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Abstract 
 

All graphs in this paper are nontrivial and connected graph. For 𝑘-ordered set 𝑊 = {𝑠1, 𝑠2, … , 𝑠𝑘} of vertex set 𝐺, the multiset representa-

tion of a vertex 𝑣 of 𝐺 with respect to 𝑊 is 𝑟𝑚(𝑣|𝑊) = {𝑑(𝑣, 𝑠1), 𝑑(𝑣, 𝑠2), … , 𝑑(𝑣, 𝑠𝑘)} where 𝑑(𝑣, 𝑠𝑖) is a distance between of the ver-

tex 𝑣 and the vertices in 𝑊 together with their multiplicities. The resolving set 𝑊 is a local resolving set of 𝐺 if𝑟𝑚(𝑣|𝑊) ≠  𝑟𝑚(𝑢|𝑊) for 

every pair 𝑢, 𝑣 of adjacent vertices of 𝐺. The minimum local resolving set 𝑊 is a local multiset basis of 𝐺. If 𝐺 has a local multiset basis, 

then its cardinality is called local multiset dimension,denoted by 𝜇𝑙(𝐺). If 𝐺 does not contain a local resolving set, then we write 𝜇𝑙(𝐺) =
∞. In our paper, we will investigate the establish sharp bounds of the local multiset dimension of 𝐺 and determine the exact value of 

some family graphs. 

 
Keywords:Local Resolving Set; Local Multiset Dimension; Distance; Some Family Graph. 

1. Introduction 

In this paper, all graphs are nontrivial and connected graph, for detail definition of graph see [1,2,3]. The concept of metric dimension 

was independently introduced by Slater [4], Harrary and Melter [5]. In his paper, Slater said this concept as a locating set.  

Chartrand, et al. in [9] define the distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest path 

between these two vertices. Suppose that W = {s1, s2, … , sk} is an ordered set of vertices of a nontrivial connected graph G. The metric 

representation of v with respect to W is the k-vector r(v|W)  =  (d(v, s1), d(v, s2), . . . , d(v, sk)). Distance in graphs has also been used to 

distinguish all of the vertices of a graph. The set W is called a resolving set for G if distinct vertices of G have distinct representations 

with respect to W.The metric dimension of G, denoted by dim(G), is the minimum cardinality of resolving set W of G[5]. Furthermore, 

we consider those ordered sets W of vertices in G for which any two vertices of G having the same representation with respect to W are 

not adjacent in G. If r(u|W) ≠  r(v|W) for every pair u, v of adjacent vertices of G, then W is called a local resolving set of G. The min-

imum cardinality of local resolving set is local metric dimension of G, denoted by ldim(G)[7]. In recent years, the local metric dimension 

has been studied by [6,7] and the related topic in resolving set [10,11,12,13]. 

Proposition 1.1: [7] Let Gbe a nontrivial connected graph of order n, ldim(G)  = n − 1 if and only if G =  Kn and ldim(G)  =  1 if and 

only if G is bipartite. 

Proposition 1.1: [6] Let G be a nontrivial connected graph of order n. If G is paththen ldim(G)  =  1 andif G is cycle then ldim(G) = 1 

where n even and ldim(G) = 2 where n odd. 

Simanjuntaket. al.[8] started the definition of multiset dimension of G. Let G be a connected graph with vertex set V(G). Suppose W =
{s1, s2, … , sk}  of vertex set G , the multiset representation of a vertex v  of G  with respect to W  is rm(v|W) =
{d(v, s1), d(v, s2), … , d(v, sk)} where d(v, si) is a distance between of the vertex v and the vertices in W together with their multiplicities. 

The resolving set Wis aresolving set of G if rm(v|W) ≠  rm(u|W) for every pair of distances vertices u and v. The minimum resolving 

set W is a multiset basis of G. If G has a multiset basis, then its cardinality is called multiset dimension,denoted by md(G). Until today, 

there is some results of multiset dimension as follows: 

 

Theorem 1.3:The multiset dimension of a graph 𝐺 is one if and only if 𝐺 is a path. 

 

Theorem 1.4:Let 𝐺 be a graph other than a path, we have 𝑚𝑑(𝐺) ≥  3. 

