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Abstract: This study presents the strategy of controlling the air discharge in the prototype of small
scale compressed air energy storage (SS-CAES) to produce a constant voltage according to the user set
point. The purpose of this study is to simplify the control of the SS-CAES, so that it can be integrated
with a grid based on a constant voltage reference. The control strategy in this study is carried out by
controlling the opening of the air valve combined with a servo motor using three intelligence control
systems (fuzzy logic, artificial neural network (ANN), and adaptive neuro-fuzzy inference system
(ANFIS)). The testing scenario of this system will be carried out using two scenes, including changing
the voltage set point and by switching the load. The results that were obtained indicate that ANN
has the best results, with an average settling time of 2.05S in the first test scenario and 6.65S in the
second test scenario.

Keywords: ANFIS; artificial neural network; fuzzy; small scale compressed air energy storage
(SS-CAES); voltage controlling

1. Introduction

The development of a combination of renewable energy technologies and energy storage is the
most rapidly developing research topic at this time [1,2]. Problems related to the use of non-renewable
energy which is still high [3] and becomes the world’s main problem (especially in climate change [4])
can be solved [5,6] by using a combination of this technologies. In some applications for renewable
energy use, this energy source is not used as the main support for an area’s load [7,8]. However, this
energy source is more widely used as a support for overcoming peak loads at certain times [7,9–15].
The reason is that, in some renewable energy sources, it is still very dependent on weather conditions,
such as the use of photovoltaics (PV) [16–19], which will only produce energy during the day. Given
this problem, the existence of storage technology that will store energy when the energy not in use, such
as batteries, is vital [20]. However, batteries still have problems with environmental aspects because of
toxic waste [21,22] and they can explode due to excessive heat [23]. Therefore, some researchers have
begun to shift a lot on the topic of developing energy storage technology that is more environmentally
friendly, has no degradation over time, such as batteries, and is relatively inexpensive on an energy
base [1]. One of the technologies chosen is Compressed Air Energy Storage (CAES), or on a small scale
known as SS (Small Scale)-CAES [3,9,24]. This technology is considered to be capable of overcoming
environmental problems, because the energy source used is atmosphere gas [9,25–28], and it does not
require large space, as on a large scale (CAES) [29].
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To be able to help the grid in maintaining supply at peak loads, the combination of renewable
energy technology and energy storage must be synchronized [30] with the network, so that energy can
be transferred and not cause the grid to be damaged [31]. One of them is by controlling several
parameters that are contained in the system the formed, such as frequency or voltage [32–34].
Information regarding several studies focus on controlling parameters in the SS-CAES, and can
be found in the paper that has been published [35], one of which was carried out by Martinez [36,37].
In the Martinez study, he simulated the control of air valves in the SS-CAES to supply power according
to the grid requirements. The simulation of SS-CAES formed was using an AC-PMSG generator
(Permanent magnet synchronous generator). In that study, the generator is connected to several
converters before being connected to the grid (including AC-DC converters and inverters). The
control carried out is to control the pneumatic valve that is operated in the open-close mode to get
the appropriate pressure in achieving the desired power. In another study that was conducted by
Maia [38], the SS-CAES prototypes were made using a three-phase generator. The prototype made is
observed without controlling the parameters that were contained in the SS-CAES. In another study
that was conducted by Kokaew, V. [39–41], it controlled the rotational speed rotation parameters in the
SS-CAES prototype. Fighting the mechanical torque that arises because the air passing through the
airmotor with electric torque is regulated using a Buck converter carries out speed regulation. The
purpose of this control is to get the speed referenced in achieving maximum power transfer or known
as MPPT (Maximum power point tracking). However, from several previous studies, no research
discusses how SS-CAES can produce a constant voltage to be indirectly integrated into the grid [5,12].
Whereas, in some concepts that have been put forward by several researchers, such as Vongmanee [42],
Lemofouet [43], and Martinez [37], to be able to integrate the SS-CAES system into the grid, it must be
combined with an inverter. In the general concept, the inverter requires a specific DC input voltage
to operate by the voltage parameters on the grid. Therefore, to facilitate integrated systems, energy
sources must adjust the inverter’s working voltage or it has a stable voltage [44–46], and the energy
can be transferred to the grid.

