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On Super Edge Local Antimagic Total Labeling 
by Using an Edge Antimagic Vertex Labeling 

Technique 
 

Ika Hesti Agustin, Dafik, Marsidi, Ridho Alfarisi, E Y Kurniawati 
 

Abstract: In this paper, we consider that all graphs are finite, simple and connected. Let 𝐺(𝑉, 𝐸) be a graph of vertex set 𝑉 and edge set 𝐸. By a edge 
local antimagic total labeling, we mean a bijection 𝑓: 𝑉(𝐺) ∪ 𝐸(𝐺) → *1,2,3, . . . , |𝑉(𝐺)| + |𝐸(𝐺)|+ satisfying that for any two adjacent edges 𝑒  and 𝑒 , 
𝑤 (𝑒 ) ≠ 𝑤 (𝑒 ), where for 𝑒 = 𝑢𝑣 ∈ 𝐺,𝑤 (𝑒) = 𝑓(𝑢) + 𝑓(𝑣) + 𝑓(𝑢𝑣). Thus, any edge local antimagic total labeling induces a proper edge coloring of 𝐺 if 
each edge 𝑒 is assigned the color 𝑤 (𝑒). It is considered to be a super edge local antimagic total coloring, if the smallest labels appear in the vertices. 
The chromatic number of super edge local antimagic total, denoted by 𝛾    (𝐺), is the minimum number of colors taken over all colorings induced by 
super edge local antimagic total labelings of 𝐺. In this paper, we investigate the lower bound of super edge local antimagic total coloring of graphs and 
the existence the chromatic number of super edge local antimagic total labeling of ladder graph 𝐿 , caterpillar graph 𝐶 , , and graph coronations 𝑃 ⨀𝑃  
and 𝐶 ⨀𝑃 .. 
 
Index Terms: antimagic total labeling, super edge local antimagic total labeling, chromatic number.   

——————————�—————————— 
 

1 INTRODUCTION 
We consider that all graphs in this paper are connected, finite, 
and simple graph, for detail definition of graph can be seen on 
[3, 4]. The labeling of graph is a bijection mapping a natural 
number to the vertices of a graph. In this type of labeling, we 
consider all weights associated with each edge of graph 𝐺. 
The labeling called antimagic if all the edge weights show 
different values. The concept of antimagic labeling of a graph 
introduced by Hartsfield and Ringel [5]. There are a lot of 
results regarding to antimagic labeling, can be found in Dafik 
et. al [7], [8]. They study about super edge-antimagic total 
labelings and determined the super edge-antimagic total 
labelings of 𝑚𝐾 ,  and super edge-antimagicness for 
disconnected graphs, respectively. In this paper, we study and 
identify the relation between coloring and antimagic labeling of 
graph, that is edge local antimagic total labeling. The proper 
edge coloring of a graph $G$ is a coloring of all edges of 
graph 𝐺 assigned by natural number such that every two 
adjacent edges receive different colors. The definition of edge 
local antimagic total labeling is a bijection 𝑓: 𝑉(𝐺) ∪ 𝐸(𝐺) →
*1,2,3,⋯ , 𝑝 + 𝑞+ where 𝑝 = |𝑉(𝐺)| and 𝑞 = |𝐸(𝐺)| such that for 
every two adjacent edges 𝑒  and 𝑒  for 𝑒 = 𝑎𝑏 ∈ 𝐺 and 
𝑤 (𝑒) = 𝑓(𝑎) + 𝑓(𝑏) + 𝑓(𝑎𝑏), 𝑤 (𝑒 ) ≠ 𝑤 (𝑒 ). Thus, any 
edge local antimagic total labeling induces a proper edge 
coloring of 𝐺 if each edge 𝑒 is assigned by the color 𝑤 (𝑒). If 
the smallest labels appear in the vertices, then it is considered 
to be a super edge local antimagic total labeling. The super 
edge local antimagic total labeling chromatic number denoted 
by 𝛾    (𝐺) is the minimum number of colors taken over all 
colorings induced by super edge local antimagic total labeling 
of graph 𝐺. This paper just initiate to study the super edge 
local antimagic total labeling, thus we have not found any 
relevant results yet. But, there are some results related to 
vertex local antimagic labeling. The concept local antimagic 
coloring of a graph 𝐺 firstly introduced by Arumugam 𝑒𝑡 𝑎𝑙. [6]. 
They gave a lower bound and an upper bound of vertex local 
antimagic edge labeling of joint graph and also gave an exact 
value of vertex local antimagic edge labeling for some graph 
there are path, cycle, complete graph, friendship, wheel, 
bipartite and complete bipartite. Ika, 𝑒𝑡. 𝑎𝑙. [13] has determined 
the concept local antimagic coloring of a graph, their study 

examine the lower bound of the chromatic number of edge 
local  antimagic vertex labeling, denoted by 𝛾   (𝐺) ≥ ∆(𝐺). If 
∆(𝐺) is maximum degrees of 𝐺 then 𝛾   (𝐺) ≥ ∆(𝐺). 
Kurniawati, et. al. [14] also study the local antimagic of graph, 
their study edge local antimagic total labeling of graph 
operation and determine the chromatic number of  edge local 
antimagic total labeling of comb product graph. Their paper 
determined the lower bound of edge local antimagic total 
labeling of comb product graph and denoted by 𝜒(𝑃_𝑛 ⊳ 𝐻) ≤
𝜒(𝑃 ) + 𝜒(𝐻). This paper discusses and determine the 
existence of super edge local antimagic total labeling of some 
special graphs and also analyze the lower bound of chromatic 
number super edge local antimagic total labeling. Prior to 
show our new results, we recall the definition of edge 
antimagic vertex labeling and super edge local antimagic total  
labeling in the following definitions. 
 