 

Theorem 1.5:If G is a graph of diameter at most 2 other than a path, then 𝑚𝑑(𝐺)  = ∞. 

 

Furthermore, we define the new notation of multiset dimension of G which is called local multiset dimension. We start definiton of local 

multiset dimension as follows: 
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Definition 1.1:Let 𝐺 be a connected graph with vertex set 𝑉(𝐺). Suppose 𝑊 = {𝑠1, 𝑠2, … , 𝑠𝑘} of vertex set 𝐺, the multiset representation 

of a vertex 𝑣 of 𝐺 with respect to 𝑊 is 𝑟𝑚(𝑣|𝑊) = {𝑑(𝑣, 𝑠1), 𝑑(𝑣, 𝑠2), … , 𝑑(𝑣, 𝑠𝑘)} where 𝑑(𝑣, 𝑠𝑖) is a distance between of the vertex 𝑣 

and the vertices in 𝑊 together with their multiplicities. The resolving set 𝑊 is a local resolving set of 𝐺 if𝑟𝑚(𝑣|𝑊) ≠  𝑟𝑚(𝑢|𝑊) for eve-

ry pair 𝑢, 𝑣 of adjacent vertices of 𝐺. The minimum local resolving set 𝑊 is a local multiset basis of 𝐺. If 𝐺 has a local multiset basis, 

then its cardinality is called local multiset dimension, denoted by 𝜇𝑙(𝐺). 

 

We will illustrate this concept in Figure 1. In this case, we have the resolving set W = {v2, v3, v6} which shown in Figure 1 (a) that 

md(G) = 3 and the representations of v ∈  V(G) with respect to W are distinct. On other hand, we have W = {v1} which shown in Figure 

1 (b) is a local resolving set. Hence, we first give the representation of the vertices of G with respect to W as follows 

 

rm(v1|W) = {0},  rm(v2|W) = {1}, rm(v3|W) = {2} 

 

rm(v4|W) = {1}, rm(v5|W) = {2}, rm(v6|W) = {1} 

 

 
Fig. 1:A Graph with Multiset Dimension 3; (B) A Graph with Local Multiset Dimension 1 It Can Be Seen ThatΜL(G) = 1. 

2. Main results 

In this paper, we introduce the new concept of multiset dimension namely local multiset dimension. We found the lower bound of local 

multiset dimension and also determine the exact values of local multiset dimension of some graph families in the following theorems. 

 

Lemma 2.1:For every nontrivial connected graph 𝐺 of order 𝑛, we have 𝜇𝑙(𝐺) ≥  𝑙𝑑𝑖𝑚(𝐺). 

 

Proof: Let W be a local resolving set of G. If we have the vertices u adjacent to v which have representation r(u|W) = (a, b, c) and 

r(v|W) = (b, a, c) for a, b, c  represented of distance d(u, w)  for w ∈  W , then r(u|W) ≠  r(v|W). It satisfies the properties of local 

metric dimension. But, If we focus to multiset of distance which causes {a, b, c} = {b, a, c}, then we have same multiset representation 

rm(u|W) = rm(v|W) = {a, b, c}. It does not satisfy the properties of local multiset dimension. Other hand, If the vertices u adjacent to v 

have r(u|W) = (a, b, c) and r(v|W) = (b, a, d) for a, b, c, d represent of distance d(u, w) for w ∈  W, then r(u|W) ≠  r(v|W). It satisfies 

the properties of local metric dimension and also {a, b, c} ≠ {b, a, d} such that we have distinct multiset representation rm(u|W) ≠
 rm(v|W). It satisfies the properties of local multiset dimension. Thus, we concludes thatμl(G) ≥  ldim(G).  
 

Lemma 2.2:For every nontrivial connected graph 𝐺 of order 𝑛, we have 𝜇𝑙(𝐺) ≤  𝑚𝑑(𝐺). 

 

Proof: Let W be a resolving set of G, the vertices in G have distinct multiset representation. Such that, every resolving set is also a local 

resolving set. Hence, we have μl(G) ≤  md(G). 