However, in detailed research, Martinez has published his research [36,37] to integrate his system.
The strategy that was used by Martinez in his simulation is to control the air pressure using pneumatic
valves to reach the required power. However, in the results of his study, the power had a high and
low effect because of the pneumatic open-close mechanism. This results happened, because the air
pressure that entered the turbine (air motor) is controlled by an open-close mechanism, so that the
power also has the same characteristics [36,37]. Because of this phenomenon, the inverter will have to
done two jobs. The first is to stabilize the voltage and the second is to synchronize with the phase on
the grid. These multiple actions cause the control system that is used to be more complicated.

To be able to simplify the control and eliminate the effects that are caused by the previous study,
the changes will be made in this study. There are two strategies used in this study to solve that problem.
The first is to remove the high-low effect in previous studies, that is replacing the pneumatic valve
control with a combination of valve and servo motor. By using this way, the airflow rate will have
smoother air transfer and will also make the produced voltage smoother, so the high-low effects can
be eliminated. This could be happened because the control concept using a servo motor works by
adjusting the direction of the rotation rather than an open-close mechanism such as in pneumatics
system. The second is to replace the control reference to a voltage reference. Thus, the integration
between SS-CAES and the grid will be much easier, since the inverter will only adjust the network
phase rather than doing two actions (voltage and phase synchronization according to the previous
research). Since the controlled system has a high workload, the system is very susceptible to parameter
changes and input disturbances. Those issues will be a big problem if a conventional model is used to
control the system, therefore artificial intelligence (AI) is chosen. By using AI, the system will be able to
work with robust controls and can adapt to non-linear systems [47]. Some AI systems that will be used
in the system must have these criteria, there are Fuzzy Logic, Artificial Neural Network, and adaptive
neuro-fuzzy inference system (ANFIS). In this study, an experiment will be done to compare the use of
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these three AIs to control the SS-CAES prototype with 60W that has been built by the researcher to
reach the desired set point voltage of the user. The purpose of comparing the performance of the three
AIs is to be able to find out the most appropriate control system to solve this problem. In this study,
the system has been tested with two scenarios for testing the settling time variable by implementing a
microcontroller that was programmed with three artificial intelligence, as a control device.

2. Small Scale Compressed Air Energy Storage Design

2.1. Prototype Design

The SS-CAES system prototype block diagram that can be schematically seen in Figures 1 and 2 is
a picture of a prototype made. Several SS-CAES components, including air tanks, air valves (which
combine with continuous servo motors), air motors, and DC generators form the system [38] (Figure 2a).
In this study, several sensors were installed to retrieve the response from the control system. Some of
these parameters are voltage, current, air pressure passing through air-motor, and speed sensor. Data
associated with these parameters will be saved in the data logger to observe the effect of changes in
the control process that was carried out.
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Figure 2. (a) The main components of prototype SS-CAES; and, (b) The installed sensor, controller on
prototype SS-CAES and PC data logger.

In this study, there are four types of sensors that are used in the prototype. The first one is
the voltage sensor that is made using the principle of the voltage divider; the second is the speed
sensor that uses a hall effect sensor. The third is the air pressure sensor using MPX 5010 (Freescale
Semiconductor, Inc., Austin, TX, USA), and the fourth is the current sensor using ACS712. All of the
sensors used in this test have been calibrated so the value that appears on the sensor is the real value
of the measured parameter. This experiment was done using a servo that was controlled and coupled
with an air valve; the servo type that was used in this experiment is MG 996R (TowerPro, Singapore
City, Singapore). For the controller, the Arduino UNO microcontroller is used, which is connected to
the Computer (monitoring, controlling, and data logger function). Since the primary target of this
study is to stabilize the voltage to connect an inverter, then the load used is a resistor with a value of
150 Ω. Figures from sensors, controllers, and PC data loggers can be seen in Figure 2b. Details of the
control mechanism of this prototype will be explained in the control block section.

2.2. Control Block

There are four sensors installed on the prototype, but only one sensor will be used as a control
reference, which is the voltage sensor. Even so, all the data from the sensor will be saved in the data
logger. These data were used to analyze the system performance. The reason for using one sensor in
this study is because this system implemented a closed-loop control system where one of the inputs
is used in the controlling system as a feedback control from the plant [48]. A detailed scheme of this
control block can be seen in Figure 3.

