Golden   | Circular     | Flat            | Entire   | Small  | Basile (GN)      |
| UB 8.10M  | White    | Circular     | Flat            | Entire   | Small  | Basile (GN)      |
| UB 9.11E  | White    | Irregular    | Flat            | Serrate  | Small  | Coccus (GN)      |
| UB 10.12E | White    | Circular     | Flat            | Entire   | Small  | Coccus (GP)      |
| UB 11.13M | Green    | Circular     | Raised          | Entire   | Small  | Basile (GN)      |
| UB 12.14M | Green    | Circular     | Flat            | Entire   | Small  | Basile (GN)      |
| UB 12.14E | Yellow   | Circular     | Raised          | Entire   | Point  | Basile (GN)      |
| UB 13.19K | White    | Circular     | Flat            | Entire   | Small  | Basile (GN)      |
| UB 13.20K | White    | Circular     | Flat            | Entire   | Point  | Basile (GN)      |
| UB 14.21K | Pellucid | Circular     | Flat            | Entire   | Small  | Basile (GN)      |
| UB 14.22K | White    | Irregular    | Raised          | Lobate   | Small  | Basile (GN)      |

Note: GN- Gram negative; GP- Gram Positive.

#### **RESULTS AND DISCUSSION**

The selected samples were UB 1.2E, UB 2.3K, UB 3.4, and UB 4.5M showed the similarities with *Alcaligenes faecalis* strain NRBC 13111 observed by morphological characteristics in the form of *Bacillus*, including Gramnegative thype of bacteria (Table 2). Thats four bacterial samples had different characters from other samples, which were both grown in white on MSA medium, purplish-pink on EMBA, and on white King's B (Tabel 1). *Alcaligenes faecalis* strain NRBC has a tolerance to high salt content of almost 10%. However, the growth was not as much as when the salt concentration was below 7% (Suhartati et al. 2018). *Alcaligenes faecalis* can grow in EMBA differential selective medium. EMBA contains eosin Y as a pH indicator and inhibits the growth of Gram-positive bacteria. The inability of *A. faecalis* to ferment sucrose and glucose makes the colony color purplish pink (Omer et al. 2017). This medium is used to confirm the presence or absence of *Pseudomonas aeruginosa* based on its fluorescence. A positive result indicates the presence of luminescence green-yellow fluorescent pigment on *Pseudomonas aeruginosa* when placed under a UV lamp with a wavelength of 366 nm (Quinn et al. 2004). Case infection *A. faecalis* in diabetic ulcers has rarely been reported in the literature. There were only 4 cases worldwide in 1952, 1997, 2019, and 2020 (Sommeng et al. 2019). Based on the molecular identification showed the similarities until 96.77% with *A. faecalis* strain NRBC 13111 (Table 3).

Sample UB 6.15E is known to have similarities with *Shigella flexneri* strain ATCC 29903 observed by molecular identification (Table 3). *Shigella flexneri is* a Gram-negative Bacilli. Based on the results of macroscopic morphological observations, *S. flexneri* also grew on white

MSA medium and clear colored EMBA medium. The growth of S. flexneri on MSA medium is due to S. flexneri having a tolerance of salt levels up to 8% to still survive on MSA medium (Huang 2020). Shigella flexneri is a bacterium that cannot ferment lactose, so when grown in EMBA medium, it will be clear or colorless. Shigella flexneri grown dimedium time EMBA, large colony size and colorless (Zaika et al. 2002). In general, S. flexneri is a bacterium that does not have flagella, is aerobic, does not form spores, causes diarrhea and dysentery. Its habitat is in the digestive tract with infection through the mouth. The morphological characters were clear colony color, raised elevation, entire edge, medium colony size, and smooth surface. This is in accordance with the observations that have been made (Table 2). Shigella flexneri has also been found in the bloodstream of patients with uncontrolled diabetes mellitus. If these bacteria survive long enough in large numbers, it can cause serious infections (Power and Johnson 2009).

