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Abstract. The Artificial Neural Network (ANN) has been widely used in flood modeling and 

has proven to be good accuracy. This research aims to flash flood modeling using ANN. The 

flash flood modeling was conducted at Welang Watershed, Pasuruan District, East Java, 

Indonesia. The input of flash flood using ANN consists of rainfall and runoff coefficient. The 

runoff coefficient was derived by the Normalized Difference Vegetation Index (NDVI) value 

from the Landsat 8 Operational Land Imager (OLI). The output ANN model was flash flood 

discharge. The ANN architecture model uses a backpropagation neural network. The period of 

training and testing model ANN using data from January to February 2017 period and 

November to December 2017 period, respectively. The Result of flash flood modeling with 

ANN showed the good of fitness pattern between output model and observation data. 

1. Introduction  

The flash floods were a sudden local flood with an unpredictable high peak [1,2].  One of the causes of 

flooding was the change of vegetation function into residential and other functions [3].  This change in 

land function causes the volume of runoff flow to increase while the infiltrated water was very low [4]. 

Changes in land use also affect the increase in volumes of runoff and flood discharge [5]. The structure 

of the rain-flow model can be built on two approaches: a theory-based approach (physical and 

conceptual based), and a data-driven approach (empirical and black-box). Physically-based models are 

based on a relevant understanding of hydrological systems based on first-order principles, phenomena 

or simulated-based models [6,7]. The conceptual model describes the physical mechanism of the 

hydrological cycle, without considering the spatial variability and stochastic nature of the rainfall and 

runoff process [6]. Simple mathematical equations are often used in conceptual models to describe 

hydrological processes such as evapotranspiration, infiltration, percolation, basal flow, and runoff [8]. 

Meanwhile, the data-driven model is data-driven modeling (DDM) based on data analysis to search for 

input and output relationships based only on a number of assumptions about the physical behavior of 

the system [7]. The accuracy of the concept model depends heavily on the accuracy of the model 

parameters [9]. Therefore, this concept model has not been able to represent real field conditions. On 

the other hand, Forecasting and flood warnings often use a physical model. However, for a 

conventional flood forecasting process using a rain-flow physical model requires extensive 

information and data, and includes uncertainty that can accumulate errors during the modeling process 

[10,11]. Based on the description, an appropriate flood prediction model is needed so that it can 

produce a reliable outcome model. Several studies have shown that ANN was excellent in flood 

modeling and shows a good model time response to forecasting flash floods in its limited data 
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watershed [12]. ANN can also precisely predict hydrographs, but it is still necessary to create a good 

modeling view to obtain information about the aquifer physical condition [13].  The ANN modeling is 

easy to develop and does not require detailed parameters such as the hydrological extent and 

geological catchment area required in the application of conceptual models [14]. JST modeling with 

rainfall input data and observation discharge gives good results in river discharge prediction [15]. 

Similarly for future flood forecasting, the modeling of ANN with precipitation and previous discharge 

input data was better than using one variable data input, such as rain or debit data only [16]. Excellent  

flood modeling and highly favored was a model that does not require many parameters in its 

application but has good accuracy. Therefore, the application of Artificial Neural Network (ANN) was 

a decision based on the above considerations. The selection of ANN model to model the flash floods 

with rainfall input parameters and runoff coefficient was the right choice. The runoff coefficient 

resulted from the decrease of the Normalized Difference Vegetation Index (NDVI). NDVI was 

generated from remote sensing to identify vegetation density by interpreting satellite image maps [17]. 

NDVI can also be used as an approach to predict the value of runoff coefficient (C) effectively and 

efficiently  [18]. This paper will discuss the reliability of the flash floods model using Artificial Neural 

Network (ANN) with variable input of rainfall and runoff coefficient (C) derived from Normalized 

Difference Vegetation Index (NDVI) value in Welang Watershed. 

2. Research sites    

The research was conducted in Welang Watershed District of Pasuruan Regency, East Java Province 

precisely -7o36’00”  to -7o54’00”   South Latitude and 112o36’00” to 112o54,00”  East Longitude. Area 

of river basin 414,9 km2 with land use consists of vetagasi, settlement, road, and empty land. The 

location of the research can be seen in figure 1. 