Figure 3 shows that there are two parameters that are used as inputs in this control system. The
first parameter is the set point voltage, as determined by the user, and the second parameter is the
output voltage (from voltage sensor) of the prototype. To fulfill the closed-loop control system, the
input is changed to become two control inputs from the system. These two inputs are Error and
Delta Error [48,49], where we can use Equations (1) and (2). After the Error and Delta Error value are
obtained, the value of the two parameters will be processed in the controller block. The controller
that was used in this prototype was the Arduino UNO microcontroller, as described earlier. This
microcontroller will be programmed with three different artificial intelligence according to the scenario
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that will be tested at the plant. The output of this controller is a pulse width modulator (PWM) signal.
The PWM signal is used to control the air valve combined with a servo motor.

e(t) = Set Point − Actual Voltage (1)

de = e(t) − e(t − 1) (2)

where e is Error, de is DeltaError, e(t) is Error at time t, and e(t − 1) Error in time t − 1 or time before.
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To achieve a constant voltage, the key is to control the airflow entering the system. This condition
can be achieved because of the characteristics of the SS-CAES where the voltage generated is directly
proportional to the speed of the air motor [40,50]. The faster that the generator changes its speed, the
higher the voltage will be generated. Because the rotation speed of an air motor needs to be controlled,
it is done by controlling the rate of airflow through the air motor. Therefore, the key to control the
voltage is to adjust the airspeed by controlling the valve.

The valve that was used in the prototype is a combination of air valves and a continuous servo.
The width of the airline on the valve can be adjusted to control the rate of the airflow, this can be
done by changing the servo rotation. However, in continuous servo control, it differs slightly from the
general servo. In the continuous servo, the rotation control is not based on the desired angle but rather
is based on the direction of rotation (rotating clockwise or counterclockwise). From the servo that was
installed in this study, to widen the valve opening, the servo must be controlled clockwise by giving a
PWM value >100. Whereas to reduce valve openings, the servo must be controlled so that it rotates
counterclockwise, that is by providing a PWM value <100. To stop the rotating servo, PWM = 100 is
given. It should also be noted that, the higher the PWM value of the neutral value when the servo
stops (PWM = 100), the faster the servo rotation goes in that direction. For example, when PWM = 105,
the servo will move quickly in a clockwise direction with different speeds with PWM = 101, and so
does the opposite direction. As for the AI, the control output value is the number of actual PWM
values with PWM AI output control. For more details, see Equation (3).

PWM(t) = PWM(t − 1) + PWM(AIOutput) (3)

where the PWM(t) is the actual output of the PWM, PWM(t − 1) is PWM value in time t − 1 or time
before, and PWM(AIOutput) is the PWM of the AI process.

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


Energies 2019, 12, 803 6 of 23

3. Intelegence Controller

There are three artificial intelligence systems that are used in this study. The explanation and
design of the artificial intelligence system are explained in this subsection.

3.1. Fuzzy Logic Controller

Fuzzy Logic is a rule-based decision-making process that aims to solve problems, where systems
are difficult to model or where there is ambiguity [51,52]. Fuzzy logic is determined by logical
equations, not from complex differential equations and it comes from thinking that identifies
and utilizes obscurity between two extreme lines. Fuzzy logic systems consist of fuzzification,
defuzzification, rule base, and inference systems [47]. Fuzzy can work according to the rules that are
given by fuzzy designers. By using rules, the relationship between the input that enters the system can
be known for its output value. The structure of processing fuzzy logic can be seen in Figure 4.
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In designing the control system using Fuzzy Logic, the number of membership input and output
members is 5, including NB (Negative Big), NS (Negative Small), Zero, PS (Positive Small), and PB
(Positive Big). For each membership value, the value of the input (Error and Delta Error) can be seen
in Figures 5 and 6. While, for membership, output can be seen in Figure 7.
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3.2. Artificial Neural Network