Sample UB 7.17K (*Enterococcus faecalis*) was a facultative anaerobe, had a white colony color, around colony shape, a smooth surface (Khamid and Mulasari 2012). This was also suitable for observing morphological results (Table 4). Samples UB 11.13M and UB 12.14M based on molecular identification were similar to *Proteus mirabilis* bacteria but different strains. UB 11.13M was similar to *P. mirabilis* strain JCM 1669 while UB 12.14M was similar to *P. mirabilis* strain ATCC 29906. *Proteus mirabilis* was a Gram-negative Bacilli bacteria (Table 2).

Sample UB 13.20K was known to have similarities with *Acinetobacter seohaensis* strain SW-100 (Table 3), with morphological characteristic was a Gram negative-Bacilli bacteria (Table 2).

The antibiotics resistance test results showed that all *A. faecalis* strain NRBC 13111 were resistant to all tested antibiotics. *Enterococcus faecalis* strain ATCC 19433 and *P. mirabilis* strain JCM 1669 are resistant, intermediate and sensitive to several antibiotics. *Proteus mirabilis* strain ATCC 29906, *A. seohaensis* strain SW-100 and *S. flexneri* strain ATCC 29903 were resistant to all the antibiotics tested (Table 4) and (Figure 1).

Sample UB 7.17K is similar to bacteria E. faecalis strain ATCC 19433. Enterococcus faecalis is coccus-shaped and includes Gram positive bacteria. The growth of E. faecalis on King's B medium other microbes could be grown other then Pseudomonas aeruginosa. Enterococcus faecalis also did not grow in MSA medium because the tolerance limit for NaCl was 6.5% only (Ninan et al. 2016). Enterococcus faecalis is a facultative anaerobe, has white colony color, rounded colony shape, smooth surface (Ahmad et al. 2002). This is also in accordance with the observations (Table 2). Enterococcus faecalis can grow at a high pH of 4.8-9.6, with no spores, and non-motile. These bacteria can cause urinary tract infections and are found in diabetic ulcers, but their abundance is about 8% (Khamid et al. 2012).

| Sample    | ple Species                                           |      | Query<br>cover (%) | E-value | Identity<br>(%)     | Accession<br>number | Length<br>(bp) |
|-----------|-------------------------------------------------------|------|--------------------|---------|---------------------|---------------------|----------------|
| UB 1.2E   | Alcali <mark>genes faecalis st</mark> rain NRBC 13111 | 1956 | 100                | 0.0     | 96.77               | NR_113606.1         | 1462           |
| UB 2.3K   | Alcalig <mark>enes faecalis strain</mark> NRBC 13111  | 2132 | 99                 | 0,0     | 95.15               | NR_113606.1         | 1462           |
| UB 3.4M   | Alcalige <mark>nes faecalis strain NRB</mark> C 13111 | 422  | 73                 | 3e-117  | 77.61               | NR_113606.1         | 1462           |
| UB 4.5M   | Alcaligenes faecalis strain NRBC 13111                | 1884 | 97                 | 0.0     | 90.86               | NR_113606.1         | 1462           |
| UB 6.15E  | Shigella flexneri strain ATCC 29903                   | 1803 | 100                | 0.0     | 91.80               | NR_026331.1         | 1530           |
| UB 7.17K  | Enterococcus faecalis strain ATCC 19433               | 1229 | 90                 | 0.0     | 83.97               | NR_115765.1         | 1483           |
| UB 11.13M | Proteus mirabilis strain JCM 1669                     | 2100 | 96                 | 0.0     | <b>95.46</b>        | NR_113344.1         | 1465           |
| UB 12.14M | Proteus mirabilis strain ATCC 29906                   | 915  | 90                 | 0.0     | 85.24               | NR_114419.1         | 1497           |
| UB 13.20K | Acinetobacter seohaensis strain SW-100                | 1960 | 99                 | 0.0     | <mark>92</mark> .20 | NR_115299.1         | 1493           |
|           |                                                       |      |                    |         |                     |                     |                |