 

Lemma 2.3:Let 𝑇 be a tree graph of order 𝑛, we have 𝜇𝑙(𝑇) ≥  1. 
 

Proof: Let T be a tree graph with order n. For two vertices x, v ∈  V(T) which have at most one path between the vertices x and v. 

Suppose W = {u} with u of T, there is representation local multiset as follows. 

• If the vertices x and v are pendant vertices and its vertices aren't adjacent, then it is satisfies the condition local multiset dimension. 

• If d(x) = 1 and d(v) ≠  1 in one path, then rm(x|W) ≠  rm(v|W). It satisfies its condition. 

• If d(x) ≠  1 and d(v) ≠  1 in one path, then rm(x|W) ≠  rm(v|W). It satisfies its condition. 

• The vertices x and v in one path and rm(x|W) ≠  rm(v|W)$. If there is at least one vertex w′ adjacent to vertex x and d(w′, x) =
d(v, x), then rm(w′|W) = rm(v|W) with v and w′ aren't adjacent. It satisfies its condition. 

Based on all possible that we obtain the local multiset dimension of T isμl(T) ≥  1. 

 

Theorem 2.1:Let 𝑃𝑛 be a path graph with 𝑛 ≥ 3, the local multiset dimension of 𝑃𝑛 is 𝜇𝑙(𝑃𝑛) = 1. 

 

Proof : The path Pn is a tree graph with n vertices. The vertex set V(Pn) = {v1, v2, … , vn} and edge set E(Pn) = {vivi+1;  1 ≤  i ≤  n −
1 }. The cardinality of vertex set and edge set, respectively are |V(P_n)| = n and |E(P_n)| = n − 1. 

Based on Lemma 2.3 that the lower bound of local multiset dimension of tree graph T is μl(T) ≥ 1. We know that Pn is tree graph such 

that μl(Pn) ≥ 1. However, we attain the sharpest lower bound. Furthermore, The upper bound of local multiset dimension of path Pn is 

μl(Pn) ≤ 1. Suppose W = {v1}, the representation of vertices v ∈ V(Pn) respect to W is rm(v1|W) = {0} and rm(vi|W) = {i − 1};  2 ≤
 i ≤  n. It can be seen that rm(vi|W) ≠  rm(vi+1|W). Thus, we obtain the upper bound of local multiset dimension of Pn is μl(Pn) ≤ 1. 
We conclude that μl(Pn) = 1. 
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Theorem 2.2:Let 𝑆𝑛 be a star graph with 𝑛 ≥ 3 , the local multiset dimension of 𝑆𝑛 is 𝜇𝑙(𝑆𝑛) = 1. 

 

Proof : The star Sn is a tree graph with n + 1 vertices. The vertex set V(Sn) = {v, v1, v2, … , vn} and edge set E(Sn) = {vvi;  1 ≤  i ≤  n}. 

The vertex v is a central vertex and the vertices vi is pendant vertex with degree 1. The cardinality of vertex set and edge set, respectively 

are |V(Sn)| = n + 1 and |E(Sn)| = n. 
Based on Lemma 2.3 that the lower bound of local multiset dimension of tree graph T is μl(T) ≥ 1. We know that Sn is tree graph such 

that μl(Sn) ≥ 1. However, we attain the sharpest lower bound. Furthermore, The upper bound of local multiset dimension of star Sn is 

μl(Sn) ≤ 1. Suppose W = {v}, the representation of vertices v ∈  V(Sn) respect to W is rm(v|W) = {0} and rm(vi|W) = {1};  1 ≤  i ≤
 n. It can be seen thatrm(vi|W) = rm(vj|W) with vi and vj aren't adjacent for 1 ≤  i, j ≤  n. Thus, we obtain the upper bound of local 

multiset dimension of Sn is μl(Sn) ≤ 1. We conclude that μl(Sn) = 1. 
 

Theorem 2.3:Let 𝑇 be a complete 𝑘-ary tree of height ℎ, the local multiset dimension of 𝑇 is 𝜇𝑙(𝑇) = 1. 

 

Proof : A complete k-ary tree is a k-ary tree which is maximally space efficient. It must be completely filled on every level except for the 

last level. However, if the last level is not complete, then all nodes of the tree must be "as far left as possible.  

