Digital Repository Univers

11

11

11

PROCEEDINGS

2021 INTERNATIONAL SEMINAR ON INTELLIGENT TECHNOLOGY AND ITS APPLICATION (ISITIA)

Intelligent Systems For The New Normal Era

IEEE Conference Number #52817

IEEE Catalog Number CFP21TIA - ART ISBN : 978 - 1 - 6654 - 2847 - 7

Virtual Conference 21 - 22 July 2021

Table of Contents

Message From The General Chairiii
Message from the Dean of the Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) - ITS Indonesiav
Welcome Speech from Rector of ITS Surabaya, Indonesia vii
Organizing Committeeix
ISITIA 2021 Technical Program Committee and Reviewerx
ISITIA 2021 General Program Schedulexiv
Technical Session Schedule xv
Keynote Speakers
Dr. Danny Pudjianto xxiii
Dr. Adhi Dharma Wibawa xxv
Prof. Shiang-Hwua Yuxxvii
Prof. Wolfgang Bösch xxviii
ISITIA 2021 Paper Detail 1
Medical Images Compression and Encryption Using DCT, Arithmetic Encoding
and Chaos-Based Encryption 1
Recent Development in DGA Diagnosis Using Graphical Analysis Method 6
Design of EV Hardware-In-The-Loop Simulator of Battery and Supercapacitor
Hybrid Storage System 11
Effect of CT-Scan Image Resizing, Enhancement and Normalization on Accuracy of
Covid-19 Detection 17
Spectral Efficiency of MU-Massive MIMO System for Perfect and Imperfect CSI
Condition 23
CNN-Based Autoencoder Application in Breast Cancer Image Retrieval 29
Study of the Utilization of Local Renewable Energy Potential in Sebotok,
West Nusa Tenggara 35
MPPT of 1.5 kW Wind Turbine With Pitch and Voltage Control Based on Artificial
Neural Network 40

PI and PI Antiwindup Speed Control of Switched Reluctance Motor (SRM)	46
Online OPF Using Combined MOGA-ETS to Minimize Losses and Extend Battery	
Lifetime in Micro-Grid	52
Network Traffic Prediction of Mobile Backhaul Capacity Using Time Series	
Forecasting	58
Integration of DFIG-Based Variable Speed Wind Turbine Into Load Flow Analysis	63
Analysis of EEG-Based Stroke Severity Groups Clustering Using K-Means	67
Web Caching Strategy Optimization Based on Ant Colony Optimization and	
Genetic Algorithm	75
A Data Chaining on Relational Database: A Case Study in Indonesian Genomics	
Information System	82
Evaluating Extractive Summarization Techniques on News Articles	88
Multimodal Biometric System Based on Feature Source Compaction and the	
Proposed VCG Feature	95
PV Grid Inverter Dynamics on Load Active and Reactive Power Demand for Weak	
Grid Stability	101
Technology Trend of Traffic Density Prediction - A Systematic Literature	
Review	107
Two Level Prediction Error and Three Direction Shifting for Hiding Data in	
Digital Video	110
Traffic Density Classification Using Multilayer Perceptron and Random	
Forest Method	117
Multibody Dynamics Modeling and Control of Wheelchair Balancing System	123
Audio-Based Data Hiding Using All-In Modulo of Difference	129
Modeling and Control of Inertia Wheel Pendulum System With LQR and	
PID Control	135
Traffic Lights and Traffic Signs Detection System Using Modified You Only	
Look Once	141

ISITIA 2021, 21-22 JULY | xxxi

H-Infinity Controller Design of Two-Wheeled Mobile Robot Under Disturbance	147
Battery Energy Storage System as Frequency Control at Substation Based	
on Defense Scheme Mechanism	153
Green IT as the Basic of Renewable Energy Industry in Facing Competitive	
Advantage	161
Implementation of Charging Equalizer With Master-Slave Method on	
Lithium-Ion Batteries	167
FLI for Unbalanced and Harmonic Current Mitigation in Rooftop Solar	
Connected Distribution Network	173
An Improving Efficiency MPPT in PV Systems With a Modified Voltage	
Regulator	179
Eyeball Movement Detection Using Sector Division Approach and Extreme	
Learning Machine	184
Energy Output Simulation of the Floating PV System at Karangkates	
Hydropower Dam in East Java, Indonesia	191
Analyze the Datasets of Software Effort Estimation With Particle	
Swarm Optimization	197
Optimized DOCR Setting by Considering Generator Scheme and Different	
Configuration on Ring System	202
Dataset transformation using hybrid method of polar-based cartesian and	
image filtering technique for annual rainfall clustering	210
Driver For Led Lamp With Buck Converter Controlled By PID	216
LORAPAI: LoRa Routing Protocol for an Agricultural Irrigation System	220
Robustness of Convolutional Neural Network in Classifying Apple Images	226
Multi Source Partial Discharge Detection Analysis Using Antenna in Oil Insulation	232
ICT and Consumer Behavior: A Study of Students' Self-Perceived Digital	238
Implementation of Fuzzy Logic on Fire Fighting Robots	243
Prediction of Ammonia Contamination Levels in Wastewater Management Plant	250