Table 3. Molecular identification of bacteria causing diabetic ulcers

Table 4. Measurement results of antibiotic clear zone against bacteria that cause diabetic ulcer

| Sample          | Antibiotics | Paper disk conc. * | Inhit     | oition zone cri | teria | Average       | Result |
|-----------------|-------------|--------------------|-----------|-----------------|-------|---------------|--------|
|                 | treatment   | (µg/mL)            | S         | Ι               | R     | ( <b>mm</b> ) |        |
| Alcaligenes     | CAX         | 30                 | ≥23       | 20-22           | ≤19   | 0             | R      |
| faecalis strain | CAZ         | 30                 | $\geq 21$ | 18-20           | ≤17   | 0             | R      |
| NRBC 13111      | CFP         | 75                 | $\geq 21$ | 16-20           | ≤15   | 0             | R      |
| (UB 1.2E)       | CDM         | 2                  | $\geq 21$ | 15-20           | ≤14   | 0             | R      |
|                 | MTZ         | **5                | $\geq 21$ | 16-21           | ≤16   | 0             | R      |
|                 | СР          | 5                  | $\geq 21$ | 16-20           | ≤15   | 0             | R      |
|                 | K(-)/ddH2O  | -                  | -         | -               | -     | 0             | -      |

RISQIYAH et al. - Identification of diabetic ulcers bacteria

|                                                 |                         |          |                                                                                           |                |             |               | _      |
|-------------------------------------------------|-------------------------|----------|-------------------------------------------------------------------------------------------|----------------|-------------|---------------|--------|
| Alcaligenes                                     | CAX                     | 30       | $\geq 23$                                                                                 | 20-22          | ≤19         | 14.83         | R      |
| <i>faecalis</i> strain                          | CAZ                     | 30       | $\geq 21$                                                                                 | 18-20          | ≤17         | 11.66         | R      |
| NRBC 13111                                      | CFP                     | 75       | $\geq 21$                                                                                 | 16-20          | ≤15         | 12.06         | R      |
| (UB 2.3K)                                       | CDM                     | 2        | $\geq 21$                                                                                 | 15-20          | ≤14         | 0             | R      |
| . ,                                             | MTZ                     | **5      | > 21                                                                                      | 16-21          | <16         | 0             | R      |
|                                                 | CP                      | 5        | > 21                                                                                      | 16-20          | <15         | 25.43         | S      |
|                                                 | $K(-)/ddH_{2}O$         | -        |                                                                                           | -              |             | 0             | -      |
|                                                 | n()/ dd1120             |          |                                                                                           |                |             | 0             |        |
| Alcaligenes                                     | CAX                     | 30       | > 23                                                                                      | 20-22          | <19         | 21.86         | I      |
| faecalis strain                                 | CAZ                     | 30       | > 21                                                                                      | 18-20          | <17         | 0.17          | R      |
| NPRC 13111                                      | CED                     | 75       | $\geq 21$<br>> 21                                                                         | 16 20          | <u>_1</u> 7 | 10.17         | D      |
| (IID 2 4M)                                      | CDM                     | 2        | $\geq 21$<br>> 21                                                                         | 15-20          | <u>_1</u>   | 10.4          | D      |
| $(\mathbf{U}\mathbf{D} \mathbf{J}.4\mathbf{M})$ | CDM<br>MT7              | ۲<br>**  | $\geq 21$                                                                                 | 15-20          | <u>≤14</u>  | 0             | R<br>D |
|                                                 |                         |          | $\geq 21$                                                                                 | 16-21          | $\leq 10$   | 0             | K<br>D |
|                                                 |                         | 3        | 221                                                                                       | 10-20          | $\leq 13$   | 0             | K      |
|                                                 | K(-)/ddH2U              | · /      |                                                                                           |                | -           | 0             | -      |
| Magliganas                                      | CAV                     | 20       | > 23                                                                                      | 20.22          | <10         | 18.06         | р      |
| Accurgenes                                      | CAA                     | 30       | $\geq 23$                                                                                 | 20-22          | <u>≤19</u>  | 10.00         | R<br>D |
| Jaecans strain                                  | CAL                     | 30       | $\geq 21$                                                                                 | 16-20          | $\leq 1/$   | 4.00          | K<br>D |
| NRBC 13111                                      | CFP                     | 15       | $\geq 21$                                                                                 | 16-20          | ≤15         | 8.33          | K      |
| (UB 4.5M)                                       | CDM                     | 2        | $\geq 21$                                                                                 | 15-20          | ≤14         | 0             | R      |
|                                                 | MTZ                     | **5      | $\geq 21$                                                                                 | 16-21          | ≤16         | 0             | R      |
|                                                 | СР                      | 5        | $\geq 21$                                                                                 | 16-20          | ≤15         | 0             | R      |
|                                                 | K(-)/ddH <sub>2</sub> O |          | 1000                                                                                      | and the second |             | 0             | -      |
|                                                 | a                       |          |                                                                                           |                |             |               |        |
| Shigella flexneri                               | CAX                     | 30       | $\geq 23$                                                                                 | 20-22          | ≤19         | 7.56          | R      |
| strain ATCC                                     | CAZ                     | 30       | $\geq 21$                                                                                 | 18-20          | ≤17         | 0             | R      |
| 29903                                           | CFP                     | 75       | $\geq 21$                                                                                 | 16-20          | ≤15         | 2.83          | R      |