Based on Lemma 2.3 that the lower bound of local multiset dimension of tree graph T is μl(T) ≥ 1. We know that T is complete k-ary 

tree graph such that μl(T) ≥ 1. However, we attain the sharpest lower bound. Furthermore, The upper bound of local multiset dimension 

of complete k-ary tree graph is μl(T) ≤ 1. Suppose W = {v}, the representation of vertices v ∈  V(T) respect to W is rm(v|W) = {0} 

and rm(vj
i|W) = {j};  1 ≤  i ≤  k, 1 ≤  j ≤  h. It can be seen that rm(vj

i|W) = rm(vj
l|W) with vj

i and vj
l aren't adjacent for 1 ≤  i, l ≤  k. 

Thus, we obtain the upper bound of local multiset dimension of complete k-ary tree graph is μl(T) ≤ 1. We conclude that μl(T) = 1. 

 

Theorem 2.4:Let 𝐶𝑛,𝑚 be a caterpillar graph with 𝑛 ≥ 3 and 𝑚 ≥  1, the local multiset dimension of 𝐶𝑛,𝑚 is 𝜇𝑙(𝐶𝑛,𝑚) = 1. 

 

Proof : The path Cn,m is a tree graph with nm + n vertices. The vertex set V(Cn,m) = {v1, v2, … , vn} ∪ {vi,j;  1 ≤  i ≤  n, 1 ≤  j ≤  m\} 

and edge set E(Cn,m) = {vivi+1;  1 ≤  i ≤  n − 1 } ∪ {vivi,j;  1 ≤  i ≤  n, 1 ≤  j ≤  m } . The cardinality of vertex set and edge set, 

respectively are |V(Cn,m)| = n + nm and |E(Cn,m)| = nm + n − 1. 

Based on Lemma 2.3 that the lower bound of local multiset dimension of tree graph T isμl(T) ≥ 1. We know that Cn,m is tree graph such 

that μl(Cn,m) ≥ 1. However, we attain the sharpest lower bound. Furthermore, The upper bound of local multiset dimension of path Cn,m 

is μl(Cn,m) ≤ 1 . Suppose W = {v1} , the representation of vertices v ∈  V(Cn,m)  respect to W  is rm(v1|W) = {0}, rm(vi|W) =

{i − 1};  2 ≤  i ≤  n andrm(vi,j|W) = {i};  1 ≤  i ≤  n, 1 ≤  j ≤  m. Thus, we obtain the upper bound of local multiset dimension of Cn,m 

is μl(Cn,m) ≤ 1. We conclude that μl(Cn,m) = 1. 

 

Theorem 2.5:Let 𝐾𝑛1,𝑛2,…,𝑛𝑘
 be a 𝑘 -partite graph with 1 ≤  𝑙 ≤  𝑘  and 𝑛𝑙 ≥  𝑘 − 1 , the local multiset dimension of 𝐾𝑛1,𝑛2,…,𝑛𝑘

 is 

𝜇𝑙(𝐾𝑛1,𝑛2,…,𝑛𝑘
) =

𝑘(𝑘−1)

2
. 

 

Proof : The k-partite graph Kn1,n2,…,nk
be a connected graphwith 𝑛𝑙 ≥ 2 and 1 ≤  𝑙 ≤  𝑘. The vertex set V(Kn1,n2,…,nk

) =  {vl,i;  1 ≤  i ≤

 nl, 1 ≤  l ≤  k}  and edge set E(Kn1,n2,…,nk
) =  {vl,ivl+r,i+r ;  1 ≤  i ≤  nl, 1 ≤  l ≤  k, 1 ≤  r ≤  k − l }.Firstly, we prove that the lower 

bound of local multiset dimension of k-partite graph is μl(Kn1,n2,…,nk
) ≥

k(k−1)

2
. We assume that μl(Kn1,n2,…,nk

) <
k(k−1)

2
, suppose W =

W1 ∪ W2 ∪ … ∪  Wk−1withWl = {vl,i; 1 ≤  i ≤  k − l, 1 ≤  l ≤  k − 2 } such that (k − 1)th partite and kth partite do not have at least one 

vertex as resolving set. Hence, the representation of vertices v ∈ V at least two adjacent vertices which have some representation include 

rm(vk−1,i|W) = rm(vk,i|W) = {1
k(k−1)−2

2 \}. It is a contradiction. Thus, we have the lower bound of local multiset dimension of k-partite 

graph is μl(Kn1,n2,…,nk
) ≥  

k(k−1)

2
.  