Definition 2.1. A map 𝑓: 𝑉(𝐺) → *1,2,3, . . . , |𝑉(𝐺)|+ is called an 
(𝑎, 𝑑)-edge antimagic vertex labeling if the set of edge weights 
𝑤(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣), of all the edges in 𝐺, form an arithmetic 
sequence *𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑,⋯ , 𝑎 + (𝑞 − 1)𝑑+ where 𝑎 > 0 and 
𝑑 ≥ 0 are two fixed integers. 

 
Definition 2.2. Let 𝐺(𝑉, 𝐸) be a graph of vertex set 𝑉 and 
edge set 𝐸.  A bijection 𝑓: 𝑉(𝐺) ∪ 𝐸(𝐺) → *1,2,3,⋯ , 𝑝 + 𝑞+ 
where 𝑝 = |𝑉(𝐺)| and 𝑞 = |𝐸(𝐺)| such that for every two 
adjacent edges 𝑒  and 𝑒  for 𝑒 = 𝑎𝑏 ∈ 𝐺 and 𝑤 (𝑒) = 𝑓(𝑎) +
𝑓(𝑏) + 𝑓(𝑎𝑏), 𝑤 (𝑒 ) ≠ 𝑤 (𝑒 ). It is considered to be a super 
edge local antimagic total labeling, if the smallest labels 
appear in the vertices. 
 
We know that, any super edge local antimagic total labeling 
induces a proper edge coloring of 𝐺 if each edge 𝑒 is assigned 
by the color 𝑤 (𝑒). The lower bound concept of local antimagic 
graph is shown in the following observation in Arumugam 
paper, see [6]. 

 
Observation 2.1. [6] For any graph 𝐺, the vertex local 
antimagic edge labeling chromatic number  𝜒  (𝐺) ≥ 𝜒(𝐺), 
where 𝜒(𝐺) is a chromatic number of vertex coloring of 𝐺.r. 
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2. MAIN RESULT 
We start to present our result by showing the lower bound of  
super edge local antimagic total labeling chromatic number for 
any graph in the following lemma. This lower bound will be 
used to proved the obtained theorems, and it is sharp. 
 
Lemma 3.1. If ∆(𝐻) is maximum degrees of 𝐺, then we have 
𝛾    (𝐻) ≥ ∆(𝐻). 
 
Proof. Let 𝑓 be a super edge local antimagic total labeling of 
𝐺. For the edge coloring induced by 𝑓, the color of each edge 
𝑎𝑏 is assigned by 𝑓(𝑎) + 𝑓(𝑏) + 𝑓(𝑎𝑏). If 𝑣 is a vertex which is 
incident with ∆(𝐺) edges, then there must be at least ∆(𝐺) 
edges colors  to be  a proper edge coloring. Hence, all the 
edges receive distinct colors, thus 𝛾    (𝐺) ≥ Δ(𝐺).∎ 
 
We now need to recall an edge antimagic vertex labeling 
(EAVL for short) lemma.  This lemma is important to construct 
of a super local antimagic total edge coloring. It was 
introduced by Bača et al. in [1]. This lemma also described the 
connection between edge-antimagic vertex labeling and super 
edge-antimagic total  labeling. 
 
Theorem 3.1. [1] If 𝐺 has an (𝑎, 𝑑)-edge-antimagic vertex 
labeling then 𝐺 has super (𝑎 + |𝑉| + 1, 𝑑 + 1)-edge-antimagic 
total labeling and super (𝑎 + |𝑉| + |𝐸|, 𝑑 − 1)-edge-antimagic 
total labeling. 

 
Corollary 3.2. Let 𝐺 be any simple and connected graph. If 𝐺 
admits an edge antimagic vertex labeling 𝑓 with different 𝑑 =
1, then the edge coloring of 𝐺, assigned by color 𝑤(𝑎𝑏) =
𝑓(𝑎) + 𝑓(𝑎𝑏) + 𝑓(𝑏), will give the same color. 

 
Proof. Since 𝐺 admits an edge antimagic vertex labeling 𝑓 
with different 𝑑 = 1, by Theorem 3.1, G has super (𝑎 + |𝑉| +
|𝐸|,0)-edge-antimagic total labeling. It implies that all the edge 
weights have the same weights. It concludes the proof. ∎ 

 
We now present an important permutation which is very useful 
in constructing super edge local antimagic total coloring. 
 
Lemma 3.2. Let 𝛼 and 𝛽 be a sequence 𝛼 = * 𝑎, 𝑎 + 𝑑, 𝑎 +
2𝑑,⋯ , 𝑎 + 𝑘𝑑+ and 𝛽 = *𝑏, 𝑏 + 𝑑, 𝑏 + 2𝑑,⋯ , 𝑏 + 𝑘𝑑+, where 
𝑑 ≥ 1 and odd 𝑘 ≥ 0 are integer numbers. There exists a 
permutation Π(𝛼) of the elements 𝛼 such that 𝛽 + Π(𝛼) = *𝑎 +
𝑏 + (𝑘 − 1)𝑑, 𝑎 + 𝑏 + (𝑘 + 1)𝑑,⋯ , 𝑎 + 𝑏 + (𝑘 − 1)𝑑, 
𝑎 + 𝑏 + (𝑘 + 1)𝑑+. 
 