| (UB 6.15E)                                      | CDM                     | 2        | $\geq 21$                                                                                 | 15-20          | ≤14         | 0             | R      |
|                                                 | MTZ                     | **5      | $\geq 21$                                                                                 | 16-21          | ≤16         | 0             | R      |
|                                                 | CP                      | 5        | $\geq 21$                                                                                 | 16-20          | ≤15         | 0             | R      |
|                                                 | K(-)/ddH <sub>2</sub> O | - 04- C  | N. 11 /                                                                                   |                | 10 1        | 0             |        |
|                                                 |                         |          |                                                                                           |                |             |               |        |
| Enterococcus                                    | CAX                     | 30       | ≥ 23                                                                                      | 20-22          | ≤19         | 14.33         | R      |
| faecalis strain                                 | CAZ                     | 30       | $\geq 21$                                                                                 | 18-20          | ≤17         | 14.43         | R      |
| ATCC 19433                                      | CFP                     | 75       | $\geq 21$                                                                                 | 16-20          | ≤15         | 16.3          | I      |
| (UB 7.17K)                                      | CDM                     | 2        | ≥ 21                                                                                      | 15-20          | ≤14         | 5,9           | R      |
|                                                 | MTZ                     | **5      | $\geq 21$                                                                                 | 16-21          | ≤16         | 0             | R      |
|                                                 | СР                      | 5        | ≥ 21                                                                                      | 16-20          | ≤15         | 23.5          | S      |
|                                                 | K(-)/ddH <sub>2</sub> O |          |                                                                                           |                |             | 0             | -      |
|                                                 |                         |          |                                                                                           |                |             |               |        |
| Proteus                                         | CAX                     | 30       | ≥ 23                                                                                      | 20-22          | ≤19         | 26.23         | S      |
| mirabilis                                       | CAZ                     | 30       | $\geq 21$                                                                                 | 18-20          | ≤17         | <b>19.2</b> 3 | Ι      |
| strain JCM 1669                                 | CFP                     | 75       | $\geq 21$                                                                                 | 16-20          | ≤15         | 16.1          | Ι      |
| (UB 11.13M)                                     | CDM                     | 2        | $\geq 21$                                                                                 | 15-20          | ≤14         | 0             | R      |
|                                                 | MTZ                     | **5      | $\geq 21$                                                                                 | 16-21          | ≤16         | 0             | R      |
|                                                 | СР                      | 5        | ≥ 21                                                                                      | 16-20          | ≤15         | 25.9          | S      |
|                                                 | K(-)/ddH <sub>2</sub> O |          | -                                                                                         |                |             | 0             | -      |
|                                                 |                         |          |                                                                                           |                |             |               |        |
| Proteus                                         | CAX                     | 30       | ≥ <u>2</u> 3                                                                              | 20-22          | ≤19         | 17.97         | R      |
| mirabilis                                       | CAZ                     | 30       | ≥ 21                                                                                      | 18-20          | ≤17         | 17            | R      |
| strain ATCC                                     | CFP                     | 75       | ≥ 21                                                                                      | 16-20          | ≤15         | 12.93         | R      |
| 29906                                           | CDM                     | 2        | ≥21                                                                                       | 15-20          | ≤14         | 0.38          | R      |
| (UB 12.14M)                                     | MTZ                     | **5      | ≥21                                                                                       | 16-21          | ≤16         | 0             | R      |
|                                                 | СР                      | 5        | ≥21                                                                                       | 16-20          | ≤15         | 0.96          | R      |
|                                                 | K(-)/ddH <sub>2</sub> O | -        | -                                                                                         | -              | -           | 0             | -      |
|                                                 |                         |          |                                                                                           |                |             |               |        |
| Acinetobacter                                   | CAX                     | 30       | ≥23                                                                                       | 20-22          | ≤19         | 0             | R      |
| seohaensis                                      | CAZ                     | 30       | ≥ 21                                                                                      | 18-20          | ≤17         | 0             | R      |
| strain                                          | CFP                     | 75       | > 21                                                                                      | 16-20          | <15         | 0             | R      |
| SW-100                                          | CDM                     | 2        | > 21                                                                                      | 15-20          | <14         | Õ             | R      |
| (UB 13.20K)                                     | MTZ                     | -<br>**5 | > 21                                                                                      | 16-21          | <16         | Ő             | R      |
| · · · · · · · · · · · · · · · · · · ·           | CP                      | 5        | > 21                                                                                      | 16-21          | <15         | 0             | P      |
|                                                 | U<br>K()/ddU.O          | 5        | <u>~</u> | 10-20          | <u> ~15</u> | 0             | К      |
|                                                 | K(-)/uun20              | -        | -                                                                                         | -              | -           | U             | -      |