Furthermore, we show that the upper bound of local multiset dimension of 𝑘-partite graph is 𝜇𝑙(𝐾𝑛1,𝑛2,…,𝑛𝑘
) ≤  

𝑘(𝑘−1)

2
. Suppose 𝑊 =

𝑊1 ∪ 𝑊2 ∪ … ∪ 𝑊𝑘−1 with 𝑊𝑙 = {𝑣𝑙,𝑖; 1 ≤  𝑖 ≤  𝑘 − 𝑙, 1 ≤  𝑙 ≤  𝑘 − 1 }, the representation of vertices 𝑣 ∈  𝑉(𝐾𝑛1,𝑛2,…,𝑛𝑘
) respect to 𝑊 

as follows. 

 

𝑟𝑚(𝑣𝑙,𝑖|𝑊) = {0,1
𝑘2−3𝑘+2𝑙

2 , 2𝑘−𝑙−1} ;  1 ≤  𝑖 ≤  𝑘 − 𝑙, 1 ≤  𝑙 ≤  k − 1 

 

𝑟𝑚(𝑣𝑙,𝑖|𝑊) = {1
𝑘2−3𝑘+2𝑙

2 , 2𝑘−𝑙} ;  𝑘 − 𝑙 + 1 ≤  𝑖 ≤  𝑛𝑙 , 1 ≤  𝑙 ≤  𝑘 − 1. 

 

𝑟𝑚(𝑣𝑘,𝑖|𝑊) = {1
𝑘2−𝑘

2 } ;  1 ≤  𝑖 ≤  𝑛𝑘. 

 

It can be seen that 𝑟𝑚(𝑣𝑙,𝑖|𝑊) = 𝑟𝑚(𝑣𝑙,𝑗|𝑊) with 𝑣𝑙,𝑖 and 𝑣𝑙,𝑗  aren't adjacent for 1 ≤  𝑖, 𝑗 ≤  𝑛𝑙 . Thus, we obtain the upper bound of local 

multiset dimension of 𝑘-partite graph is 𝜇𝑙(𝐾𝑛1,𝑛2,…,𝑛𝑘
) ≤  

𝑘(𝑘−1)

2
. We conclude that 𝜇𝑙(𝐾𝑛1,𝑛2,…,𝑛𝑘

) =
𝑘(𝑘−1)

2
. 

 

Theorem 2.6:Let 𝐶𝑛 be a cycle graph with 𝑛 ≥ 3, the local multiset dimension of 𝐶𝑛 is 

 

𝜇𝑙(𝐶𝑛) = {
1, 𝑖f 𝑛𝑖𝑠𝑒𝑣𝑒𝑛
3, 𝑖𝑓𝑛𝑖𝑠𝑜𝑑𝑑
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Proof : The cycle 𝐶𝑛 is a cyclic graph with 𝑛 vertices. The vertex set 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, … , 𝑣𝑛} and edge set 𝐸(𝐶𝑛) = {𝑣1𝑣𝑛, 𝑣𝑖𝑣𝑖+1;  1 ≤
 𝑖 ≤  𝑛 − 1 }. The cardinality of vertex set and edge set, respectively are |𝑉(𝐶𝑛)| = 𝑛 and |𝐸(𝐶𝑛)| = 𝑛. The proof divided into two cases 

as follows.  