 

 

Figure 1. Map of Welang Watershed, Pasuruan Regency, Indonesia 

3. Research methods    

3.1 Research Data   

This study uses secondary data in the form of rainfall data at 2 rain stations location (Cendono and 

Dawulan Sengon), observation discharge data (AWLR of Selowongko Station) and Landsat 8 satellite 

images. Training of ANN model used rainfall data for the period of January - February 2017 while 

model testing used data from November to December 2017. Previous research on estimation of runoff 

coefficient value using NDVI transformation of Landsat ETM + image used image data of recording 

resulted on December 22, 2001, and April 8, 2003. While hydrological data used data on the period of 

November 15, 2001 - January 28, 2002 [19]. Based on this, the satellite imagery period was adjusted 

to the needs of the research. In determining the period of satellite imagery always pay attention to the 

cloud conditions that cover it. Based on these conditions, the satellite image was not always the same 

month as the hydrological data period. Nevertheless, satellite imagery remains in the period of the 

rainy season as representative of the hydrological data period was May 7, 2017. The Landsat 8 satellite 
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images were downloaded via EarthExplore USGS. The Landsat 8 satellite images were used to 

identify the vegetative density of the Welang Watershed. The runoff coefficient (C) value of the NDVI 

derivative with the widest area was used as the input data in the ANN application. 

3.2  Research Stages   

3.2.1 Conversion of runoff coefficient (C) 

The NDVI calculation results from a comparison between Near Infrared and Red with the equation 

[20]. 

                          NDVI =
(𝑁𝐼𝑅−𝑟𝑒𝑑)

(NIR+𝑟𝑒𝑑)
                               (1) 

NDVI calculations use bands 5 and 4, where band 5 as NIR and band 4 as Red. The value of 

vegetation canopy density based on NDVI analysis result was classified into three classes were rare, 

medium and lush density [21]. In general, the use of a combination of band Landsat 8 for color 

infrared calculation (vegetation) was 543 [22]. The best response of healthy plants to the 

electromagnetic spectrum was found in bands 5 and 4 [23]. Percentage of Watertight Surface Cover 

(PWS) and Percentage of Vegetation Density (PVD) was used to calculate the conversion of NDVI 

value to runoff coefficient (C) with the following conditions [24, 17]: 

1. Percentage of Watertight Surface Cover,  if  NDVI < -0,0607 

𝑃𝑊𝑆 = −63,16x2 − 116,6x + 46,9         (2) 

                       x = NDVI value 

                C= 0,05 + 0,91 PWS                                  (3) 

                C= runoff coefficient 

2. Percentage of Vegetation Density (PVD) with runoff coefficient (C) calculated by the equation:: 

                       C= -PVD + 1                                             (4) 

               C= runoff coefficient 

The percentage of Vegetation Density was calculated based on the ratio between the width of the 

vegetation density class and the total area of vegetation density multiplied by 100 percent [21]  

Percentage of Vegetation Density  in Welang Watershed can be calculated by equation 

                         PVD=37,705x - 1,596                             (5)     

           x = NDVI Value  

3.2.2 Data processing   
One method often used in time series data analysis to know the time lag response of discharge to the 

input of rainfall is cross-correlation method. A series relationship of input and output data in a system 

can be predicted by the cross-correlation method [25]. The highest cross-correlation value with 

positive time lag was a correlation to be considered in the grouping of time series data of rainfall and 

discharge. This high-correlation rain and discharge series data were used as input and target data in an 

ANN application. The calculation of data normalization using the min-max method, so that the input 

data and target scaled with a range of 0 to 1. 

3.2.3 Artificial neural network   

The ANN architecture uses the backpropagation learning method with weight improvement using 

Levenberg-Marquardt method. This Levenberg-Marquardt method was very effective when training 

the network with a lot of weight [26]. Levenberg-Marquardt backpropagation algorithm is often used 
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for network training [27]. Training automatically stops when the generalization process stops, this was 

usually indicated by an increase in Mean Square Error (MSE). The Mean Squared Error (MSE) is the 

average value of the quadratic difference between output and target. The lower the MSE value gets 

better while zero means no error[26]. The input layer consists of hourly rainfall data and the runoff 

coefficient (C), while the hourly discharge was the target. Data in matrix format m x n, where m the 

number of rows of data and n number of data columns. The distribution of data composition for the 

ANN modeling consists of 70% training, 15% validation, and 15% testing. The input data was rainfall 

data from 2 automatic rain gauge and the runoff coefficient (C) resulting from the conversion of the 

NDVI value. The NDVI value was converted to the runoff coefficient was the NDVI value with the 

widest vegetation within the Welang watershed. The rainfall data was 31 rows and 2 columns, while 

the runoff coefficient (C) and the target data were 31 rows and 1 column. The network architecture 

with 1 hidden layer with the number of neurons 20 as shown in figure 2.  

. 