Note: \*Standard of antibiotic concentration according to (CLSI 2017); \*\* Concentration according to (Fabanyo et al. 2017).

BIODIVERSITAS 23 (2): 663-670, February 2022



**Figure 1.** Antibiotics resistance: A. Alcaligenes faecalis strain NRBC 13111 (UB 1.2E); B. Alcaligenes faecalis strain NRBC 13111 (UB 2.3K); C. Alcaligenes faecalis strain NRBC 13111 (UB 3.4M); D. Alcaligenes faecalis strain NRBC 13111 (UB 4.5M); E. Shigella flexneri strain ATCC 29903 (UB 6.15E); F. Enterococcus faecalis strain ATCC 19433 (UB 7.17K); G. Proteus mirabilis strain JCM 1669 (UB 11.13M); H. Proteus mirabilis strain ATCC 29906 (UB 12.14M); I. Acinetobacter seohaensis strain SW-100 (UB 13.20K). (1) CAX; (2) CAZ; (3) CFP; (4) CDM; (5) MTZ; (6) CP

UB 11.13M and UB 12.14M samples have similarities with bacteria *P. mirabilis* but different strains. UB 11.13M looks like *P. mirabilis* strain JCM 1669 while UB 12.14M has similarities with *P. mirabilis* strain ATCC 29906. *Proteus mirabilis* is a Gram-negative bacterium in the form of a bacilli, does not form spores, is facultatively anaerobic, moves with flagella and is a pathogenic bacterium in the intestines of both humans and animals. This bacterium is often found in wound infections and is a virulent gene that causes it to become pathogenic. The presence of *P. mirabilis* in diabetic ulcers is quite high at 17.5% (Putri et al. 2018).

Sample UB 13.20K is known to have similarities with *A. seohaensis* strain SW-100. This bacterium is a gram negative bacterium in the form of a bacillus. This *A. seohaensis* can be isolated from seawater (Nur et al. 2016) and there are no studies previously found *A. seohaensis* in diabetic ulcers or wound infections. This can happen because a diabetic ulcer is a strategic place for the proliferation of various kinds of bacteria so that when the

ulcer is still in the treatment process, it can be contaminated with bacteria from the air, surrounding objects and from the closest people, especially if the ulcer is not bandaged for a long time.

The types of bacteria found in diabetic ulcers may vary and differ in each region because bacteria are microorganisms that are easy to mutate so that they can form new strains with different characteristics such as resistance to antibiotics. This is evidenced by the results of antibiotic resistance tests (Table 4) and (Figure 1) showing that *A. faecalis* strain NRBC 13111 is known to be resistant to all the antibiotics tested, except *A. faecalis* strain NRBC 13111 from UB sample 2.3K which is sensitive to ciprofloxacin and *A. faecalis* strain NRBC 13111 derived from UB sample 3.4M intermediate to ceftriaxone. This is reinforced by the case of diabetic ulcers with the infection *A. faecalis* in 2019 and known that *A. faecalis* was resistant to antibiotics ciprofloxacin, ceftriaxone, and ceftazidime (Ahmad et al. 2002).