Using the SVM Method

Implementation of Light Detection and Ranging in Vehicle Braking System	256
Identification of Parking Lot Status Using Circle Blob Detection	261
Robotic Hand Exoskeleton with Tactile Force Feedback for Post-Stroke Spasticity	
Rehabilitation	266
Multi-input Multi-output Fuzzy Logic Controller for Hybrid Exoskeleton and	
Functional Electrical Stimulation for Hand Movements Rehabilitation of	
Hemiparesis Patients	272
A New Approach for Hot Spot Solar Cell Detection based on Multi-level Otsu	
Algorithm	278
Contribution of Virtual Reality Technology to Increase Student Interest in	
Vocational High Schools	283
BLDC Performance Analysis Due to Stator Winding Unbalance	287
Low Voltage Series Arc Modelling Based on Neural Network Considering	
Harmonics Load Current	293
Potential of The Diponegoro Education Reservoir as a Research Place for Floating	
Photovoltaic	299
The Implementation of DBLC Design Model for Orbital Database System	303
Rice Grain Habitat Identification System using Convolution Neural Network	
on Hyperspectral Imaging	309
Design of Wind Turbines Power Coefficient On Wind Farm Based Centralized	
Control	315
Compression-Encryption Model for Digital ImagesBased on GAN and Logistic	
Мар	319
Brain Controlled Lego NXT Mindstorms 2.0 Platform	325
Detection of Kinship through Microexpression Using Colour Features and	
Extreme Learning Machine	331
Violence Classification Using Support Vector Machine and Deep Transfer	

ISITIA 2021, 21-22 JULY | xxxiii

Learning Feature Extraction	337
Color Retinal Image Enhancement using Exposure Fusion Framework	343
Real-Time Monitoring of Dual-Axis PV SystemBased on Internet of Things	349
Development of Obstacle Detection Based on Region Convolutional Neural	
Network for Autonomous Car	354
Vacuum Cleaner Robot with Staircase Cleaning Feature and Boustrophedon	
Path Planning	359
Lane Detection Using Edge Detection and SpatioTemporal Incremental Clustering	364
Optimization PI-ACO for Photovoltaic System Battery and Supercapacitor on	
Electric Vehicle	370
Improvement Of Quality And Signal Coverage LTE In Bali Province Using Drive	
Test Method	376
Internet Based Remote Laboratory Architecture for 3-Phase Induction Motor	
Control System Experiment	381
Delivery Of Data Digital High Frequency Radio Wave Using Advanced Encryption	
Standard Security Mechanism	386
Development of a Low-Cost System for Liquid Clustering Using a Spectrophotomet	try
Technique	391
Impact of Aligning Saliency Maps on COVID-19 Disease Detection Using Chest	
X-Ray Images	396
Early Warning Pedestrian Crossing Intention From Its Head Gesture using Head	
Pose Estimation	402
Analysis The Opinion of School-from-Home during The Covid -19 Pandemic Using	
LSTM Approach	408
Low Cost Analog Video Transmission Security of Unmanned Aerial Vehicle (UAV)	
based on Linear Feedback Shift Register (LFSR)	414
Pedestrian crossing decision prediction based onbehavioral feature using Deep	
learning	420

ISITIA 2021, 21-22 JULY | xxxiv

Optimization Learning Approaches in Predicting Facebook Metrics from User Posts

Behavior

426

ISITIA 2021, 21-22 JULY | xxxv

Digital Repository Universitas Jember 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA)

DRIVER FOR LED LAMP WITH BUCK CONVERTER CONTROLLED BY PID

Widjonarko Electrical Engineering Jember University Jember, Indonesia widjonarko.teknik@unej.ac.id

Widyono Hadi Electrical Engineering Jember University Jember, Indonesia widyono@unej.ac.id Gamma Aditya Rahardi Electrical Engineering Jember, University Jember, Indonesia gamma.rahardi@unej.ac.id