 

Figure 2. The network architecture of ANN 

4.  Results and discussion 

4.1  NDVI conversion to a runoff coefficient (C) 

NDVI value was generated from remote sensing using a satellite image of Landsat 8 OLI. Some stages 

in the determination of NDVI include: (a) cutting of satellite imagery, this cutting aims to limit the 

area of image analysis according to the location of the study; and (b) NDVI analysis by inputting the 

NIR data input with band 5 and Red with band 4. The result of NDVI analysis will give a different 

color images. This color difference identifies the value of NDVI. The higher the NDVI value indicates 

that the area of the vegetarian density was dense, but if the low NDVI values indicate rare vegetation 

density as shown in Fig 3. Figure 3 shows that the widest area was NDVI value of 0.47 ± 14,000 

pixels. The lowest NDVI value was -0.01 and the highest was 0.60, so the NDVI value was converted 

to the runoff coefficient value by the Percentage of Vegetation Density (PVD) approach. The 

calculation result of PVD was converted to the runoff coefficient with equation 4. The Graph of NDVI 

relationship with a coefficient of runoff (C) in Welang Watershed as shown in figure 4. 

    The vegetation density class based on NDVI is grouped into 4 classes: (a) clouds -0.232 - 0.022; (b) 

rare vegetation 0.022 - 0.188; (c) moderate vegetations 0.188 - 0.398; and (d) dense vegetation 0.398 - 

0.593 (Purwanto, 2015).  Based on the description, it can be argued that welding watershed includes 

areas with dense vegetation with rarely runoff coefficient values of 0.81 to 0.98. This shows that the 

lower of the NDVI value so the runoff coefficient value  greater than the run off in the middle part of 

the ocean. 
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Figure 3. NDVI Welang watershed 

 

 

Figure 4. Relation of NDVI value with runoff coefficient in Welang watershed 

4.2 Selection of rain and discharge data   

The occurrence of rain in the upper watershed sometimes does not correlate with an increase in 

downstream discharge. Therefore it is necessary to select rain and discharge data that have a 

correlation in a time lag. Time lag can be known by cross-correlation analysis using rainfall series 

input data and output discharge. The result of cross-correlation with the input data of hourly rainfall 

and the discharge period of January 16, 2017 is shown in Figure 5. In figure 5, the positive cross-

correlation value indicates that the rainfall affects the discharge, while the negative correlation value 

shows the inverse relationship where the discharge influences the rainfall. A correlation value of 0 

shows no relationship between rainfall and discharge. Based on the results of cross-correlation was 

known that the rainfall has a positive correlation to the discharge that occurred at time lag 2 to 5. 

Based on the results of this cross-correlation series data of rain and discharge at time lag 2 up to time 

lag 5 was inserted in the input data and target applications ANN . The first data of rainfall and 

discharge as data at time lag 0. The second data of rainfall and discharge as data time lag 1, and so on. 

Based on the description, the third to sixth data of rainfall and discharge were selected as input and 

target data in ANN. 
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Figure 5.  Correlogram cross-correlation of rain and discharge data 

4.3 Result of artificial neural network (ANN)  

Modeling of the flash flood in Welang watershed using ANN with variable input rain series data and 

runoff coefficient (C) showed pattern corresponding to observation with a very strong correlation 

coefficient (R) and lower mean squared error (MSE). The training process aims to optimize the 

correlation performance of a variable such as Mean Squared Error and correlation coefficient (R) as 

shown in Figure 6a. Meanwhile, The flash flood modeling with variable input rain series data shows a 

pattern corresponding to observation with a very strong correlation coefficient (R) and lower mean 

squared error (MSE). The value of correlation (R) and MSE at the training stage (R = 0,92657 and 

MSE= 0,00826), validation (R = 0,91477 and MSE= 0,06712), and testing (R = 0,90498 and MSE= 

0,043162) as Figure  6b. Figure 7a showed The flash floods modeling with variable input hourly rain 

series data and runoff coefficient (C) was greater the observation discharge at a certain period. The 

flash flood discharge modeling results on January 30, 2017 at 9.00 PM was 48,494 m3/sec and on 

November 25, 2017 at 8.00 PM was 48,494 m3/sec lower than observation discharge. While the result 

of flash flood modeling with variable input hourly rain series data was shown in Figure 7b. The flash 

flood discharge from modeling on January 30, 2017 at 8.00 PM was 26,58953  m3/sec  still lower 

when compared with the observation discharge. While the flash flood discharge modeling results on 

November 2, 2017 showed greater than observation discharge 52,44968  m3/sec.  

 
 

Figure 6. The correlation coefficient (R) of flash flood modeling using ANN 
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Figure 7. The observation and fash flood discharge result  ANN modeling 

5. Conclusion  

The flash flood modeling using ANN with input series data of rainfall and runoff coefficient (C)  from 

conversion NDVI showed significant results. This was indicated by the value of the correlation 

coefficient (R) and mean squared error (MSE)  of training stage (R = 0,93144 and MSE= 0,00881), 

validation (R = 0,99443 and MSE= 0,00906), and testing (R= 0,9362 and MSE=  0.01284624). Thus, 

the model of flash flood discharge with input series data of rainfall and runoff coefficients (C) using 

ANN was reliable. 
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