Shigella flexneri strain ATCC 29903 is known to be resistant to all antibiotics which was tested and

strengthened by research conducted by Ninan et al. 2016 S. flexneri was resistant to ceftazidime and ceftriaxone. Enterococcus faecalis strain ATCC 19433 is resistant to ceftriaxone, ceftazidime, clindamycin and metronidazole, intermediate to cefoperazone, and sensitive to ciprofloxacin. Proteus mirabilis strain JCM 1669 and P. mirabilis strain ATCC 29906 had different results even though the bacteria were the same. Proteus mirabilis strain JCM 1669 is resistant to clindamycin and metronidazole, sensitive to ceftriaxone and ciprofloxacin, intermediate to ceftazidime and cefoperazone. Meanwhile, P. mirabilis strain ATCC 29906 was resistant to all the antibiotics tested. This matter can occur because of the presence or absence of resistance genes in these bacteria and the differences in strains that occur due to mutations can change the nature of these bacteria to antibiotics (Yoon 2007). Acinetobacter seohaensis strain SW-100 is also known to be resistant to all tested antibiotics.

Ceftriaxone and ceftazidime are broad-spectrum antibiotics and widely used for curing diabetic ulcers. Ceftriaxone and ceftazidime are used as antibiotics that can control gram bacterial infections negatively and have a low effect on Gram-positive bacteria. Metronidazole and clindamycin are often added in combination antibiotics because clindamycin has an optimal spectrum against Gram-positive cocci and Gram-positive bacteria. Anaerobic bacteria, while the administration of metronidazole depends on the patient's ulcer condition, metronidazole is directly given to patients with chronic ulcers, ulcers which has a deep odor (Huang 2016) because it is effective against anaerobic protozoan parasites, anaerobic Gramnegative bacilli, and spore-forming anaerobic Grampositive bacteria.

Metronidazole is ineffective against aerobic bacteria, because aerobic bacteria do not have electron transport components like anaerobic bacteria. In this study, all bacteria isolated were aerobic and facultative anaerobes, therefore clindamycin and metronidazole in bacteria were found to have no effect. The occurrence of bacterial sensitivity to ciprofloxacin is caused because ciprofloxacin is a quinolone class of antibiotics with strong antibacterial activity against Gram-negative bacteria. The presence of the bacteria is still sensitive to ciprofloxacin can get into the cell by passive diffusion through the protein channel filled with water on the outer membrane of bacteria intracellularly. Ciprofloxacin inhibits bacterial DNA replication by interfering with the work of DNA during bacterial growth and reproduction (Huang 2020).

In conclusion, identification of molecular and morphological bacterial species found a various of bacteria with the multi-antibiotic resistant in patients with diabetic ulcers at the former Besuki Residency, namely *A. faecalis* strain NRBC 13111 which was resistant to all tested antibiotics, except *A. faecalis* strain NRBC 13111 from UB sample 2.3K sensitive to ciprofloxacin and *A. faecalis* strain NRBC 13111 from UB sample 3.4M intermediate to ceftriaxone. *Enterococcus faecalis* strain ATCC 19433 is resistant to ceftriaxone, ceftazidime, clindamycin and metronidazole, intermediate to cefoperazone, and sensitive to ciprofloxacin. *Proteus mirabilis* strain JCM 1669 was resistant to clindamycin and metronidazole, sensitive to ceftriaxone and ciprofloxacin, intermediate to ceftazidime and cefoperazone. *Proteus mirabilis* strain ATCC, 29906 *A. seohaensis* strain SW-100 and *S. flexneri* strain ATCC 29903 were resistant to all tested antibiotics.

## ACKNOWLEDGEMENTS

The authors thank Sofiarini who assisted in collecting sample from diabetic ulcer patients.