Artificial neural network (ANN) is an information processing technique or approach that is
inspired by the workings of the biological nervous system, especially in the cells of the human brain in
processing information [53,54]. A key element of this technique is the unique and diverse structure of
information processing systems for each application. The Neural Network consists of a large number of
information processing elements (neurons) that are interconnected and work together to solve certain
problems [55]. In this study, the Artificial Neural Network (ANN) was used with the architecture, as
shown in Figure 8.
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The ANN structure that was built by researchers consists of two inputs, namely error and delta
error. For the layer used, there are two layers with ten neurons for the hidden layer and one neuron for
the output layer with output that is in the value of PWM. The activation function that is used in this
structure uses sigmoid activation. The structure of the hidden layer can be seen in Figure 9, while for
the whole structure, it can be seen in Figure 10.
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Artificial neural networks are built using the Levenberg–Marquardt back propagation training
algorithm. The training data to create a network is obtained from conventional control data that was
applied to the plant. The total data used is 3 × 816,160 with a portion of training data for 70%, while
15% of the data is for testing and validation. The relationship between training, testing, and network
validation formed by ANN has a high correlation coefficient and it can be seen in Figure 11.
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3.3. Adaptive Neuro Fuzzy Inference System

The adaptive neuro-fuzzy inference system (ANFIS) is a method that uses artificial neural
networks to implement fuzzy inference systems. The advantage of the fuzzy inference system is
that it can translate knowledge from experts in the form of rules, but it usually takes a long time to
determine membership functions [47,56]. Therefore, learning techniques from ANN are needed to
automate the process, so that it can reduce search time; this causes the ANFIS method to be very well
applied in various fields [57].

The ANFIS structure that was used in this study uses two inputs, namely error and delta error.
While, from the results of the ANFIS training, nine rules will be applied for the implementation of the
prototype. The ANFIS structure in this study can be seen in Figure 12.
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4. Testing Scenario

This system will be tested in two scenarios with a different AI control program on each test. The
first test is to change the set point value. The experiment flowchart for the first scenario can be seen
in Figure 13. In this first scenario, the system will be programmed with one of the AI controllers.
Subsequently, the prototype will run with the initial set point value of 24 V. After the initial set point
is reached, the set point will then be adjusted to 20 V. As long as the system reaches the steady state,
all of the installed sensors data, set point values, and system response values (PWM Value) will be
saved in the data logger. The purpose of saving these data is to see and analyze the response of data in
offline mode (after the system has been tested). Afterwards, after 10 s or more, when the system has
reached steady state, the set point value will be reduced. The set point that was previously set at 20 V
decreased to 15 V. Subsequently, the cycle data is being saved while the system is running to reach
a steady state again. After 10 s or more, after the system reached a steady state, the set point testing
model changed. In this section, the set point will be set to higher value. This test starts by using the
previous set point, which starts from 15 V, and then the set point is raised to 20 V. As the previous test,
all installed sensor data, set point value, and system response will also be saved into the data logger.
After 10 s or more, after the system has reached steady state, the set point value will be increased to
24 V. Afterwards, the data saving cycle is taken again while the system running to reach the steady
state. After the system reached the steady state point, at the last stage, the system will be set to do
final set point jump. The set point jump is from 24 V to 15 V. If we sort the set point test, it will be
24 V, 20 V, 15 V, 20 V, 24 V, 12 V, 24 V, and 15 V. These set point options are based on the voltage that
is commonly used by the inverter in the grid application. The first AI Control test has been done for
the first scenario. To be able to compare and see the overall AI control response that was used in this
study, the first scenario will be repeated three times for three AI controls.
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Figure 13. Flowchart Scenario 1.
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For the second scenario, the system will be tested by keeping the set point given by the user.
In this test, after the AI control is programmed into the microcontroller, the system will run where
the system has to maintain a set point value of 20 V. At the initial condition, the 150 Ω load is not
connected to the circuit. After the system reaches steady state at 20 V, then the load is connected to the
circuit. Due to changes in the load, a change in voltage value occurred. During the process towards the
steady state, the entire installed sensor data, voltage set point, and system response (PWM value) will
be saved in the data logger. After 10 s or more, the system will reach a steady state condition, then the
load will be released afterwards, and the cycle data saving process will be repeated for offline analysis.
This process will be repeated three times in one experiment (switch and release load) to obtain the
system response. The goal of this test is to determine the reliability of the system. That process is only
testing for one cycle in the second scenario. To be able to test and see the overall AI control response
that was used in this study, the first scenario will be repeated three times for three AI controls. The
flowchart of the overall test in the second scenario is shown in Figure 14.
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5. Result and Discussion

In the experiment section, the SS-CAES prototype will run according to the predetermined
scenario. The total number of trials is six experiments with different AI systems. The results of these
experiments can be seen in Figures 15–26. The results in these figures are obtained data from the data
logger that saved while the system was running according to the tested scenario.