Dedy Wahyu Herdianto Electrical Engineering Jember University Jember, Indonesia dedy.wahyu@unej.ac.id Cries Avian Department of Electronic and Computer Engineering National Taiwan University of Science and Technology Taipei, Taiwan D10902810@mail.ntust.tw

> Panji Langgeng Satrio Electrical Engineering Jember University Jember, Indonesia panjilanggeng4@gmail.com

technology develops, innovation is Abstract— As increasingly getting significant developments, including in the area of lighting. The development of lamps for street lighting provides innovations, one of which is LED lamps. The buck converter LED Driver is an option due to its high efficiency, low cost, and small form. The problem is that the Buck Converter has a form of DC voltage that has a high ripple. The Buck Converter has an transient output voltage that appears at start up with a high overshoot. The varied source of AC is one of the problems in converter development. There is a potential for improvement in ripple and overshoot with the PWM control technique. PID is the most widely used choice considering that PID can easily adjust the Buck Converter output accuracy according to parameters. PID has a Mean Absolute Error (MAE) value of 0.8726, resulting in a setpoint difference of 4.8475% or a difference of 0.8726V.

Keywords-PID, PI Controller, Buck Converter

I. INTRODUCTION

The more technology develops, the more frequent innovations are getting significant developments, no exception to the field of lighting. The development of lamps for street lighting provides innovations, one of which is LED lamps. Light Emitting Diode (LED) lamps are considered an energy-efficient, environmentally friendly, and suitable light source to replace conventional lamps [1]. The LED Driver is essential considering that the Driver can determine the efficiency of an LED lamp. Many types of converters can be used in controlling LED lights, including Buck Converter, Buck-Boost Converter, Switch Mode Power Supply, etc. Buck Converter is an option due to its high efficiency, low cost, and small form [2].

Buck Converter is a DC-DC Converter that converts a larger DC voltage into a smaller DC voltage [3]. The problem is that the Buck Converter has a DC voltage form that has a high ripple [4]. The Buck Converter has an output transient voltage that appears at startup that has a high overshoot. This causes the LED Driver to decrease its lifespan and can reduce the effectiveness of the LED itself.

Also, the varied source of AC is one of the problems in converter development. Even though it has been changed to a

DC source, these variations in the AC source can cause the input voltage to have variations that can change the Buck Converter's output.

There is a potential for improvement in ripple and overshoot with the PWM control technique. PWM control techniques can be done in various ways, such as PID, Fuzzy Logic Control, Adaptive Control, etc. [2]. PID is the most widely used choice considering that PID can easily adjust the Buck Converter output accuracy according to parameters [3]. To remove disturbance, it is recommended to use PI or PID controller. Transfer function with standard PI or PID controller and integrating plant has stable zero in numerator, which cause overshoot in step response y(t) [5]. Because of the simplicity in tuning, the PI controller are until now are mostly useful controller in industries. The PI controller is carried out from the input and feedback signal[6]. PID Controller depend on the extra error from control signal, same with reduce the impact of parameters change [7].

In this research, we will adjust the DC source input with various changes in the AC source. This study uses PID as a DC input control method to not change drastically and damage the LED load so that a constant LED driver is obtained.

II. SYSTEM DESCRIPTION

Figure 1 Block diagram of research

In this study, the AC voltage input source was used as the buck converter's voltage source. Then the AC voltage is converted into DC voltage using a rectifier. This is intended as an input that will be converted by the buck converter and the voltage that will turn on the LED array. For control, the buck converter is used as feedback from the buck converter output where the system is a closed-loop. The control

system's output is PWM, which can adjust the size of the voltage to match the setpoint. It is intended that the buck converter output remains stable as the set value.

Figure 2 Buck Converter circuit with PWM controller

Buck Converter is a DC-DC Converter that converts a larger DC voltage into a smaller DC voltage. The buck converter has two conditions: when the duty cycle is on and when the duty cycle is off. This duty cycle regulates the switching of the buck converter. This switching will determine the current in the inductor and the output voltage.

The buck converter consists of components consisting of DC input, MOSFET, inductor, diode, capacitor, and control circuits and loads. The duty cycle described above will later measure the MOSFET used as a current counter to achieve the desired output. This MOSFET is controlled by a control circuit that will control the MOSFET to know when the MOSFET will open and close. The inductor in the buck converter circuit is used as energy storage in the form of the current so that when the MOSFET requires current when the MOSFET is open, the energy will be released. Diodes are used to drain the current generated by the inductor when the MOSFET is open.