#### REFERENCES

- Agistia N, Mukhtar H, Nasif H. 2017. The effectiveness of antibiotics in diabetic foot ulcer patients. J Sains Farmasi Klinis 4: 43-48. DOI: 10.29208/jsfk.2017.4.1.144. [Indonesian]
- Ahmad M, Smith DG, Mahboob S. 2002. Effect of NaCl on heat tolerance of *Enterococcus faecium* and *Enterococcus faecalis*. J Biol Sci 2: 483-484. DOI: 10.3923/jbs.2002.483.484.
- Dinkes Jember. 2015. Laporan Kesehatan (LBI) DM Jember Tahun 2015. Dinas Kesehatan Kabupaten Jember, Jember. [Indonesian]
- Donastin A, Aisyah A. 2019. Microbial pattern of diabetic foot ulcer patient in Jemursari Islamic Hospital Surabaya Period 2012-2016. Indones J Med Lab Sci Technol 1: 22-32 DOI: 10.33086/ijmlst.v1i1.914.
- Fabanyo N, Fatimawali, Citraningtyas G. 2017. Identification and test of bacterial resistance of dental plaque with amalgam at Tikala Baru health center against metronidazole and quinolone antibiotics. J Ilmiah Farmasi 6 (3): 216-222. [Indonesian]
- Ghotaslou R, Memar MY, Alizadeh N. 2018. Classification, microbiology and treatment of diabetic foot infections. J Wound Care 27 (7): 434-440. DOI: 10.12968/jowc.2018.27.7.434.
- Huang C. 2020. Diabetic foot ulcer with *Alcaligenes faecalis* infection. Dubai Diabetes Endocrinol J 26 (3): 1-6. DOI: 10.1159/000508094.
- Huang ET. 2016. Comment on Fedorko et al. Hyperbaric oxygen therapy does not reduce indications for amputation in patients with diabetes with nonhealing ulcers of the lower limb: a prospective, double-blind, randomized controlled clinical trial. Diabetes Care 39 (8): e133-e134. DOI: 10.2337/dc16-0196.
- International Diabetes Federation. 2019. IDF diabetes atlas Eighth Edition. International Diabetes Federation, Brussels.
- Katarnida SS, Murniati D, Katar Y. 2014. Evaluation of the qualitative use of antibiotics in the Sulianti Saroso Infectious Disease Hospital, Jakarta. Sari Pediatr 15 (6): 369-376. DOI: 10.14238/sp15.6.2014.369-76. [Indonesian]
- Khamid M, Mulasari SA. 2012. Identifikasi bakteri aerob pada lindi hasil sampah dapur di dusun Sukunan Yogyakarta. Jurnal Kesehatan Masyarakat 6 (1): 1-74. DOI: 10.12928/kesmas.v6i1.1066. [Indonesian]
- Kominfo. 2015. Still high, the prevalence of diabetes in East Java. Department of Communication and Information, East Java Province. [Indonesian]
- Ninan M, George TK, Balaji V, Ramya I. 2016. extended spectrum betalactamase producing *Shiglla flexneri* serotype-2 causing bacteremia in a patient with uncontrolled diabetes mellitus. J Path Microb 59 (3): 420-424. DOI: 10.4103/0377-4929.188120.
- Nur A, Marissa N. 2016. Overview of diabetic ulcer bacteria at Zainal Abidin and Meuraxa hospitals in 2015. Bulletin Penelitian Kesehatan 44 (3): 187-196. DOI: 10.22435/bpk.v44i3.5048.187-196. [Indonesian]
- Omer A. 2017. Inducing plant resistance against salinity using some rhizobacteria. Egypt J Desert Res 67 (1): 187-208. DOI: 10.21608/ejdr.2017.6498.
- Power DA, Johnson JA. 2009. Difco™ & BBL™ manual. Manual of Microbiological Culture Media.
- Putri Y, Putra AE, Utama BI. 2018. Identifikasi dan karakteristik bakteri asam laktat yang diisolasi dari vagina wanita usia subur. Jurnal Kesehatan Andalas 7: 20-25. DOI: 10.25077/jka.v7i0.864. [Indonesian]