Case 1: For 𝑛 is even, Based on Proposition 1.2 and Lemma 2.1 that the lower bound of local multiset dimension of cycle 𝐶𝑛 is 𝜇𝑙(𝐺) ≥
 𝑙𝑑𝑖𝑚(𝐺). We know that 𝑙𝑑𝑖𝑚 (𝐶𝑛) = 1 such that 𝜇𝑙(𝐶𝑛) ≥  𝑙𝑑𝑖𝑚(𝐶𝑛) = 1. However, we attain the sharpest lower bound. Furthermore, 

The upper bound of local multiset dimension of cycle is 𝜇𝑙(𝐶𝑛) ≤ 1. Suppose 𝑊 = {𝑣1}, the representation of vertices 𝑣 ∈  𝑉(𝐶𝑛) 

respect to 𝑊 as follows. 

 

𝑟(𝑣1|𝑊) =  {0 } 

 

𝑟(𝑣𝑖|𝑊) =  {𝑖 − 1 };  2 ≤  𝑖 ≤
𝑛

2
+ 1 

 

𝑟(𝑣𝑖|𝑊) =  {𝑛 − 𝑖 + 1 };
𝑛

2
+ 2 ≤  𝑖 ≤  𝑛 

 

It can be seen that 𝑟𝑚(𝑣𝑖|𝑊) ≠  𝑟𝑚(𝑣𝑖+1|𝑊) with 𝑣𝑖 and 𝑣𝑖+1 are adjacent for 1 ≤  𝑖 ≤  𝑛 − 1. Thus, we obtain the upper bound of local 

multiset dimension of cycle 𝐶𝑛 is 𝜇𝑙(𝐶𝑛) ≤ 1. We conclude that 𝜇𝑙(𝐶𝑛) = 1 for 𝑛 is even. 

Case 2 : For 𝑛 is odd, we will show that lower bound of the local multiset dimension of 𝐶𝑛 is 𝜇𝑙(𝐶𝑛) ≥  3. Assume that 𝜇𝑙(𝐶𝑛) < 3, 

suppose the resolving set 𝑊 =  {𝑢, 𝑣 } so that there is some condition as follows 

• If u, v ∈  W are adjacent, then rm(u|W) = rm(v|W) =  {0,1}, it is a contradiction. 

• If u, v ∈ W aren't adjacent then there is at most two path P1 and P2 between two vertices u and v. If |V(P1)| = k1 with k1 is odd, 

then |V(P2)| = k2with k2 is even. 

• We take the cardinality |V(P2)| = k2 with k2 is even and the vertices in P2 includes path graph. 

• Let the vertices in P2 be v1, … , v2l ∈  V(P2) for l ∈  Z+$ such that d(vl, v1) = d(vl+1, v2l). 

• We obtain that d(v1, u) = 1  and d(v2l, v) = 1 , based on point d) that rm(vl|W) =  {d(vl, v1) +
d(v1, u), d(vl++ d $ain that $inality $ path $1, v1) + d(v1, u) + 1 } =  {d(vl, v1) + 1, d(vl, v1) + 2 } and rm(vl+!}|W) =

 {d(vl+1}, v2l) + d(v2l, v), d(vl+1, v2l) + d(v2l, v) + 1 } =  {d(vl+1, v2l) + 1, d(vl+1, v2l) + 2\}$. 
• Based onpoint d), e) that rm(vl|W) =  {d(vl, v1) + 1, d(vl, v1) + 2 } =  {d(vl+1, v2l) + 1, d(vl+1, v2l) + 2 } = rm(vl+1|W) and we 

know that vl is adjacent to vl+1, it is a contradiction. 

Based on point a),b),c),d),e), f) that the lower bound of local multiset dimension of 𝐶𝑛 is 𝜇𝑙(𝐶𝑛) ≥  3. Furthermore, the upper bound of 

the local multiset dimension of 𝐶𝑛 is 𝜇𝑙(𝐶𝑛) ≤  3.Suppose the resolving set 𝑊 =  {𝑣1, 𝑣3, 𝑣4}, we can obtain the representation 𝑣 respect 

to 𝑊 as follows 

 

𝑟𝑚(𝑣1|𝑊) =  {0,2,3 } 

 

𝑟𝑚(𝑣2|𝑊) =  {1,1,2} 

 
𝑟𝑚(𝑣3|𝑊) = {0,1,2} 

 
𝑟𝑚(𝑣4|𝑊) =  {0,1,3 } 

 