The components used in the buck converter circuit are :

 $\begin{array}{l} L=200 \; \mu H \\ C=220 \; \mu F \\ F=25 \; kHz \end{array}$

In spite of so many advantages such as the ability to be employed in most process control systems, uncomplicated and straightforward in use and simple implementation, sometimes the other controllers can be more useful than PID controllers[8]. So in this research using the PI Controller to adjust the buck converter input to match the desired output. The PI controller has a tracking setpoint compared to the PID controller.

Figure 3 Block Diagram PI Controller

PI controller has an advantage over the PID controller. It provides PI in the inner loop, allowing the open loop unstable process to open loop stable process and, hence, can control integrating stable, unstable, and resonant processes [9]. But on the other side, PID controllers are reliable and straightforward. They are widely used in process industries, but their disadvantage is that they can be used only for non integrating process and not for integrating, unstable and resonant processes as they do not provide good results. So in this research, we use PI Controller.

PID Controller is a controller that improves a system's accuracy with the characteristics of the feedback on a system [10]. The PID controller reduces the error value or the difference in output from the process against the input or setpoint that has been determined and entered into the system. PID Controller consists of three main components, namely proportional, integral and derivative. This PID component can be used individually or together depending on the desired system response.

$$u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$

From the above equation, it can be explained that the output value u(t) is the sum of proportional gain (Kp), integral gain (Ki), and derivative gain (Kd), each of which is affected by error (e) in the time interval (t) specific.

Proportional control (Kp) is a controller with the same output / proportional to the error signal size. This error value is the difference between the setpoint value and the actual value. The change in input causes the system to issue an output signal equal to its multiplier constant. The following equation can formulate the proportional control equation:

$$u(t) = K_n e(t)$$

Where :

K_p = Gain proportional

u = The output value is relative to time (t)

Integral Control (Ki) is a controller that has the function of reducing the steady-state error value to close to 0 without eliminating the steady-state error. If a system does not have an integrator (1 / s), then proportional control does not guarantee that the system output will match the setpoint, so it must use integral control. The following equation can formulate the integral control equation:

$$u(t) = K_i \int_0^t e(t) dt$$

Where :

K_i = Gain integral

e = Error

u = The output value is relative to time (t)

Derivative control (Kd) has the same output magnitude as the general differential operation. Derivative control uses the rate of change of the error signal as a control parameter. So that derivative control cannot be used independently. If the error signal has no change, then the derivative control output is the same as before. The following equation can formulate the derivative control equation:

$$u(t) = K_d \frac{d}{dt} e(t)$$

Where :

 K_d = Gain derivatives

e = Error

u = The output value is relative to time (t)

The PID Controller used in this study is a PI Controller type with the following specifications:

P=100 I= 0.0001

In this research method, the research uses MatLab Simulink to process data and simulate circuits. The circuit consists of a Source, Buck Converter, PI Controller, and Load. The AC source is made variable, and later the controller will stabilize the input so that the output matches the setpoint. The system is made a closed-loop so that the output becomes a reference voltage, the voltage that is not suitable will be informed to the controller, and the controller will adjust the output voltage later.

For testing, the Mean Absolute Error parameter is needed to determine the difference between the voltage setpoint used, namely 20VDC with the LED Driver's output. Mean Absolute Error (MAE) is a parameter used to calculate the difference between the average setpoint and the response value obtained. The smaller the parameter value, the better the system stability level. The following is the equation of the MAE:

$$MAE = \int_0^\infty \frac{1}{n} \sum_{i=1}^n |fi - yi|$$

In this research, using a PID Controller to adjust the buck converter input to match the desired output

The purpose of this test is to determine the ability of the Driver that has been designed to face various problems with the following conditions :

- 1. When the source conditions are unstable and not even following existing standards
- 2. When the LED lights are added, the load is added by installing multiple LED array lights within a certain period.

Therefore, the test is carried out with the following model :

1. System testing is done by increasing and decreasing the

source voltage. This is adjusted to the conditions that might occur when the LED lights are attached to the user. The constant voltage increase and decrease that is generally used is 220 VAC and then reduced to 150 VAC, 100 VAC, and then returned to 220 VAC.

2. The load (LED Lamp) connects with 3 LED array lights and pairing them to the LED Driver's output with different periods. Each LED array has a power of 16.2 Watt but will be iterated four times. The first is 16.2W (1 Array), the second is 32.4W (2 Array), the third is 48.6W (3 Array), and the last is 16.2W (1 Array).

IV. RESULT AND DISCUSSION

To demonstrate DC-DC Buck Converter's performance, many simulations can be done using MatLab simulations and using the buck converter system modeling method, as shown in Figure 3. The input voltages that change are 220 VAC, 150 VAC, and 100 VAC. The switching frequency is 25kHz, and the load varies, which are 16.2W, 32.4W, and 48.6W.