Proof. Let 𝛼 and 𝛽 be a sequence 𝛼 = * 𝑎 + (𝑖 − 1)𝑑, 1 ≤ 𝑖 ≤
𝑘 + 1+ and 𝛽 = * 𝑏 + (𝑖 − 1)𝑑, 1 ≤ 𝑖 ≤ 𝑘 + 1+, where 𝑑 ≥ 1 and 
odd 𝑘 ≥ 0 are integer numbers. Define a permutation Π(𝛼)  =
 * (𝑖), 1 ≤ 𝑖 ≤ 𝑘 + 1+ of the elements of 𝛼 as follows: 
 

(𝑖) = { 𝑎 + (𝑘 − 𝑖)𝑑 𝑖𝑓 1 ≤ 𝑖 ≤ 𝑘, 𝑖 ≡ 1(𝑚𝑜𝑑 2)
𝑎 + 2𝑑 + (𝑘 − 𝑖)𝑑 𝑖𝑓 2 ≤ 𝑖 ≤ 𝑘 + 1,   𝑖 ≡ 0(𝑚𝑜𝑑 2) 

 
By direct computation, we obtain that 𝛽 + Π(𝛼) =  *𝑏 +
(𝑖 − 1)𝑑 +  (𝑖) |1 ≤ 𝑖 ≤ 𝑘 + 1+ = * 𝑎 + 𝑏 + (𝑘 − 1)𝑑| *𝑖 ≡
1(𝑚𝑜𝑑  2), 1 ≤ 𝑖 ≤ 𝑘+ ∪ * 𝑎 + 𝑏 + (𝑘 + 1)𝑑 | *𝑖 ≡ 0(𝑚𝑜𝑑  2), 2 ≤
𝑖 ≤ 𝑘 + 1+ = *𝑎 + 𝑏 + (𝑘 − 1)𝑑, 𝑎 + 𝑏 + (𝑘 + 1)𝑑,⋯ , 𝑎 + 𝑏 +
(𝑘 − 1)𝑑, 𝑎 + 𝑏 + (𝑘 + 1)𝑑+. We arrive at the desired result.∎ 
 
Furthermore, we also present this useful lemma in 

constructing super edge local antimagic total labeling. We 
consider the partition 𝒫 , 

 (𝑖) of the set *1, 2,⋯ , 3𝑛+ into 𝑛 
columns, 𝑛 ≥ 2, 3-rows such that the difference between the 
sum of the numbers in the (𝑖 + 1)th 3-rows and the sum of the 
numbers in the 𝑖th 3-rows is always  equal to the constant 𝑑, 
where 𝑖 = 1, 2,⋯ , 𝑛 − 1. Thus 𝑑 = ∑ 𝒫 , 

 (𝑖 + 1) − ∑𝒫 , 
 (𝑖). 

 
Lemma 3.3. Let 𝑛 be an odd positive integer. For 1 ≤ 𝑖 ≤ 𝑛, 
the sum of 

𝒫 , 
 (𝑖) = *𝑔 (𝑖), 𝑔 (𝑖), 𝑔 (𝑖)+ 

with 

𝑔 (𝑖) = {
𝑛 + 1 + 𝑖

2 ; 𝑖 ≡ 0(𝑚𝑜𝑑 2)
1 + 𝑖

2 ; 𝑖 ≡ 1(𝑚𝑜𝑑 2)
 

𝑔 (𝑖) = {
𝑖
2 ; 𝑖 ≡ 0(𝑚𝑜𝑑 2)

𝑛 + 𝑖
2 ; 𝑖 ≡ 1(𝑚𝑜𝑑 2)

 

𝑔 (𝑖) = 𝑛 + 1 − 𝑖 
 
form an aritmatic sequence of difference 𝑑 =  0. 
 
Proof. By simple calculation. It gives 𝒫 , 

 (𝑖) = 𝑔 (𝑖), +𝑔 (𝑖) +
𝑔 (𝑖)+, thus 

∑ 𝒫 , 
 (𝑖)

 

   
= {

𝑛 + 1 + 𝑖
2 + 𝑖

2 + 𝑛 − 𝑖 + 1; 𝑖 ≡ 0(𝑚𝑜𝑑 2)
𝑖 + 1

2 + 𝑛 + 𝑖
2 + 𝑛 − 𝑖 + 1; 𝑖 ≡ 1(𝑚𝑜𝑑 2)

 

 
It is easy to see that ∑ 𝒫 , 

 (𝑖) 
   =  

 (𝑛 + 1) form an 
aritmatic sequence of difference 𝑑 = ∑𝒫 , 

 (𝑖 + 1) −
∑𝒫 , 

 (𝑖) = 0.∎ 
 
From now on, by those lemmas in hand, we are ready to 

prove the following results. 
 

Theorem 3.3. Let 𝑛 be an odd positive integer. Given that 𝐿  
is a ladder graph of order 𝑛. The chromatic number of super 
edge local antimagic total labeling of 𝐿  is 𝛾    (𝐿 ) = 3. 
 
Proof. The graph 𝐿  is a connected graph with vertex set 
𝑉(𝐿 ) = *𝑥 , 𝑦 : 1 ≤ 𝑖 ≤ 𝑛 and  edge set 
𝐸(𝐿 ) = *𝑥 𝑥   , 𝑦 𝑦   : 1 ≤ 𝑖 ≤ 𝑛 − 1+ ∪ *𝑥 𝑦 : 1 ≤ 𝑖 ≤ 𝑛+. 
Hence |𝑉(𝐿 )| = 2𝑛, |𝐸(𝐿 )| = 3𝑛 − 2 and ∆(𝐿 ) =  3. Based 
on Lemma 3.1, the lower bound is 𝛾    (𝐿 ) ≥ ∆(𝐿 ) =  3. 

Now we will prove that the upper bound is 
$\𝑔𝑎𝑚𝑚𝑎_*𝑙𝑒𝑎𝑡+(𝐿_𝑛)\𝑙𝑒 3$. By using Lemma 3.3, we define 
the vertex labeling 𝑓_1 of ladder by the following. 