The first test uses fuzzy logic. The system is tested with some scenarios and the obtained results
can be seen in Figures 15–19. For the first scenario, the set point is changed in an order that already
explained in the previous section. From the obtained data, the results shows that, to reach steady-state
condition in the first scenario, fuzzy logic has an average settling time of 2.27 s. This result can be seen
in Figures 15 and 16, which have been zoomed at 64 to 68 s.
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Figure 15. The results of set point changes with fuzzy logic controller.
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Figure 16. The results of set point changes with fuzzy logic controller on 64 to 68 s.

The results for the second test on the Fuzzy Logic Controller are shown in Figure 17. This scenario
testing is done by removing the load three times and connecting the load two times. The effect that is
caused by the release of the load is a surge in the output voltage with the highest value of 31.6 V. While
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the impact caused when adding the load is a reduction in the output voltage with the lowest value of
14.4 V. The average settling time on the results of this test is 8.18 s. For detailed results of displacements
transitions, we have presented the zoomed results on a time scale of 85–125 s in Figure 18.
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Figure 17. The response results of load changes with fuzzy logic controller.
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Figure 18. The results of set point changes with fuzzy logic controller on 85 to 125 s.

The next experiment is testing the artificial neural network. The first scenario can be seen in
Figure 19. This scenario test resulted in an average settling time of 2.05 s. For a detailed result, we
presented data that zoomed at 118–122 s in Figure 20.

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


Energies 2019, 12, 803 14 of 23

Energies 2019, 12, x FOR PEER REVIEW 14 of 23 

 

 

Figure 19. The response results of set point changes with artificial neural network. 

 

Figure 20. The response results of set point changes with artificial neural network controller on 118 

to 122 s. 

At the second scenario, the highest jump in the output voltage due to the load is released at 37.6 

V, and the lowest voltage drop due to the load is connected at 14.7 V. The average settling time is 6.65 

s. The results of this test can be seen in Figure 21. The zoomed result at 135–195 s can be seen in Figure 

22. 

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140

A
m

p
lit

u
d

e 
(V

)

Time (s)

ANN Scenario 1

VOut

VRef

0

5

10

15

20

25

30

118 118.5 119 119.5 120 120.5 121 121.5 122

A
m

p
lit

u
d

e 
(V

)

Time (s)

ANN Scenario 1

VOut

VRef

Figure 19. The response results of set point changes with artificial neural network.
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Figure 20. The response results of set point changes with artificial neural network controller on 118 to
122 s.

At the second scenario, the highest jump in the output voltage due to the load is released at 37.6 V,
and the lowest voltage drop due to the load is connected at 14.7 V. The average settling time is 6.65 s.
The results of this test can be seen in Figure 21. The zoomed result at 135–195 s can be seen in Figure 22.
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Figure 21. The response results of load changes with artificial neural network controller.
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Figure 22. The response results of load changes with artificial neural network controller on 135 to 195 s.

The last experiment used ANFIS and the results can be seen in Figure 23. The first scenario test
resulted in an average settling time of 3.49 s. The zoomed result at 56–60 s can be seen in Figure 24.
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Figure 23. The response results of set point changes with ANFIS controller.
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Figure 24. The response results of set point changes with ANFIS Controller on 56 s to 60 s.

For experiments using the second scenario of ANFIS, the system response can be seen in Figure 25.
This test resulted in a voltage surge with the highest value of 31.6 V and the lowest voltage at 15.43 V.
The average settling time in this test is 8.92 s. Figure 26 shows the results of the second scenario testing
zoomed at a 145–210 s time scale.
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Figure 26. The response results of load changes with ANFIS Controller on 145 s to 210 s.