The simulation shows that the output load voltage of the LED remains constant at 20 VDC. With the variation in the changing AC voltage source, namely 220VAC, 150VAC, 100VAC, then back to 220 VAC, the result is that the voltage at a constant LED load is 20 VDC in Figure 5. Figure 6 shows that the varying load variations make the current vary according to the existing load, but still, the voltage is the same at 20VDC.

Based on the MAE performance analysis results from the test results, it was found that the test was 0.8726 or had an average error and setpoint value of 4.8475%. Based on this,

the average oscillation occurred with a set point of 4.8475% or a difference of 0.8726V. Overshoot does not occur at changes in voltage or increases in load. So it can be said that the system is very much following what is expected.

V. CONCLUSION

In this study, several conclusions were obtained: First analysis of varying VAC voltage produces a load voltage that is fixed at the setpoint, which is 20VDC. The second variable, LED load analysis, has a constant load voltage, but the current changes according to the load amount. Third, mean Absolute Error shows a value of 0.8726, resulting in a setpoint difference of 4.8475% or a difference of 0.8726V.

REFERENCES

- Y. Cao, W. Yuan, W. Chen, M. Li, J. Fan, and G. Zhang, "Predicting of luminous flux for a LED array using artificial neural network," 2020 21st Int. Conf. Therm. Mech. Multi-Physics Simul. Exp. Microelectron. Microsystems, EuroSimE 2020, pp. 5–8, 2020, doi: 10.1109/EuroSimE48426.2020.9152620.
- [2] K. Swathy, S. Jantre, Y. Jadhav, S. M. Labde, and P. Kadam, "Design and Hardware Implementation of Closed Loop Buck Converter Using Fuzzy Logic Controller," *Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018*, no. Iceca, pp. 175–180, 2018, doi: 10.1109/ICECA.2018.8474570.
- E. R. C. S. Madhukiran, P. S. Thota, B. Sridhar, and K. Dileesh,
 "Control of Buck converter by Polynomial, PID and PD controllers," *Asia Pacific Conf. Postgrad. Res. Microelectron. Electron.*, vol. 0, pp. 94–99, 2012, doi:

10.1109/PrimeAsia.2012.6458634.

- [4] M. Julkifri, "Pengendali PWM pada Buck Conventer dengan PID Control," 2018.
- [5] K. Sladka and M. Viteckova, "2DOF PI controller tuning for integrating plants with the setting of setpoint weight," *Proc. 2019* 20th Int. Carpathian Control Conf. ICCC 2019, pp. 1–4, 2019, doi: 10.1109/CarpathianCC.2019.8765989.
- [6] P. K. Khanke and S. D. Jain, "Comparative analysis of speed control of BLDC motor using PI, simple FLC and Fuzzy-PI controller," *Int. Conf. Energy Syst. Appl. ICESA 2015*, no. Icesa, pp. 296–301, 2016, doi: 10.1109/ICESA.2015.7503359.
- M. Mahmud, S. M. A. Motakabber, A. H. M. Zahirul Alam, and A. N. Nordin, "Adaptive PID Controller Using for Speed Control of the BLDC Motor," *IEEE Int. Conf. Semicond. Electron. Proceedings, ICSE*, vol. 2020-July, pp. 168–171, 2020, doi: 10.1109/ICSE49846.2020.9166883.
- [8] M. Ahmadi, M. Baojahmadi, S. N. Fallah, K. Karami, and M. Soheilirad, "PI Controller adjustment for a lab scale CSTH by using Imperialist Competitive Algorithm," *Proc. 2013 IEEE 3rd Int. Conf. Syst. Eng. Technol. ICSET 2013*, pp. 168–172, 2013, doi: 10.1109/ICSEngT.2013.6650164.
- [9] J. Uniyal, M. Joshi, and P. K. Juneja, "Set point tracking capability and comparitive response of PI-PD controller with PI, PD and PID controller," *Proc. - 2016 Int. Conf. Adv. Comput. Commun. Autom. ICACCA 2016*, no. 1, 2016, doi: 10.1109/ICACCA.2016.7578883.
- [10] D. Ounnas, D. Guiza, Y. Soufi, R. Dhaouadi, and A. Bouden, "Design and Implementation of a Digital PID Controller for DC-DC Buck Converter," *Proc. - 2019 1st Int. Conf. Sustain. Renew. Energy Syst. Appl. ICSRESA 2019*, pp. 4–7, 2019, doi: 10.1109/ICSRESA49121.2019.9182430.