 
𝑓 (𝑥 ) = 𝑔 (𝑖) 

 
𝑓 (𝑦 ) = 𝑔 (𝑖) ⊕ 𝑛 

 
The vertex labeling 𝑓  is a bijective function from 𝑓: 𝑉(𝐿 ) →
*1,2,3,⋯ , |𝑉(𝐿 )|+. The edge-weights 𝑤(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣), 
where 𝑢, 𝑣 ∈ 𝐿  and under the labeling 𝑓 , is 𝑤 = { 

 (𝑛 + 3) +
𝑘; 1 ≤ 𝑘 ≤ 3𝑛 − 2}, which from a a consecutive sequence of 

𝑑 = 1. Hence 𝐿  admits an ( 
 (𝑛 + 3) + 1,1) −edge - antimagic 

vertex labeling. 
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Together with Theorem 3.1 and Corollary 3.2, there is a set 
of edge labeling 𝛼 = *5𝑛 − 1 − 𝑘; 1 ≤ 𝑘 ≤ 3𝑛 − 2+ such that it 
will give all the edge weights of 𝐿  have the same edge 
weights. Then the edge coloring of 𝐿 , assigned by color 
𝑤(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑢𝑣) + 𝑓(𝑣), will give the same colors. 

However, definition of a proper coloring, the adjacent 
edges can not be assigned by the same colors. Therefore, we 
need to re-assign a color to the adjacent edges. By using 
Lemma 3.2, let 𝑊 = *(𝑤 , 𝛼 ); 𝑤 ∈ 𝑤, 𝛼 ∈ 𝛼+ be the ordered 
pair of set which gives the total edge weight of 𝐿  of 𝑑 = 0. 
There are subset 𝑤 , 𝛼 ⊂ 𝑊 which all of them are the adjacent 
edge weights of 𝐿 . Based on Lemma 3.2, there are a 
permutation Π(𝑤 , ) and Π(𝑤 , ) such that 𝑊 

 = 𝑊 
 = 𝑎 , +

Π(𝑤 , ) = 𝑎 , + Π(𝑤 , ) gives two different colors. Those all 
colors are distinct with the other non adjacent edge weights of 
𝐿 . 

Therefore, we can define the following edge labeling 
𝑓 (𝑥 𝑥   ) = (𝑖) ⊕ 4𝑛 − 1 

𝑓 (𝑦 𝑦   ) = (𝑖) ⊕ 2𝑛 
𝑓 (𝑥 𝑦 ) = 𝑔 (𝑖) ⊕ 3𝑛 − 1 

where (𝑖) is the permutation set Π(𝛼) mentioned in Lemma 
3.2, with 𝑎 = 1, 𝑑 = 1, 𝑘 = 𝑛 − 2. The edge labeling 𝑓 is a 
bijective function from 𝑓: 𝑉(𝐿 ) ∪ 𝐸(𝐿 ) → *1,2,3,⋯ , |𝑉(𝐿 )| +
|𝐸(𝐿 )|+. 

Hence, from the super local antimagic total edge labelings 
above, it easy to see that 𝑊 = { 

 (11𝑛 − 1),   (11𝑛 +
1),   (11𝑛 + 3)} contains only three element which induces a 
proper edge coloring of 𝐿 . Thus, it gives 𝛾*    +(𝐿 ) ≤ 3. It 
concludes that 𝛾*    +(𝐿 ) = 3.∎ 
 
For illustration, we give the following example. 

 
Figure 1. Super edge local antimagic total labeling of 𝐿  

 
Theorem 3.4. For 𝑛 odd and 𝑚 be positive integers. Let 𝐶 ,  
be caterpillar graph. The chromatic number of super edge 
local antimagic total labeling of 𝐶 ,  is 𝛾    (𝐶 ,𝑚) = 𝑚 + 2. 
 
Proof. The caterpillar graph 𝐶 ,  is a connected graph with 
vertex set 𝑉(𝐶 , ) = *𝑥 , 𝑦 , : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚  and edge set 
𝐸(𝐶 , ) = {𝑥 𝑦 , : 1 ≤ 𝑖 ≤ 𝑛} ∪ *𝑥 𝑥   : 1 ≤ 𝑖 ≤ 𝑛 − 1+. Hence 
|𝑉(𝐶 , )| = 𝑛(𝑚 + 1) and |𝐸(𝐶 , )| = 𝑛(𝑚 + 1) − 1. Based on 
Lemma 3.1, the lower bound is 𝛾    (𝐶 , ) ≥ ∆(𝐶 , ) =  𝑚 + 2. 

Now we will prove that the upper bound is 𝛾    (𝐶 ,𝑚) ≤ 3. 
By using Lemma 3.3, we define the vertex labeling 𝑓  of 
caterpillar by the following. 
 

𝑓 (𝑥 ) = 𝑔 (𝑖) 
 

𝑓 (𝑦 , ) = 𝑔 (𝑖)⨁𝑗𝑛 
 

The vertex labeling 𝑓  is a bijective function from 

𝑓: 𝑉(𝐶 , ) → {1,2,3, . . . , |𝑉(𝐶 , )|}. The edge-weights 𝑤(𝑢𝑣) =
𝑓(𝑢) + 𝑓(𝑣), where 𝑢, 𝑣 ∈ 𝐶 ,  and under the labeling 𝑓 , is 
𝑤 = { 

 (𝑛 + 3) + 𝑖; 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ { 
 (𝑛 + 1) + 𝑖 + 𝑗𝑛; 1 ≤ 𝑖 ≤

𝑛;  1 ≤ 𝑖 ≤ 𝑚}, which from a consecutive sequence of 𝑑 = 1. 

Hence 𝐶 ,  admits an ( 
 (𝑛 + 3) + 1,1)-edge-antimagic vertex 

labeling. 
Together with Theorem 3.1 and Corollary 3.2, there is a set 

of edge labeling 𝛼 = *𝑎 ; 1 ≤ 𝑘 ≤ 𝑛𝑚 + 𝑛 − 1+ such that it will 
give all the edge weights of 𝐶 ,  have the same edge weights. 
Then the edge coloring of 𝐶 , , assigned by color 𝑤(𝑢𝑣) =
𝑓(𝑢) + 𝑓(𝑢𝑣) + 𝑓(𝑣), will give the same colors. 