Those experimental results show that the best result for the first scenario (changing voltage set
point) that was achieved by using ANN with an average settling time of 2.05 s. While for the second
scenario (maintaining voltage), the best results were also achieved by using ANN with an average
settling time of 6.65 s to reach steady state conditions. The time comparison of the results for two
scenarios of the three Artificial Intelligence systems can be seen in Figure 27.
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Figure 27. Settling time comparison on three intelligent control systems.

From the acquired results that are presented in Figure 27, the results show that the difference
between intelligent control systems has relatively small time differences. By evaluating the first test
between Fuzzy and ANN, the time difference is very close to 1 s and, when compared with ANFIS,
the time difference is less than 1 s. In the second scenario, the time difference is also around 1–2 s.
This difference can be occurred because of the iterative problems in each intelligent control. ANN is
superior to other AI because the ANN program has shorter iterations than others, this made ANN
more responsive when compared to other intelligent control systems.

If we evaluate the test results in the second scenario, we will find a high overshoot value. The
high overshoot value that occurred in the second scenario was caused by the high pressure when
the circuits are loaded with a 150 Ω resistor. This overshoot can be seen in Figure 25, which shows
a graph of the comparison between voltage and pressure in the ANN test for the second scenario.
At the early stage, the load is installed; therefore, the pressure rises to 0.36 bar. Subsequently, the
load is released, the voltage does not immediately go down, but it rises for a short period before it
starts to drop. This effect happened because the electrical force that opposes the mechanical force
suddenly drops due to the load being released, and this caused a high shaft rotation that resulted
in high generator rotation and generating high voltage. The voltage decreases corresponding to the
shaft rotation that was coupled with the generator. The generator slowly decreases its speed, even
though the pressure through the air-motor has been drastically reduced. As shown in Figure 28, the
voltage drops slowly, which corresponds to the shaft rotation. In Figure 28, the pressure value has
been multiplied by 100 to simplify the analysis process.

The graph shown in Figure 29 is about the comparison of settling time for each cycle of ANN
testing Scenario 2. The number shown on each cycle is based on Figure 28. The results show that the
longest cycle to normalize towards steady state is the first Cycles 1, 3, and 5 (cycles when the load is
released). While Cycles 2 and 4 have a shorter settling time than others. This results shows that the
problem of shaft rotation after the load is removed is one of the variables that must be resolved to
accelerate the normal process.
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6. Conclusions

In this paper, an experimental evaluation is done to stabilize the voltage that is generated by the
SS-CAES, so that it can be integrated into the grid indirectly. The voltage is controlled by converting
air passing through the airmotor using a valve combined with a servo motor. This experiment also
applied three artificial intelligences; Fuzzy Logic, ANN, and ANFIS.

This experiment uses two scenarios, the first scenario was done by changing the set point and the
best results was obtained by using ANN with the average settling time of 2.05 s. The second scenario
was done by connecting the load and specifying which load has the best results, as obtained using
ANN 6.65 s. Those results could happen because ANN has less iteration than other intelligent controls,
and this made the processing have a fast response. However, in the second scenario, there is a high
overshoot value when the load was released. This overshoot is happened due to the effect of high
pressure when the load was still installed. Accordingly, when the load was released, the electric torque
drops suddenly and it caused the air motor to spin again tight, since the remaining mechanical energy
was still high. Overall, the results shows that the system successfully stabilized the voltage smoothly.

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


Energies 2019, 12, 803 20 of 23

Author Contributions: Widjonarko has proposed, conceptualization and written the remaining manuscript.
R.S., S.W. and E.S. as validated the main idea and supervision. All authors together organized and refined the
manuscript in the present form.

Funding: This research is supported by the LPDP scholarships under grant No. 20161141011767. The author
gratefully acknowledges Universitas Brawijaya for the support for this research.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

AI Artificial intelligence
AM Air motor
b Bias
de(t) Delta error
e(t) Error
e(t − 1) Error in time before
MG Motor generator
PWM(t) Pulse Width Modulator (actual output)
PWM(t − 1) Pulse Width Modulator (actual output in time t − 1)
PWM(AIOutput) Pulse Width Modulator from AI output process
V Voltage, V
VOut Voltage output, V
VRef Voltage reference, V
w Weight
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