𝑟𝑚(𝑣𝑖|𝑊) =  {𝑖 − 4, 𝑖 − 3, 𝑖 − 1 };  5 ≤  𝑖 ≤
𝑛 + 1

2
 

 

𝑟𝑚(𝑣𝑖|𝑊) =  {𝑖 − 4, 𝑖 − 3, 𝑖 − 2 };  𝑖 =
𝑛 + 3

2
 

 

𝑟𝑚(𝑣𝑖|𝑊) =  {𝑖 − 4, 𝑖 − 3, 𝑖 − 4 };  𝑖 =
𝑛 + 5

2
 

 

𝑟𝑚(𝑣𝑖|𝑊) =  {𝑛 − 𝑖 + 1, 𝑛 − 𝑖 + 3, 𝑛 − 𝑖 + 3 };  𝑖 =
𝑛 + 7

2
 

 

𝑟𝑚(𝑣𝑖|𝑊) =  {𝑛 − 𝑖 + 1, 𝑛 − 𝑖 + 3, 𝑛 − 𝑖 + 4 }; 
𝑛 + 9

2
≤  𝑖 ≤  𝑛 

 

The representation of the vertices 𝑣𝑖 which is adjacent are distinct such that 𝑊 is a local resolving set of 𝐶𝑛. Thus, we obtain the upper 

bound of the local multiset dimension of 𝐶𝑛 is 𝜇𝑙(𝐶𝑛) ≤  3. It concludes that 𝜇𝑙(𝐶𝑛) = 3 for 𝑛is odd. 

 

Theorem 2.7:Let 𝐾𝑛 be a complete graph with 𝑛 ≥ 3, the local multiset dimension of 𝐾𝑛 is 𝜇𝑙(𝐾𝑛) = ∞. 

 

Proof : The complete 𝐾𝑛  is a 𝑛 − 1-regular graph with 𝑛  vertices. The vertex set 𝑉(𝐾𝑛) =  {𝑣1, 𝑣2, … , 𝑣𝑛 }  and edge set 𝐸(𝐾𝑛) =

 {𝑣𝑖𝑣𝑖+𝑘;  1 ≤  𝑖 ≤  𝑛, 1 ≤  𝑘 ≤  𝑛 − 𝑖 }. The cardinality of vertex set and edge set, respectively are |𝑉(𝐾𝑛)| = 𝑛 and |𝐸(𝐾𝑛)| =
𝑛(𝑛−1)

2
. 

Diameter of 𝐾𝑛 is 1 and all verteices are adjacents.  

We prove this theorem by contradiction. Assume that all vertices in 𝑊 is distance 1 and 𝑊 is a local resolving set of complete graph 𝐾𝑛. 

There is some condition as follows.  

• If we take W = {v1}, then rm(v1|W) =  {0 } and rm(v2|W) = rm(v3|W) = ⋯ = rm(vn−1}|W) = rm(vn|W) =  {1 }, we know 

that v2, v3, … , vn are adjacent such that it is a contradiction. 
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• If we take W =  {v1, v2}, then rm(v1|W) = rm(v2|W) =  {0,1 } and rm(v3|W) = ⋯ = rm(vn−1}|W) = rm(vn|W) =  {12 }, we 

know thatv3, … , vn are adjacent such that it is a contradiction. 

• If we take W =  {v1, v2, … , vk} for  2 ≤  k ≤  n − 1 , then rm(v1|W) = ⋯ = rm(vk|W) = {0,1k−1} and rm(vk+1|W) = ⋯ =

rm(vn|W) = {1k}, we know that vk+1, … , vn are adjacent such that it is a contradiction. 

Hence, 𝑊 is not a local resolving set of complete graph 𝐾𝑛. It is conclude that 𝜇_𝑙 (𝐾_𝑛) = ∞. 

3. Conclusion 

In this paper we have given an result the lower bound of local multiset dimension and determine the exact values of some special graphs. 

Hence the following problem aries naturally. 

3.1. Open problem 

Determine the local multiset dimension of family graph namely family tree, unicyclic, regular graphs, and others.  

3.2. Open problem 

Determine the local multiset dimension of operation graph namely corona product, cartesian product, joint, comb product, and others.  
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