However, definition of a proper coloring, the adjacent 
edges can not be assigned by the same colors. Therefore, we 
need to re-assign a color to the adjacent edges. By using 
Lemma 3.2, let 𝑊 = *(𝑤 , 𝑎 );  𝑤 ∈ 𝑤, 𝑎 ∈ 𝑎+ be the ordered 
pair of set which gives the total edge weight of 𝐶 ,  of 𝑑 = 0. 
There are subset 𝑤 , 𝑎 ⊂ 𝑊 which all of them are the adjacent 
edge weights of 𝐶 , . Based on Lemma 3.2, there are a 
permutation Π(𝑤 , ) and Π(𝑤 , ) such that 𝑊 

 = 𝑊 
 = 𝑎 , +

Π(𝑤 , ) = 𝑎 , + Π(𝑤 , ) gives two different colors. Those all 
colors are distinct with the other non adjacent edge weights of 
𝐶 , . 

Therefore, we can define the following edge labeling 
 

𝑓 (𝑥 𝑦 , ) = 𝑔 (𝑖)⨁(𝑚 + 𝑗)𝑛 
 

𝑓 (𝑥 𝑥   ) = (𝑖)⨁𝑛(2𝑚 + 1) 
 
where (𝑖) is the permutation set Π(𝛼) mentioned in Lemma 
3.2, with 𝑎 = 1, 𝑑 = 1, 𝑘 = 𝑛 − 2 . The edge labeling 𝑓 is a 
bijective function from 
𝑓: 𝑉(𝐶 , ) ∪ 𝐸(𝐶 , ) → {1,2,3,⋯ , |𝑉(𝐶 , )| + |𝐸(𝐶 , )|}. 

Hence, from the super local antimagic total edge labelings 
above, it easy to see that 𝑊 = {(𝑚 +  

 + 2) 𝑛 +  
 , (𝑚 +  

 +
4) 𝑛 +  

 ,\𝑙𝑑𝑜𝑡𝑠, (𝑚 +  
 + 2𝑚) 𝑛 +  

 , (2𝑚 +  
 ) 𝑛 +  

 , (2𝑚 +
 
 ) 𝑛 +  

 } contains 𝑚 + 2 element which induces a proper edge 
coloring of 𝐶 , . Thus, it gives 𝛾    (𝐶 ,𝑚) ≤ 𝑚 + 2.  It 
concludes that 𝛾    (𝐶 ,𝑚) = 𝑚 + 2.∎ 
 
Theorem 3.5. Let 𝐺 be any graph of order 𝑛 ≥ 3. Let 𝑃  be 
path graph, then we have 𝛾    (𝐺⨀𝑃 ) ≥ ∆(𝐺⨀𝑃 ) +  1. 
 
Proof. Let 𝐺 be a graph of order 𝑛 ≥ 3 and vertex set 𝑉(𝐻) =
*𝑥 : 1 ≤ 𝑖 ≤ 𝑛+. Let 𝐺⨀𝑃  be connected graph with vertex set 
𝑉(𝐺⨀𝑃 ) = 𝑉(𝐺) ∪ {𝑦 , , 𝑦 , : 1 ≤ 𝑖 ≤ 𝑛} and the edge set 
𝐸(𝐺⨀𝑃 ) = 𝑉(𝐺) ∪ {𝑥 𝑦 , , 𝑥 𝑦 , : 1 ≤ 𝑖 ≤ 𝑛}. Hence 
|𝑉(𝐺⨀𝑃 )| = 3𝑛 and |𝐸(𝐺⨀𝑃 )| =  |𝐸(𝐺)| + 3𝑛. The maximum 
degree of 𝐺⨀𝑃  is ∆(𝐺⨀𝑃 ) = ∆(𝐺) + 2. The graph 𝐺⨀𝑃  have 
|𝑉(𝐺)| subgraph 𝐾 + 𝑃 . In process, we can be construction 
some condition for total edge weight in 𝑒 ∈ 𝐺⨀𝑃  as follows 
 
(1) We assume that 𝑒 ∈ 𝐸(𝐺), (𝑒 ) ∈ 𝐸(𝐻 ) with 𝐻 ≅ 𝑃  and 

(𝑒 ) = 𝑥 𝑣 where 𝑥 ∈ 𝑉(𝐺), 𝑣 ∈ 𝑉(𝐻 ). 
 (2) Suppose 𝐺 admits an edge local antimagic total labeling 

with 𝛾    (𝐺) and based on a proper edge coloring which 
there must be at least ∆(𝐺) edges colors. 

 (3) Based on definition coronation that the edges 𝑒  which 
incident to 𝑢 ∈ 𝑉(𝐺) vertices are adjacent to the edges 
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(𝑒 ) . Thus, we obtain that the edge weight of 𝐺 different 
with the edge weight of (𝑒 ) . 

(4) Since the edges (𝑒 ) ∈ 𝐸(𝐻 ) are adjacent to the edges 
(𝑒 )  such that the edges 𝑒  have distinct color to the 
edges (𝑒 ) . Thus, we have 1 colors for the edges (𝑒 )  
and we can claim that the edges (𝑒 )  in 𝑖-th subgraph 
𝐻 ≅ 𝑃  have same color. 

 
By (2), (3) and (4), we can construction of the lower bound 

of the local antimagic total edge coloring of 𝐺⨀𝑃  as follows. 
 