670

#### BIODIVERSITAS 23 (2): 663-670, February 2022

- Quinn PJ, Carter M, Markey B, Carter Gr. 2004. Clinical Veterinary Microbiology. Ed Ke-4. Mosby, New York.
- Rahmadliyani N, Muhlisin A. 2008. Hubungan antara pengetahuan tentang penyakit dan komplikasi pada penderita diabetes melitus dengan tindakan mengontrol kadar gula darah di wilayah kerja Puskesmas I Gatak Sukoharjo. Jurnal Berita Ilmu Keperawatan 1 (2): 63-68. DOI: 10.23917/bik.v1i2.3738. [Indonesian]
- Rinanda T. 2011. Analisis sekuensing 16S rRNA di bidang mikrobiologi. Jurnal Kedokteran Syiah Kuala 11 (3): 172-177. [Indonesian]
- Riskesdas. 2018. The prevalence of diabetes mellitus based on doctor's diagnosis in the population aged 15 years by district/city, East Java province 2013-2018. Basic Health Research. Agency for Health Research and Development, Jakarta. [Indonesian]
- Sari Y, Almasdy D, Fatimah A. 2018. Evaluasi penggunaan antibiotik pada pasien ulkus diabetikum di Instalasi Rawat Inap (IRNA) penyakit dalam RSUP Dr. M. Djamil Padang. Jurnal Sains Farmasi Klinis 5 (2): 102-111. DOI: 10.25077/jsfk.5.2.102-111.2018. [Indonesian]
- Sasmita H, Prasetyowati I, Wahjudi P. 2019. Prevalence and risk factors of diabetes mellitus in tuberculosis patient at Patrang District Indonesia. Indonesian. J Trop Infect Dis 7 (4): 79-85. DOI: 10.20473/ijtid.v7i4.7534
- Sommeng F, Sodiqoh Y, Dienillah FR, 2019. Identifikasi bakteri udara di ruang operasi dengan bakteri pada luka infeksi pasien pasca operasi di Rumah Sakit Ibnu Sina. UMI Med J 4 (1): 37-51. DOI: 10.33096/umj.v4i1.49. [Indonesian]
- Sri NK, Setyawati T. 2016. Comparison of the effectiveness of antibiotics (ciprofloxacin, cefotaxime, ampicillin, ceftadizime and meropenem)

against *Staphylococcus aureus* causing diabetic ulcers using the Kiirby-Bauer method. Medika Tadulako 3 (2): 1-11. [Indonesian]

- Sudoyo AW, Setiyohadi B, Alwi I. 2007. Textbook of internal medicine volume III. IV edition. Interna Publishing, Jakarta. [Indonesian]
- Sugiyono S, Padmasari P. 2019. Hubungan kesesuaian antibiotik definitif dengan clinical outcome pada pasien ulkus diabetik di RSUD Kota Yogyakarta. Fitofarmaka. Jurnal Ilmiah Farmasi 9 (1): 56-63. DOI: 10.33751/jf.v9i1.1261. [Indonesian]
- Suhartati R, Sulistiani, Nuraini A. 2018. Utilization of soybean powder as a material for making mannitol salt agar (MSA) media for the growth of *Staphyloccus* bacteria. Prosiding Seminar Nasional dan Penelitian Kesehatan 2018 1 :1. [Indonesian]
- Sunar NM, Stentiford EI, Stewart DI, Fletcher LA. 2014. Molecular techniques to characterize the invA genes of Salmonella spp. for pathogen inactivation study in composting. arXiv preprint arXiv:1404.5208.
- Tilahun B, Tesfaye A, Muleta D, Bahiru A, Terefework Z, Wessel G. 2018. Isolation and molecular identification of lactic acid bacteria using 16S rRNA genes from fermented teff (*Eragrostis* tef (Zucc.)) dough. Intl J Food Sci 1 (2): 1-7. DOI: 10.1155/2018/8510620.
- Yoon JH. 2007. *Acinetobacter marinus* sp. and *Acinetobacter seohaensis* sp. isolated from sea water of the Yellow Sea in Korea. J Microb Biotechnol 17 (11): 1743-1750.
- Zaika LL. 2002. The effect of NaCl on survival of *Shigella flexneri* in broth as affected by temperature and pH. J Food Prot 65: 774-779. DOI: 10.4315/0362-028x-65.5.774.
- Zimbro MJ, David AP, Sharon MM, George EW, Julie AJ. 2009. DifcoTM & BBLTM Manual: Manual of microbiological culture media. Becton, Dickinson and Company, Maryland.