𝛾    (𝐺⨀𝑃 ) ≥  |*𝑤((𝑒 )), ∈ 𝑉(𝐺)+|  + |*𝑤((𝑒 ) ), (𝑒 ) 
∈ 𝑉((𝐾 + 𝑃 ) )+ + 

|*𝑤((𝑒 ) , (𝑒 ) ∈ 𝑉(𝐻 )+| 
≥ ∆(𝐺) + 2 + 1     
= ∆(𝐺⨀𝑃 ) + 1 

 
Hence, we get that the lower bound of the local antimagic 

total edge coloring of 𝐺⨀𝑃  is 𝛾    (𝐺⨀𝑃 ) ≥ ∆(𝐺⨀𝑃 ) + 1.∎ 
 
Theorem 3.6. For 𝑛 be odd positive integers with 𝑛 ≥ 2, we 
have 𝛾    (𝑃 ⨀𝑃 ) = 5. 
 
Proof. The graph 𝑃 ⨀𝑃  is a connected graph with vertex set 
𝑉(𝑃 ⨀𝑃 ) = {𝑥 , 𝑦 , , 𝑦 , : 1 ≤ 𝑖 ≤ 𝑛} and edge set 𝐸(𝑃 ⨀𝑃 ) =
{𝑥 𝑦 , , 𝑥 𝑦 , , 𝑦 , 𝑦 , : 1 ≤ 𝑖 ≤ 𝑛} ∪ *𝑥 𝑥   : 1 ≤ 𝑖 ≤ 𝑛 − 1+. Hence 
|𝑉(𝑃 ⨀𝑃 )| =  3𝑛, |𝐸(𝑃 ⨀𝑃 )| =  4𝑛 − 1 and ∆(𝑃 ⨀𝑃 ) = 4. 
Based on Theorem 3.5, the lower bound is 𝛾    (𝑃 ⨀𝑃 ) ≥
∆(𝑃 ⨀𝑃 ) =  4 + 1. 

Now we will prove that the upper bound is 𝛾    (𝑃 ⨀𝑃 ) ≤
∆(𝑃 ⨀𝑃 ) =  5. By using Lemma 3.3, we define the vertex 
labeling 𝑓  of 𝑃 ⨀𝑃  by the following. 

 
𝑓 (𝑥 ) = 𝑔 (𝑖) 

𝑓 (𝑦 , ) = 𝑔 (𝑖) ⨁ 𝑛 
𝑓 (𝑦 , ) = 𝑔 (𝑖) ⨁ 2𝑛 

 
The vertex labeling 𝑓  is a bijective function from 

𝑓: 𝑉(𝑃 ⨀𝑃 ) → *1,2,3, . . . , |𝑉(𝑃 ⨀𝑃 )|+. The edge-weights 
𝑤(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣), where 𝑢, 𝑣 ∈ 𝑃 ⨀𝑃 , under the labeling 
𝑓 , is 𝑤 = { 

 (𝑛 + 3) + 𝑘; 1 ≤ 𝑘 ≤ 4𝑛 − 1}, which from a 
consecutive sequence of 𝑑 = 1. Hence 𝑃 ⨀𝑃  admits an 
( 

 (𝑛 + 3) + 1,1)-edge-antimagic vertex labeling. 
Together with Theorem 3.1 and Corollary 3.2, there is a set 

of edge labeling 𝑎 = *𝑎 ; 1 ≤ 𝑘 ≤ 4𝑛 − 1+ such that it will give 
all the edge weights of 𝑃 ⨀𝑃  have the same edge weights. 
Then the edge coloring of 𝑃 ⨀𝑃 , assigned by color 𝑤(𝑢𝑣) =
𝑓(𝑢) + 𝑓(𝑢𝑣) + 𝑓(𝑣), will give the same colors. 

However, definition of a proper coloring, the adjacent 
edges can not be assigned by the same colors. Therefore, we 
need to re-assign a color to the adjacent edges. By using 
Lemma 3.2, let 𝑊 = *(𝑤 , 𝑎 );  𝑤 ∈ 𝑤, 𝑎 ∈ 𝑎+ be the ordered 
pair of set which gives the total edge weight of 𝑃 ⨀𝑃  of 𝑑 = 0. 
There are subset 𝑤 , 𝑎 ⊂ 𝑊 which all of them are the adjacent 
edge weights of 𝑃 ⨀𝑃 . Based on Lemma 3.2, there are a 
permutation Π(𝑤 , ) and Π(𝑤 , ) such that 𝑊 

 = 𝑊 
 = {𝑎 , } +

Π(𝑤 , ) = {𝑎 , } + Π(𝑤 , ) gives two different colors. Those all 
colors are distinct with the other non adjacent edge weights of 
𝑃 ⨀𝑃 . 

Therefore, we can define the following edge labeling 

 
𝑓 (𝑦 , 𝑦 , ) = 𝑔 (𝑖) ⨁ 3𝑛 
𝑓 (𝑥 𝑦 , ) = 𝑔 (𝑖) ⨁ 4𝑛 
𝑓 (𝑥 𝑦 , ) = 𝑔 (𝑖) ⨁ 5𝑛 
𝑓 (𝑥 𝑥   ) = (𝑖) ⨁ 6𝑛 

 
where (𝑖) is the permutation set Π(𝑎) mentioned in Lemma 
3.2, with 𝑎 = 1, 𝑑 = 1, 𝑘 = 𝑛 − 2. The edge labeling 𝑓 is a 
bijective function from 
𝑓: 𝑉(𝑃 ⨀𝑃 ) ∪ 𝐸(𝑃 ⨀𝑃 ) → *1,2,3,⋯ , |𝑉(𝑃 ⨀𝑃 )| +
|𝐸(𝑃 ⨀𝑃 )|+. 

 
Hence, from the super local antimagic total edge labelings 

above, it easy to see that 𝑊 = { 
 (13𝑛 + 3),   (15𝑛 +

3),   (17𝑛 + 3),   (15𝑛 + 1),   (15𝑛 + 5)} contains 5 element 
which induces a proper edge coloring of 𝑃 ⨀𝑃 . Thus, it gives 
𝛾    (𝑃 ⨀𝑃 ) ≤ 5. It concludes that 𝛾    (𝑃 ⨀𝑃 ) =  5. ∎ 
 

 
 
 
 
 
 
 
 
 

Figure 1. Example of Edge Local Antimagic Total Labeling of 
𝑃 ⨀𝑃  

 
Theorem 3.7. For 𝑛 be odd positive integers with 𝑛 ≥ 3, we 
have 𝛾    (𝐶 ⨀𝑃 ) = 5. 
 
Proof. The graph 𝐶 ⨀𝑃  is a connected graph with vertex set 
𝑉(𝐶 ⨀𝑃 ) = {𝑥 , 𝑦 , , 𝑦 , : 1 ≤ 𝑖 ≤ 𝑛} and edge set 𝐸(𝐶 ⨀𝑃 ) =
\{𝑥 𝑦 , , 𝑥 𝑦 , , 𝑦 , 𝑦 , : 1 ≤ 𝑖 ≤ 𝑛} ∪ *𝑥 𝑥   : 1 ≤ 𝑖 ≤ 𝑛 − 1+ ∪
*𝑥 𝑥 +. Hence |𝑉(𝐶 ⨀𝑃 )| =  3𝑛, |𝐸(𝐶 ⨀𝑃 )| =  4𝑛 and 
∆(𝐶 ⨀𝑃 ) = 4. Based on Theorem 3.5, the lower bound is 
𝛾    (𝐶 ⨀𝑃 ) ≥ ∆(𝐶 ⨀𝑃 ) =  4 + 1. 

Now we will prove that the upper bound is 𝛾    (𝐶 ⨀𝑃 ) ≥
∆(𝐶 ⨀𝑃 ) =  5. By using Lemma 3.3, we define the vertex 
labeling 𝑓  of 𝐶 ⨀𝑃  by the following. 
 

𝑓 (𝑥 ) = 𝑔 (𝑖) 
𝑓 (𝑦 , ) = 𝑔 (𝑖)⨁ 𝑛 

𝑓 (𝑦 , ) = 𝑔  (𝑖)⨁ 2𝑛 
 

The vertex labeling 𝑓  is a bijective function from 
𝑓: 𝑉(𝐶 ⨀𝑃 ) → *1,2,3, . . . , |𝑉(𝐶 ⨀𝑃 )|+. The edge-weights 
𝑤(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣), where 𝑢, 𝑣 ∈  𝐶 ⨀𝑃 , under the labeling 
𝑓 , is 𝑤 = { 

 (𝑛 + 3) + 𝑘; 1 ≤ 𝑘 ≤ 4𝑛}, which from a 
consecutive sequence of 𝑑 = 1. Hence 𝐶 ⨀𝑃  admits an 
( 

 (𝑛 + 3) + 1,1) −edge-antimagic vertex labeling. 
Together with Theorem 3.1 and Corollary 3.2, there is a set 

of edge labeling 𝛼 = *𝑎 ; 1 ≤ 𝑘 ≤ 4𝑛 − 1+ such that it will give 
all the edge weights of 𝐶 ⨀𝑃  have the same edge weights. 
Then the edge coloring of 𝐶 ⨀𝑃 , assigned by color 𝑤(𝑢𝑣) =
𝑓(𝑢) + 𝑓(𝑢𝑣) + 𝑓(𝑣), will give the same colors. 

However, definition of a proper coloring, the adjacent 

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 07, JULY 2019          ISSN 2277-8616 

126 
IJSTR©2019 
www.ijstr.org 

edges can not be assigned by the same colors. Therefore, we 
need to re-assign a color to the adjacent edges. By using 
Lemma 3.2, let 𝑊 = *(𝑤 , 𝑎 );  𝑤 ∈ 𝑤, 𝑎 ∈ 𝑎+ be the ordered 
pair of set which gives the total edge weight of 𝐶 ⨀𝑃  of 𝑑 = 0. 
There are subset 𝑤 , 𝑎 ⊂ 𝑊 which all of them are the adjacent 
edge weights of 𝐶 ⨀𝑃 . Based on Lemma 3.2, there are a 
permutation Π(𝑤 , ) and Π(𝑤 , ) such that 𝑊 

 = 𝑊 
 = {𝑎 , } +

 Π(𝑤 , ) = {𝑎 , } + Π(𝑤 , ) gives two different colors. Those all 
colors are distinct with the other non adjacent edge weights of 
𝐶 ⨀𝑃 . 

Therefore, we can define the following edge labeling 
 

𝑓 (𝑦 , 𝑦 , )) = 𝑔 (𝑖)⨁ 3𝑛 
𝑓 (𝑥 𝑦 , ) = 𝑔 (𝑖) ⊕ 4𝑛 
𝑓 (𝑥 𝑦 , ) = 𝑔 (𝑖) ⨁ 5𝑛 

𝑓 (𝑥 𝑥 ) =  7𝑛 
𝑓 (𝑥 𝑥*   +) = (𝑖) ⨁ 6𝑛 

 
where (𝑖) is the permutation set Π(𝛼) mentioned in Lemma 
3.2, with 𝑎 = 1, 𝑑 = 1, 𝑘 = 𝑛 − 2. The edge labeling 𝑓 is a 
bijective function from 
𝑓: 𝑉(𝐶 ⨀𝑃 ) ∪ 𝐸(𝐶 ⨀𝑃 ) → *1,2,3,⋯ , |𝑉(𝐶 ⨀𝑃 )| +
|𝐸(𝐶 ⨀𝑃 )|+. 

Hence, from the super edge local antimagic total labeling 
above, it easy to see that 𝑊 = { 

 (13𝑛 + 3),   (15𝑛 +
3),   (17𝑛 + 3),   (15𝑛 + 1),   (15𝑛 + 3),   (15𝑛 + 5)} contains 5 
element which induces a proper edge coloring of 𝐶 ⨀𝑃 . Thus, 
it gives 𝛾    (𝐶 ⨀𝑃 ) ≤ 5.  It concludes that 𝛾    (𝐶 ⨀𝑃 ) =
 5.∎ 
 
Theorem 3.8. Let 𝐻 be any graph of order 𝑛 ≥ 3. Let 𝐾  be 
complete graph, then we have 𝛾    (𝐻⨀𝑟𝐾 ) ≥ 𝛾    (𝐻) + 𝑟. 
 
Proof. Let 𝐻 be any graph with order 𝑛 ≥ 3. The vertex set of 
𝐻 is 𝑉(𝐻) = *𝑎 : 1 ≤ 𝑖 ≤ 𝑛+. Let 𝐻⨀𝑟𝐾  be connected graph 
with corona. The vertex set and the edge set of 𝐻⨀𝑟𝐾  are 
𝑉(𝐻⨀𝑟𝐾 ) = 𝑉(𝐺) ∪ {𝑥 

 : 1 ≤ 𝑖 ≤ 𝑛} and 𝐸(𝐻⨀𝑟𝐾 ) = 𝑉(𝐺) ∪
{𝑎 𝑥 

 : 1 ≤ 𝑖 ≤ 𝑛}. 
Suppose 𝐻 admits a edge local antimagic total labeling 

with 𝛾    (𝐻) = 𝑘. We define  𝑓: 𝑉(𝐺) ∪  𝐸(𝐺) → *1,2,3,⋯ , 𝑝 +
𝑞+  where 𝑝 = |𝑉(𝐺)| and 𝑞 = |𝐸(𝐺)| as the edge local 
antimagic total labeling bijection of 𝑘 colors. Since every 
vertex of 𝑟𝐾  connects to every vertex in base graph 𝐻, the 
edge weights of pendant edge must be different with the edge 
weights of base graph 𝐻. It implies that  𝛾    (𝐻⨀𝑟𝐾 ) ≥ 𝑘 + 𝑟. 
To show the exact value, firstly we prove that 𝛾    (𝐻⨀𝑟𝐾 ) ≤
𝑘 + 𝑟. Define a bijection 𝑔: 𝑉(𝐻⨀𝑟𝐾 ) → *1,2,3, . . . , |𝑉(𝐻)| + 𝑟𝑛+ 
by the following way: 

 

𝑔(𝑣) = { 𝑓(𝑎 ) 𝑖𝑓 𝑣 = 𝑎 , 1 ≤ 𝑖 ≤
(𝑗 + 1)𝑛 − 𝑓(𝑎 ) + 1 𝑖𝑓 𝑣 = 𝑥 

 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟  
 
Based on above function, it can be seen that 𝑔 is a edge local 
antimagic total labeling of 𝐻⨀𝑟𝐾  and we have the edge 
weights as follows: 

𝑤 (𝑒) = {
𝑤 (𝑎𝑏) 𝑖𝑓 𝑒 = 𝑎𝑏, 𝑎, 𝑏 ∈ 𝑉(𝐺)

(𝑗 + 1)𝑛 + 1 𝑖𝑓 𝑒 = 𝑎 𝑥 
 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟 

 
It is easy to see that 𝑤 (𝑎𝑏) < 𝑤 (𝑎 𝑥 

 ) for every 1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑟 and each label 𝑓 is at most 𝑛. Thus, 𝑓(𝑎) < 𝑓(𝑏) 
or 𝑓(𝑎) < 𝑓(𝑏) for 𝑎, 𝑏 ∈ 𝑉(𝐻). The edge weight 

 
𝑤 (𝑎𝑏) =  𝑔(𝑎) + 𝑔(𝑏) 

 
= 𝑓(𝑎)
+ 𝑓(𝑏)
= 2𝑛 − 1 

 
and 
 

𝑤 (𝑎 𝑥 
 ) = 𝑔(𝑎 ) + 𝑔(𝑥 

 ) 
 
= 𝑓(𝑎 ) + (𝑗
+ 1)𝑛 − 𝑓(𝑎 )
+ 1 
 
≤ (𝑗 + 1)𝑛
+ 1 

 
Clearly, that for 𝑛 ≥ 3 we have 2𝑛 − 1 < (𝑗 + 1)𝑛 + 1. Thus for 
every 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟 is 
 

𝑤 (𝑎𝑏) < 𝑤 (𝑎 𝑥 
 ) 

 
Based on the labeling, we know that the edge weight of 

pendants are larger than the edge weight of the base graph 𝐻. 
Therefore, it is easy to see that 𝑔 is a edge local antimagic 
total labeling of 𝐻⨀𝑟𝐾 . 

 
𝛾    (𝐻⨀𝑟𝐾 ) ≤ |𝑤 (𝑒)| 

 
= |𝑤 (𝑎𝑏)|
+ |𝑤 (𝑎 𝑥 

 )| 
 
= 𝛾    (𝐻)
+ 𝑟 
= 𝑘
+ 𝑟 

 
Hence, from the above edge weight it is easy to see that the 
upper bound of the local antimagic total edge chromatic 
number of 𝐻⨀𝑟𝐾  is 𝛾    (𝐻⨀𝑟𝐾 ) ≤ 𝑘 + 𝑟. It concludes that 
𝛾    (𝐻⨀𝑟𝐾 ) = 𝑘 + 𝑟 = 𝛾    (𝐻) + 𝑟. 

3. CONCLUSION 
We have found that most of the local antimagic total edge 
chromatic numbers attain the best lower bound and in this 
paper we study and determine the chromatic number of the 
edge local antimagic total labeling of special graph and its 
operations. However, we need to characterize more 
general result for any graphs $G$, especially the 
connection with the edge local antimagic total labeling of 
graph.. 
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